-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathONeills_blogpost10.py
executable file
·373 lines (321 loc) · 12.3 KB
/
ONeills_blogpost10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Mar 9 12:43:17 2020
This code contributed to the blog post:
https://highnoongmt.wordpress.com/2020/04/12/an-analysis-of-the-365-double-jigs-in-oneills-pt-10/
@author: bobs
"""
import numpy as np
import matplotlib.pyplot as plt
import textdistance # Make sure you install jellyfish, it is fast! https://github.com/jamesturk/jellyfish
import re
import pandas as pd
import music21
FILENAME = 'ONeillsJigs_parsed_testing'
with open(FILENAME, encoding='utf-8') as f:
data = f.read()
files = data.split('\n\n')
dictionary = {
'title': [],
'time_signature': [],
'key': [],
'abcdata': []
}
for f in files:
regexp = r'^(T:)?(?P<title>.*)?(\nM:)?(?P<time_signature>.*)?(\nK:)?(?P<key>.*)?(\n)?(?P<abcdata>.*)?$'
m = re.match(regexp, f, re.M)
d = m.groupdict()
[dictionary[k].append(v) for k,v in d.items()]
df = pd.DataFrame.from_dict(dictionary)
numtunes = len(df)
#numtunes = 3
Fs = 6.0 # samples per quaver
binsforhistogram=np.arange(-17.5,21.5)
delta = 0.01
#%% compute features
# determining the sampling rate Fs (samples per quaver):
# 1. the smallest time interval in the collection is triplet semiquavers,
# which means Fs should be a multiple of 3
# 2. I also want a semiquaver to have a whole number of samples, so Fs
# should be a multiple of 2
# 3. These mean Fs should be a multiple of 3*2 = 6. Let's make Fs=6
# This makes an 8-measure part become a time series of length 6*6*8 = 288
TimePitchParts=[] # Time-Pitch series in 8-measure parts
OnsetTimeParts=[] # onset-time series in 8-measure parts
OnsetTimePartsCACFx=[] # magnitude Fourier transform of circular autocorrelation of onset-time series
TimeIntervalParts=[] # Time-Interval series in 8-measure parts
TimeIntervalPartsCAC=[] # Time-Interval series circular autocorrelation
for ii in range(len(df)):
#for ii in [15]:
# create ABC string
abcstr = 'X:1\nM:'+df.time_signature[ii]+'\nK:'+df.key[ii]+'\n'+"".join(df.abcdata[ii].split())
# parse ABC string to music21 stream
s1 = music21.converter.parseData(abcstr)
# make repetitions explicit
if ":|" in abcstr:
s1 = s1.expandRepeats()
# extract pitches and durations
pitches = []; durrep = [0]; beats = []
prevpitch = 0
for event in s1.flat.notesAndRests:
if type(event) == music21.note.Note:
pitches.append(event.pitch.ps)
prevpitch = event.pitch
else:
pitches.append(prevpitch.ps)
# take care of durations expressed as a fraction
if type(event.duration.quarterLength) == music21.common.numberTools.Fraction:
frac = event.duration.quarterLength
durrep.append(2*frac.numerator/frac.denominator)
else:
durrep.append(2*event.duration.quarterLength)
if type(event.beat) == music21.common.numberTools.Fraction:
frac = event.beat
beats.append(3*frac.numerator/frac.denominator-2)
else:
beats.append(3*event.beat-2)
# compute onset time series
ts = np.cumsum(np.array(durrep)) # timespace representation
ss = np.round(ts*Fs) # samplespace representation
OnsetTimeSeries = np.zeros((int(np.max(ss)),))
for jj in ss[:-1]:
OnsetTimeSeries[int(jj)] = 1
# compute time-pitch series
nppsrep = np.array(pitches)
X = []; y = []
for jj in range(len(ts)-1):
X.append(ts[jj]); X.append(ts[jj+1]-delta)
y.append(nppsrep[jj]); y.append(nppsrep[jj])
# interpolate
X = np.asarray(X); y = np.asarray(y)
from sklearn.neighbors import KNeighborsRegressor
interpolator = KNeighborsRegressor(1)
interpolator.fit(X.reshape(-1, 1),y)
Xp = np.arange(0,ss[-1])/Fs
PitchRep = interpolator.predict(Xp.reshape(-1, 1))
# account for anacrusis
num2trim = 0
if beats[0] != 1:
num2trim = int((6-beats[0]+1)*Fs)
PitchRepL=np.append(PitchRep,PitchRep[0:num2trim])
OnsetTimeSeriesL=np.append(OnsetTimeSeries,OnsetTimeSeries[0:num2trim])
else:
PitchRepL=PitchRep
OnsetTimeSeriesL=OnsetTimeSeries
# find intervalic representation
IntervalRep = [0]
for jj in range(len(PitchRepL)-1):
if (PitchRepL[jj+1]==PitchRepL[jj]):
IntervalRep.append(IntervalRep[jj])
else:
IntervalRep.append(PitchRepL[jj+1]-PitchRepL[jj])
IntervalRep = np.array(IntervalRep)
# break up into parts, accounting for anacrusis
numparts = np.floor(len(PitchRep)/(Fs*6*8))
PitchRepS = PitchRepL[num2trim:num2trim+int(numparts*Fs*6*8)]
PitchRepParts = PitchRepS.reshape((int(numparts),int(Fs*6*8)))
OnsetTimeSeriesS = OnsetTimeSeriesL[num2trim:num2trim+int(numparts*Fs*6*8)]
OnsetTimeSeriesParts = OnsetTimeSeriesS.reshape((int(numparts),int(Fs*6*8)))
IntervalRepS = IntervalRep[num2trim:int(numparts*Fs*6*8)+num2trim]
IntervalRepParts = IntervalRepS.reshape((int(numparts),int(Fs*6*8)))
TimePitchParts.append(PitchRepParts)
TimeIntervalParts.append(IntervalRepParts)
OnsetTimeParts.append(OnsetTimeSeriesParts)
# find circular autocorrelation of time-interval series
FX = np.fft.fft(IntervalRepParts/Fs)
cauto = np.fft.ifft(FX * FX.conj()).real
TimeIntervalPartsCAC.append(cauto[:,0:int(Fs*6*8/2+1)]) # keep only half since redundancy
# find circular autocorrelation of onset-time series
FX = np.fft.fft(OnsetTimeSeriesParts/Fs)
MAGFcac = np.abs(FX * FX.conj()).real
OnsetTimePartsCACFx.append(MAGFcac[:,0:int(Fs*6*8/2+1)]) # keep only half since redundancy
#
# TIHist = np.zeros((int(numparts),len(binsforhistogram)-1))
# for ii in range(int(numparts)):
# hh,_ = np.histogram(IntervalRepParts[ii,:],bins=binsforhistogram)
# cumsumhh = np.cumsum(hh/(Fs*6*8))
# TIHist[ii,:] = hh/Fs #/max(cumsumhh)
#
# TIPartsHist.append(TIHist)
#
df['TimePitchParts']=TimePitchParts
df['OnsetTimeParts']=OnsetTimeParts
df['OnsetTimePartsCACFx']=OnsetTimePartsCACFx
df['TimeIntervalParts']=TimeIntervalParts
df['TimeIntervalPartsCAC']=TimeIntervalPartsCAC
#df['TIPartsHist']=TIPartsHist
df.to_pickle('./ONeillsJigs_parsed.pkl')
#%% plot time-pitch series
df = pd.read_pickle('./ONeillsJigs_parsed.pkl')
params = {'legend.fontsize': 'x-large',
'figure.figsize': (10, 5),
'axes.labelsize': 'x-large',
'axes.titlesize':'x-large',
'xtick.labelsize':'x-large',
'ytick.labelsize':'x-large'}
plt.rcParams.update(params)
for tunetoplot in range(numtunes):
#for tunetoplot in [200]:
fig = plt.figure()
ax = fig.add_subplot(111)
tt = np.arange(0,6*8,1.0/Fs)
TimePitchParts = df.TimePitchParts[tunetoplot]
numreps = TimePitchParts.shape[0]
plotoffsets = np.arange(numreps)-numreps/2.0+0.5
for ii in range(numreps):
plt.plot(1+tt/6+plotoffsets[ii]/30,TimePitchParts[ii,:]+plotoffsets[ii]/10)
ax.legend(range(1,numreps+1),loc=1,ncol=2)
#ax.legend(('A','B','C'),loc=4,ncol=3)
#plt.plot((0,48),(0,0),'k--',alpha=0.5)
plt.xticks(np.arange(1,8+1,1),rotation=45)
#ax.yaxis.set(ticks=range(-20,21,2))
plt.xlabel("Time (measure)")
plt.ylabel("Pitch")
plt.xlim((0.9,9.1))
#plt.ylim((47.5,91.5))
plt.yticks(np.arange(48,92,1))
plt.ylim((np.min(TimePitchParts)-2,np.max(TimePitchParts)+2))
plt.grid()
#plt.show()
fig.savefig(str(tunetoplot+1)+'.png')
plt.close(fig)
#%% plot onset time series
df = pd.read_pickle('./ONeillsJigs_parsed.pkl')
params = {'legend.fontsize': 'x-large',
'figure.figsize': (10, 5),
'axes.labelsize': 'x-large',
'axes.titlesize':'x-large',
'xtick.labelsize':'x-large',
'ytick.labelsize':'x-large'}
plt.rcParams.update(params)
for tunetoplot in range(numtunes):
#for tunetoplot in [200]:
fig = plt.figure()
ax = fig.add_subplot(111)
tt = np.arange(0,6*8*Fs)/Fs
OnsetTimeParts = df.OnsetTimeParts[tunetoplot]
numreps = OnsetTimeParts.shape[0]
plotoffsets = np.arange(numreps)-numreps/2.0+0.5
for ii in range(numreps):
plt.plot(1+tt/6+plotoffsets[ii]/40,
OnsetTimeParts[ii,:]+plotoffsets[ii]/20, alpha=0.5)
#ax.legend(range(1,numreps+1),loc=1,ncol=2)
#ax.legend(('A','B','C'),loc=4,ncol=3)
#plt.plot((0,48),(0,0),'k--',alpha=0.5)
plt.xticks(np.arange(1,8+1,1),rotation=45)
#ax.yaxis.set(ticks=range(-20,21,2))
plt.xlabel("Time (measure)")
#plt.ylabel("Pitch")
plt.xlim((0.9,9.1))
#plt.ylim((47.5,91.5))
plt.yticks([])
plt.ylim((min(plotoffsets)/20-0.01,1.01+max(plotoffsets)/20))
#plt.grid()
#plt.show()
fig.savefig(str(tunetoplot+1)+'.png')
plt.close(fig)
#%% plot onset time series as images
df = pd.read_pickle('./ONeillsJigs_parsed.pkl')
params = {'legend.fontsize': 'x-large',
'figure.figsize': (10, 5),
'axes.labelsize': 'x-large',
'axes.titlesize':'x-large',
'xtick.labelsize':'x-large',
'ytick.labelsize':'x-large'}
plt.rcParams.update(params)
#for tunetoplot in range(numtunes):
for tunetoplot in [23]:
fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_aspect('auto')
tt = np.arange(0,6*8*Fs+1)/Fs
OnsetTimeParts = df.OnsetTimeParts[tunetoplot]
numreps = OnsetTimeParts.shape[0]
plotoffsets = np.arange(numreps)-numreps/2.0+0.5
ax.pcolor(1+tt/6,np.arange(1,numreps+2,1)-0.5,OnsetTimeParts,cmap='ocean_r')
plt.xticks(np.arange(1,8+1,1),rotation=45)
plt.yticks(np.arange(1,numreps+1,1))
plt.xlabel("Time (measure)")
plt.ylabel("Series")
plt.xlim((0.95,9+0.05))
plt.ylim((0.5,numreps+0.5))
ax.grid(axis='y')
plt.gca().set_position([0.05, 0.12, 0.94, 0.85])
#plt.show()
fig.savefig(str(tunetoplot+1)+'.png',dpi=150)
plt.close(fig)
#%% plot time-interval series
df = pd.read_pickle('./ONeillsJigs_parsed.pkl')
params = {'legend.fontsize': 'x-large',
'figure.figsize': (10, 5),
'axes.labelsize': 'x-large',
'axes.titlesize':'x-large',
'xtick.labelsize':'x-large',
'ytick.labelsize':'x-large'}
plt.rcParams.update(params)
for tunetoplot in range(numtunes):
#for tunetoplot in [200]:
fig = plt.figure()
ax = fig.add_subplot(111)
tt = np.arange(0,6*8,1.0/Fs)
TimeIntervalParts = df.TimeIntervalParts[tunetoplot]
numreps = TimeIntervalParts.shape[0]
plotoffsets = np.arange(numreps)-numreps/2.0+0.5
for ii in range(numreps):
plt.plot(1+tt/6+plotoffsets[ii]/30,TimeIntervalParts[ii,:]+plotoffsets[ii]/10)
ax.legend(range(1,numreps+1),loc=1,ncol=2)
#ax.legend(('A','B','C'),loc=4,ncol=3)
#plt.plot((0,48),(0,0),'k--',alpha=0.5)
plt.xticks(np.arange(1,8+1,1),rotation=45)
#ax.yaxis.set(ticks=range(-20,21,2))
plt.xlabel("Time (measure)")
plt.ylabel("Interval (semitones)")
plt.xlim((0.9,9.1))
#plt.ylim((47.5,91.5))
plt.yticks(np.arange(-17,21,1))
plt.ylim((np.min(TimeIntervalParts)-2,np.max(TimeIntervalParts)+2))
plt.grid()
#plt.show()
fig.savefig(str(tunetoplot+1)+'.png')
plt.close(fig)
#%% plot time-interval series circular autocorrelations
df = pd.read_pickle('./ONeillsJigs_parsed.pkl')
params = {'legend.fontsize': 'x-large',
'figure.figsize': (10, 5),
'axes.labelsize': 'x-large',
'axes.titlesize':'x-large',
'xtick.labelsize':'x-large',
'ytick.labelsize':'x-large'}
plt.rcParams.update(params)
for tunetoplot in range(numtunes):
#for tunetoplot in [200]:
fig = plt.figure()
ax = fig.add_subplot(111)
ac = df.TimeIntervalPartsCAC[tunetoplot]
numreps = ac.shape[0]
plotoffsets = np.arange(numreps)-numreps/2.0+0.5
tt = np.arange(0,len(ac[0,:]))/Fs/6
for ii in range(numreps):
plt.plot(tt+plotoffsets[ii]/30,ac[ii,:]+plotoffsets[ii]/10)
ax.legend(range(1,numreps+1),loc=1,ncol=2)
#plt.plot((0,5),(0,0),'k--',alpha=0.5)
plt.xticks(np.arange(0,4.1,1),rotation=45)
#ax.yaxis.set(ticks=range(-14,14,2))
plt.xlabel("Lag (measure)")
plt.ylabel("Circular Autocorrelation")
plt.xlim((-0.1,4.1))
#plt.ylim((-12.5,12.5))
plt.grid()
fig.savefig(str(tunetoplot+1)+'.png')
plt.close(fig)
#%% find tunes with a broken rhythm
for ii in range(len(df)):
abcstr = "".join(df.abcdata[ii].split())
if abcstr.count('>') >= 8:
print(ii+1)
print()
for ii in range(len(df)):
abcstr = "".join(df.abcdata[ii].split())
if abcstr.count('<') >= 2:
print(ii+1)