-
-
Notifications
You must be signed in to change notification settings - Fork 4.2k
/
Copy pathflask_embed.py
60 lines (44 loc) · 1.95 KB
/
flask_embed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from threading import Thread
from flask import Flask, render_template
from tornado.ioloop import IOLoop
from bokeh.embed import server_document
from bokeh.layouts import column
from bokeh.models import ColumnDataSource, Slider
from bokeh.plotting import figure
from bokeh.sampledata.sea_surface_temperature import sea_surface_temperature
from bokeh.server.server import Server
from bokeh.themes import Theme
app = Flask(__name__)
def bkapp(doc):
df = sea_surface_temperature.copy()
source = ColumnDataSource(data=df)
plot = figure(x_axis_type='datetime', y_range=(0, 25), y_axis_label='Temperature (Celsius)',
title="Sea Surface Temperature at 43.18, -70.43")
plot.line('time', 'temperature', source=source)
def callback(attr, old, new):
if new == 0:
data = df
else:
data = df.rolling(f"{new}D").mean()
source.data = ColumnDataSource.from_df(data)
slider = Slider(start=0, end=30, value=0, step=1, title="Smoothing by N Days")
slider.on_change('value', callback)
doc.add_root(column(slider, plot))
doc.theme = Theme(filename="theme.yaml")
@app.route('/', methods=['GET'])
def bkapp_page():
script = server_document('http://localhost:5006/bkapp')
return render_template("embed.html", script=script, template="Flask")
def bk_worker():
# Can't pass num_procs > 1 in this configuration. If you need to run multiple
# processes, see e.g. flask_gunicorn_embed.py
server = Server({'/bkapp': bkapp}, io_loop=IOLoop(), allow_websocket_origin=["localhost:8000"])
server.start()
server.io_loop.start()
Thread(target=bk_worker).start()
if __name__ == '__main__':
print('Opening single process Flask app with embedded Bokeh application on http://localhost:8000/')
print()
print('Multiple connections may block the Bokeh app in this configuration!')
print('See "flask_gunicorn_embed.py" for one way to run multi-process')
app.run(port=8000)