-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdataset.py
283 lines (251 loc) · 14.7 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import os
import json
import torch
import numpy as np
from torch.utils.data import Dataset
from net_evaluation import temporal_interpolation
from scipy import interpolate
from collections import defaultdict
import pdb
def dynamic_segment_sample(input_feature, sample_len, dynamic_segment_weights):
input_len = input_feature.shape[0]
if input_len == 1:
sample_len = 2
sample_idxs = np.rint(np.linspace(0, input_len-1, sample_len))
dynamic_segment_weights_cumsum = np.concatenate((np.zeros((1,), dtype=float), np.array([0.5, 1.0], dtype=float)), axis=0)
return input_feature[sample_idxs.astype(np.int), :], dynamic_segment_weights_cumsum
else:
assert sample_len > 0, "WRONG SAMPLE_LEN {}, THIS PARAM MUST BE GREATER THAN 0.".format(sample_len)
dynamic_segment_weights_cumsum = np.concatenate((np.zeros((1,), dtype=float), np.cumsum(dynamic_segment_weights)), axis=0)
max_dynamic_segment_weights_cumsum = np.round(dynamic_segment_weights_cumsum[-1]).astype(int)
f_upsample = interpolate.interp1d(dynamic_segment_weights_cumsum, np.arange(input_len+1), kind='linear', axis=0, fill_value='extrapolate')
scale_x = np.linspace(1, max_dynamic_segment_weights_cumsum, max_dynamic_segment_weights_cumsum)
sampled_time = f_upsample(scale_x)
f_feature = interpolate.interp1d(np.arange(1, input_len+1), input_feature, kind='linear', axis=0, fill_value='extrapolate')
sampled_feature = f_feature(sampled_time)
return sampled_feature, dynamic_segment_weights_cumsum
def uniform_sample(input_feature, sample_len):
input_len = input_feature.shape[0]
assert sample_len > 0, "WRONG SAMPLE_LEN {}, THIS PARAM MUST BE GREATER THAN 0.".format(sample_len)
if input_len == 1:
sample_len = 2
sample_idxs = np.rint(np.linspace(0, input_len-1, sample_len))
elif input_len <= sample_len:
sample_idxs = np.arange(input_len)
else:
sample_scale = input_len / sample_len
sample_idxs = np.arange(sample_len) * sample_scale
sample_idxs = np.floor(sample_idxs)
return input_feature[sample_idxs.astype(np.int), :]
def random_sample(input_feature, sample_len):
input_len = input_feature.shape[0]
assert sample_len > 0, "WRONG SAMPLE_LEN {}, THIS PARAM MUST BE GREATER THAN 0.".format(sample_len)
if input_len < sample_len:
return temporal_interpolation(input_feature, sample_len)
elif input_len > sample_len:
index_list = np.rint(np.linspace(0, input_len-1, sample_len+1)).astype(np.int)
sample_idxs = np.zeros(sample_len)
for i in range(sample_len):
sample_idxs[i] = np.random.choice(range(index_list[i], index_list[i+1]))
else:
sample_idxs = np.arange(input_len)
return input_feature[sample_idxs.astype(np.int), :]
class ASMLocDataset(Dataset):
def __init__(self, args, phase="train", sample="random", step=None, logger=None):
self.phase = phase
self.sample = sample
self.data_dir = args.data_dir
self.sample_segments_num = args.sample_segments_num
self.save_dir = args.save_dir
self.pred_segment_path = args.pred_segment_path
self.delta = args.delta
self.max_segments_num = args.max_segments_num
self.action_cls_num = args.action_cls_num
self.dataset = args.dataset
self.logger = logger
with open(os.path.join(self.data_dir, "gt.json")) as gt_f:
self.gt_dict = json.load(gt_f)["database"]
args.gt_dict = self.gt_dict
self.pseudo_segment_dict = {}
self.pseudo_segment_dict['results'] = defaultdict(list)
if not self.pred_segment_path is None:
with open(self.pred_segment_path, 'r') as pred_f:
self.pseudo_segment_dict = json.load(pred_f)
if 'train' in self.phase:
self.feature_dir = os.path.join(self.data_dir, "train")
self.data_list = list(open(os.path.join(self.data_dir, "split_train.txt")))
self.data_list = [item.strip() for item in self.data_list]
elif 'test' in self.phase:
self.feature_dir = os.path.join(self.data_dir, "test")
self.data_list = list(open(os.path.join(self.data_dir, "split_test.txt")))
self.data_list = [item.strip() for item in self.data_list]
elif 'full' in self.phase:
self.feature_dir = self.data_dir
self.data_list = list(open(os.path.join(self.data_dir, "split_test.txt"))) + list(open(os.path.join(self.data_dir, "split_train.txt")))
self.data_list = [item.strip() for item in self.data_list]
self.dynamic_segment_weight_path = os.path.join(args.save_dir, 'dynamic_segment_weights_pred_step{}'.format(step))
self.class_name_lst = args.class_name_lst
self.action_class_idx_dict = {action_cls:idx for idx, action_cls in enumerate(self.class_name_lst)}
self.action_class_num = args.action_cls_num
self.get_proposals(self.pseudo_segment_dict)
def get_proposals(self, pseudo_segment_dict):
self.label_dict = {}
self.gt_action_dict = defaultdict(list)
self.pseudo_segment_dict = pseudo_segment_dict
for vid_name in self.data_list:
item_label = np.zeros(self.action_class_num)
for ann in self.gt_dict[vid_name]["annotations"]:
ann_label = ann["label"]
item_label[self.action_class_idx_dict[ann_label]] = 1.0
self.gt_action_dict[vid_name].append([ann['segment'][0], ann['segment'][1], 1.0, ann_label])
self.label_dict[vid_name] = item_label
self.pseudo_segment_dict_att = defaultdict(list)
self.pseudo_segment_dict_pseudo = defaultdict(list)
self.pseudo_segment_dict_all = defaultdict(list)
for vid_name in self.data_list:
label_set = set()
if self.dataset == 'THUMOS':
if 'validation' in vid_name:
for ann in self.gt_dict[vid_name]['annotations']:
label_set.add(ann['label'])
elif 'test' in vid_name:
for pred in self.pseudo_segment_dict['results'][vid_name]:
label_set.add(pred['label'])
elif self.dataset == 'ActivityNet':
if self.gt_dict[vid_name]['subset'] == 'train':
for ann in self.gt_dict[vid_name]['annotations']:
label_set.add(ann['label'])
elif self.gt_dict[vid_name]['subset'] == 'val':
for pred in self.pseudo_segment_dict['results'][vid_name]:
label_set.add(pred['label'])
prediction_list_all = []
for label in label_set:
prediction_list = []
for pred in self.pseudo_segment_dict['results'][vid_name]:
if pred['label'] == label:
t_start = pred["segment"][0]
t_end = pred["segment"][1]
prediction_list.append([t_start, t_end, pred["score"], pred["label"]])
prediction_list = sorted(prediction_list, key=lambda k: k[2], reverse=True)
prediction_list_all += prediction_list
self.pseudo_segment_dict_all[vid_name] = prediction_list_all
# remove duplicate proposals
prediction_list_nodup = []
for pred in prediction_list_all:
t_start = pred[0]
t_end = pred[1]
if [t_start, t_end] not in prediction_list_nodup:
prediction_list_nodup.append([t_start, t_end])
prediction_list_nodup = sorted(prediction_list_nodup, key=lambda k: k[0], reverse=True)
# remove the proposals inside another proposal
prediction_list_att = []
if len(prediction_list_nodup) > 0:
prediction_list_att.append(prediction_list_nodup.pop(-1))
while len(prediction_list_nodup) > 0:
prev_segment = prediction_list_att.pop(-1)
cur_segment = prediction_list_nodup.pop(-1)
if prev_segment[1] >= cur_segment[1]:
prediction_list_att.append(prev_segment)
else:
prediction_list_att.append(prev_segment)
prediction_list_att.append(cur_segment)
self.pseudo_segment_dict_att[vid_name] = prediction_list_att
def __len__(self):
return len(self.data_list)
def __getitem__(self, idx):
vid_name = self.data_list[idx]
vid_label = self.label_dict[vid_name]
if 'full' in self.phase:
if self.dataset == 'THUMOS':
if 'validation' in vid_name:
con_vid_feature = np.load(os.path.join(self.feature_dir, 'train', vid_name+".npy"))
else:
con_vid_feature = np.load(os.path.join(self.feature_dir, 'test', vid_name+".npy"))
elif self.dataset == 'ActivityNet':
if os.path.isfile(os.path.join(self.feature_dir, 'train', vid_name+".npy")):
con_vid_feature = np.load(os.path.join(self.feature_dir, 'train', vid_name+".npy"))
elif os.path.isfile(os.path.join(self.feature_dir, 'test', vid_name+".npy")):
con_vid_feature = np.load(os.path.join(self.feature_dir, 'test', vid_name+".npy"))
else:
con_vid_feature = np.load(os.path.join(self.feature_dir, vid_name+".npy"))
vid_len = con_vid_feature.shape[0]
dynamic_segment_weights_cumsum = None
if self.sample == "random":
input_feature = random_sample(con_vid_feature, self.sample_segments_num)
elif self.sample == 'uniform':
input_feature = uniform_sample(con_vid_feature, self.sample_segments_num)
elif self.sample == 'dynamic_random':
dynamic_segment_weights = np.load(os.path.join(self.dynamic_segment_weight_path, vid_name + ".npy"))
input_feature, dynamic_segment_weights_cumsum = dynamic_segment_sample(con_vid_feature, self.sample_segments_num, dynamic_segment_weights)
input_feature = random_sample(input_feature, self.sample_segments_num)
elif self.sample == 'dynamic_uniform':
dynamic_segment_weights = np.load(os.path.join(self.dynamic_segment_weight_path, vid_name + ".npy"))
input_feature, dynamic_segment_weights_cumsum = dynamic_segment_sample(con_vid_feature, self.sample_segments_num, dynamic_segment_weights)
input_feature = uniform_sample(input_feature, self.sample_segments_num)
input_feature = torch.as_tensor(input_feature.astype(np.float32))
vid_label = torch.as_tensor(vid_label.astype(np.float32))
output_len = input_feature.shape[0]
proposal_bbox = torch.zeros((self.max_segments_num, 2), dtype=torch.int32)
pseudo_instance_label = torch.zeros((output_len, self.action_cls_num+1), dtype=torch.float32)
# init all the timestep with bg class = 1
pseudo_instance_label[:, -1] = 1
time_to_index_factor = 25 / 16
upsample_scale = time_to_index_factor * output_len / vid_len
if dynamic_segment_weights_cumsum is not None and (vid_len + 1) == dynamic_segment_weights_cumsum.shape[0]:
f_upsample = interpolate.interp1d(np.arange(vid_len+1), dynamic_segment_weights_cumsum, kind='linear', axis=0, fill_value='extrapolate')
upsample_scale = time_to_index_factor * output_len / round(dynamic_segment_weights_cumsum[-1])
else:
dynamic_segment_weights_cumsum = None
########## generate proposal_bbox from pseudo_segment_att for Intra & Inter-Segment Attention modules ##########
proposal_list_att = []
for k, segment in enumerate(self.pseudo_segment_dict_att[vid_name]):
t_start = segment[0]
t_end = segment[1]
t_mid = (t_start + t_end) / 2
segment_duration = t_end - t_start
if dynamic_segment_weights_cumsum is not None:
t_start = (f_upsample(t_start * time_to_index_factor + 1) - 1) / time_to_index_factor
t_end = (f_upsample(t_end * time_to_index_factor + 1) - 1) / time_to_index_factor
t_mid = (t_start + t_end) / 2
segment_duration = t_end - t_start
index_start = max(round((t_mid - (self.delta + 0.5) * segment_duration) * upsample_scale), 0)
index_end = min(round((t_mid + (self.delta + 0.5) * segment_duration) * upsample_scale), output_len-1)
proposal_list_att.append([index_start, index_end])
proposal_list_att = sorted(proposal_list_att, key=lambda k: k[0], reverse=True)
proposal_count_by_video = len(proposal_list_att)
for k, segment in enumerate(proposal_list_att):
proposal_bbox[k, 0] = segment[0]
proposal_bbox[k, 1] = segment[1]
########## generate pseudo_instance_label from pseudo_segment_all for Pseudo Instance-level Loss ##########
fg_label_set_gt = np.where(self.label_dict[vid_name] == 1)[0]
for segment in self.pseudo_segment_dict_all[vid_name]:
t_start = segment[0]
t_end = segment[1]
t_label = self.action_class_idx_dict[segment[3]]
if not t_label in fg_label_set_gt:
continue
if dynamic_segment_weights_cumsum is not None:
t_start = (f_upsample(t_start * time_to_index_factor + 1) - 1) / time_to_index_factor
t_end = (f_upsample(t_end * time_to_index_factor + 1) - 1) / time_to_index_factor
index_start = max(int(round(t_start * upsample_scale)), 0)
index_end = min(int(round(t_end * upsample_scale)), output_len-1)
pseudo_instance_label[index_start:index_end+1, t_label] = 1
pseudo_instance_label[index_start:index_end+1, -1] = 0
pseudo_instance_label = pseudo_instance_label / torch.sum(pseudo_instance_label, dim=-1, keepdim=True).clamp(min=1e-6)
return vid_name, input_feature, vid_label, vid_len, proposal_bbox, proposal_count_by_video, pseudo_instance_label, dynamic_segment_weights_cumsum
def my_collate_fn(batch):
batched_output_list = []
for i in range(len(batch[0])):
if torch.is_tensor(batch[0][i]):
batched_output = torch.stack([item[i] for item in batch], dim=0)
else:
batched_output = [item[i] for item in batch]
batched_output_list.append(batched_output)
return batched_output_list
def build_dataset(args, phase="train", sample="random", step=None, logger=None):
return ASMLocDataset(args, phase, sample, step=step, logger=logger)
def grouping(arr):
"""
Group the connected results
"""
return np.split(arr, np.where(np.diff(arr) != 1)[0] + 1)