-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
295 lines (256 loc) · 11.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
import os
import math
import threading
import numpy as np
import json
import collections
from PIL import Image
from pytorch_msssim import ms_ssim
from tqdm import tqdm
def quantize_per_tensor(t, bit=8, axis=-1):
if axis == -1:
t_valid = t!=0
t_min, t_max = t[t_valid].min(), t[t_valid].max()
scale = (t_max - t_min) / 2**bit
elif axis == 0:
min_max_list = []
for i in range(t.size(0)):
t_valid = t[i]!=0
if t_valid.sum():
min_max_list.append([t[i][t_valid].min(), t[i][t_valid].max()])
else:
min_max_list.append([0, 0])
min_max_tf = torch.tensor(min_max_list).to(t.device)
scale = (min_max_tf[:,1] - min_max_tf[:,0]) / 2**bit
if t.dim() == 4:
scale = scale[:,None,None,None]
t_min = min_max_tf[:,0,None,None,None]
elif t.dim() == 2:
scale = scale[:,None]
t_min = min_max_tf[:,0,None]
elif t.dim() == 5:
scale = scale[:,None,None,None,None]
t_min = min_max_tf[:,0,None,None,None,None]
elif axis == 1:
min_max_list = []
for i in range(t.size(1)):
t_valid = t[:,i]!=0
if t_valid.sum():
min_max_list.append([t[:,i][t_valid].min(), t[:,i][t_valid].max()])
else:
min_max_list.append([0, 0])
min_max_tf = torch.tensor(min_max_list).to(t.device)
scale = (min_max_tf[:,1] - min_max_tf[:,0]) / 2**bit
if t.dim() == 4:
scale = scale[None,:,None,None]
t_min = min_max_tf[None,:,0,None,None]
elif t.dim() == 2:
scale = scale[None,:]
t_min = min_max_tf[None,:,0]
elif t.dim() == 5:
scale = scale[None,:,None,None,None]
t_min = min_max_tf[None,:,0,None,None,None]
quant_t = ((t - t_min) / (scale + 1e-19)).round()
new_t = t_min + scale * quant_t
return quant_t, new_t
def all_gather(tensors):
"""
All gathers the provided tensors from all processes across machines.
Args:
tensors (list): tensors to perform all gather across all processes in
all machines.
"""
gather_list = []
output_tensor = []
world_size = dist.get_world_size()
for tensor in tensors:
tensor_placeholder = [
torch.ones_like(tensor) for _ in range(world_size)
]
dist.all_gather(tensor_placeholder, tensor, async_op=False)
gather_list.append(tensor_placeholder)
for gathered_tensor in gather_list:
output_tensor.append(torch.cat(gathered_tensor, dim=0))
return output_tensor
def all_reduce(tensors, average=True):
"""
All reduce the provided tensors from all processes across machines.
Args:
tensors (list): tensors to perform all reduce across all processes in
all machines.
average (bool): scales the reduced tensor by the number of overall
processes across all machines.
"""
for tensor in tensors:
dist.all_reduce(tensor, async_op=False)
if average:
world_size = dist.get_world_size()
for tensor in tensors:
tensor.mul_(1.0 / world_size)
return tensors
class PositionalEncoding(nn.Module):
def __init__(self, pe_embed):
super(PositionalEncoding, self).__init__()
self.pe_embed = pe_embed.lower()
if self.pe_embed == 'none':
self.embed_length = 1
else:
self.lbase, self.levels = [float(x) for x in pe_embed.split('_')]
self.levels = int(self.levels)
self.embed_length = 2 * self.levels
def __repr__(self):
return f"Positional Encoder: pos_b={self.lbase}, pos_l={self.levels}, embed_length={self.embed_length}, to_embed={self.pe_embed}"
def forward(self, pos):
if self.pe_embed == 'none':
return pos[:,None]
else:
pe_list = []
for i in range(self.levels):
temp_value = pos * self.lbase ** (i) * math.pi
pe_list += [torch.sin(temp_value), torch.cos(temp_value)]
result = torch.stack(pe_list, 1)
return result
def RoundTensor(x, num=2, group_str=False):
if group_str:
str_list = []
for i in range(x.size(0)):
x_row = [str(round(ele, num)) for ele in x[i].tolist()]
str_list.append(','.join(x_row))
out_str = '/'.join(str_list)
else:
str_list = [str(round(ele, num)) for ele in x.flatten().tolist()]
out_str = ','.join(str_list)
return out_str
def adjust_lr(optimizer, cur_epoch, cur_iter, data_size, args, model=None):
cur_epoch = cur_epoch + (float(cur_iter) / data_size)
if cur_epoch < args.warmup:
lr_mult = 0.1 + 0.9 * cur_epoch / args.warmup
else:
lr_mult = 0.5 * (math.cos(math.pi * (cur_epoch - args.warmup)/ (args.epochs - args.warmup)) + 1.0)
lr = args.lr * lr_mult
for i, param_group in enumerate(optimizer.param_groups):
param_group['lr'] = lr
return lr
class WarpKeyframe(nn.Module):
def __init__(self, height, width, clip_size, device=None):
super().__init__()
self.flow_grid = torch.stack(torch.meshgrid(torch.arange(0, height), torch.arange(0, width)), -1).float() #[H, W, 2]
self.flow_grid = torch.flip(self.flow_grid, (-1,)) # from (y, x) to (x, y)
self.flow_grid = self.flow_grid.unsqueeze(0) #[H, W, 2] -> [1, H, W, 2]
self.flow_grid = self.flow_grid.to(device)
self.height = height
self.width = width
self.clip_size = clip_size
def extra_repr(self):
return 'height={}, width={}, clip_size={}'.format(self.height, self.width, self.clip_size)
def forward(self, key_frame, output_flow):
B, C, T, H, W = output_flow.shape
output_flow = output_flow.permute(0, 2, 3, 4, 1).contiguous().view(B*T, H, W, C) #[B, 2, T, H, W] -> [BT, H, W, 2]
key_frame = key_frame.permute(0, 2, 1, 3, 4).expand(-1, T, -1, -1, -1).contiguous().view(B*T, -1, H, W) #[B, C, 1, H, W] -> [B, 1, C, H, W] -> [BT, C, H, W]
next_coords = self.flow_grid.to(output_flow) + output_flow
next_coords = 2 * next_coords / torch.tensor([[[[W-1, H-1]]]]).to(next_coords) - 1
image_warp = F.grid_sample(key_frame, next_coords, padding_mode='border', align_corners=True)
image_warp = image_warp.view(B, T, -1, H, W).permute(0, 2, 1, 3, 4) # [BT, C, H, W] -> [B, C, T, H, W]
return image_warp
def split_list(l, n):
"""Yield successive n-sized chunks from l."""
length = len(l)
chunk_size = round(length / n)
for i in range(0, length, chunk_size):
yield l[i:i + chunk_size]
def psnr(img1, img2):
mse = torch.mean((img1/255. - img2/255.) ** 2).item()
if mse < 1.0e-10:
return 100
PIXEL_MAX = 1
return 20 * math.log10(PIXEL_MAX / math.sqrt(mse))
# combine the predicted 256x320 frame patches into 1024x1920 video frame,
# and then re-evaluate the PSNR/MS-SSIM results of 1024x1920 resolution
@torch.no_grad()
def calculate_metrics_UVG(video_name, video_length, gt_base_dir, pred_base_dir, device):
h = 1024
w = 1920
split_size_h = 256
split_size_w = 320
split_num_h = h // split_size_h
split_num_w = w // split_size_w
psnr_sum = 0
msssim_sum = 0
count = 0
for frame_index in range(video_length):
pred_image_list = []
gt_image_list = []
for i in range(1, split_num_h * split_num_w + 1):
pred_image = Image.open(os.path.join(pred_base_dir, "{}-{:02d}".format(video_name, i), 'frame{:06}.png'.format(frame_index + 1))).convert("RGB")
pred_image_list.append(np.array(pred_image).astype(np.uint8))
pred_image.close()
gt_image = Image.open(os.path.join(gt_base_dir, "{}-{:02d}".format(video_name, i), 'frame{:06}.png'.format(frame_index + 1))).convert("RGB")
gt_image_list.append(np.array(gt_image).astype(np.uint8))
gt_image.close()
# combine the split 256x320 frame patches into 1024x1920 full frame
pred_image = np.stack(pred_image_list, axis=0)
pred_image = pred_image.reshape(split_num_h, split_num_w, split_size_h, split_size_w, 3)
pred_image = pred_image.transpose(0, 2, 1, 3, 4).reshape(h, w, 3)
gt_image = np.stack(gt_image_list, axis=0)
gt_image = gt_image.reshape(split_num_h, split_num_w, split_size_h, split_size_w, 3)
gt_image = gt_image.transpose(0, 2, 1, 3, 4).reshape(h, w, 3)
gt_image_cuda = torch.from_numpy(gt_image).to(torch.float32).to(device)
pred_image_cuda = torch.from_numpy(pred_image).to(torch.float32).to(device)
psnr_result = psnr(gt_image_cuda, pred_image_cuda)
msssim_result = ms_ssim(gt_image_cuda.permute(2, 0, 1).unsqueeze(0), pred_image_cuda.permute(2, 0, 1).unsqueeze(0), data_range=255, size_average=True).item()
del gt_image_cuda
del pred_image_cuda
torch.cuda.empty_cache()
psnr_sum += psnr_result
msssim_sum += msssim_result
print('{}/{}: PSNR:{:.4f} MS-SSIM:{:.4f}'.format(video_name, 'frame{:06}.png'.format(frame_index + 1), psnr_result, msssim_result))
result_dict['{}/{}'.format(video_name, 'frame{:06}'.format(frame_index + 1))] = {'psnr': psnr_result, 'msssim': msssim_result}
video_psnr = psnr_sum / video_length
video_msssim = msssim_sum / video_length
result_dict['{}'.format(video_name)] = {'psnr': video_psnr, 'msssim': video_msssim, 'clip_size': video_length}
def evaluate_UVG(pred_base_dir, device):
video_length_list = [["Bosphorus", 600], ["YachtRide", 600], ["HoneyBee", 600], ["ShakeNDry", 300], ["Jockey", 600], ["Beauty", 600], ["ReadySteadyGo", 600]]
gt_base_dir = 'data/UVG/gt'
global result_dict
result_dict = {}
NUM_THREADS = 4
splits = list(split_list(video_length_list, NUM_THREADS))
def target(video_list):
for video, video_length in tqdm(video_list):
calculate_metrics_UVG(video, video_length, gt_base_dir, pred_base_dir, device)
threads = []
for i, split in enumerate(splits):
thread = threading.Thread(target=target, args=(split,))
thread.start()
threads.append(thread)
for thread in threads:
thread.join()
frame_psnr_total = 0
frame_msssim_total = 0
video_size_total = 0
clip_size_total = 0
for video_name in result_dict.keys():
if 'frame' in video_name:
continue
video_psnr = result_dict[video_name]['psnr']
video_msssim = result_dict[video_name]['msssim']
clip_size = result_dict[video_name]['clip_size']
frame_psnr_total += video_psnr * clip_size
frame_msssim_total += video_msssim * clip_size
clip_size_total += clip_size
final_psnr = frame_psnr_total / clip_size_total
final_msssim = frame_msssim_total / clip_size_total
final_clip_size = clip_size_total
video_name_list = sorted(result_dict.keys())
result_dict_sorted = {k: result_dict[k] for k in video_name_list}
result_dict_sorted['final'] = {'psnr': final_psnr, 'msssim': final_msssim, 'clip_size': final_clip_size}
print('\nFinal:\n psnr: {:.3f}\n msssim: {:.4f}\n clip_size: {}\n\n'.format(
final_psnr, final_msssim, final_clip_size))
result_file_path = os.path.join(pred_base_dir, '../results.json')
with open(result_file_path, 'w') as fp:
json.dump(result_dict_sorted, fp, indent=4)
return torch.tensor(final_psnr), torch.tensor(final_msssim)