-
-
Notifications
You must be signed in to change notification settings - Fork 22
/
DMD_RGB.cpp
797 lines (646 loc) · 24.3 KB
/
DMD_RGB.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
/*--------------------------------------------------------------------------------------
This file is a part of the library DMD_STM32
DMD_STM32.h - STM32 port of DMD.h library
https://github.com/board707/DMD_STM32
Dmitry Dmitriev (c) 2019-2023
/--------------------------------------------------------------------------------------*/
#include "DMD_RGB.h"
static volatile DMD_RGB_BASE* running_dmd_R;
void inline __attribute__((always_inline)) scan_running_dmd_R()
{
DMD_RGB_BASE* next = (DMD_RGB_BASE*)running_dmd_R;
next->scan_dmd();
}
#ifndef _swap_int16_t
#define _swap_int16_t(a, b) { int16_t t = a; a = b; b = t; }
#endif
DMD_RGB_BASE::DMD_RGB_BASE(byte mux_cnt, uint8_t* mux_list, byte _pin_nOE, byte _pin_SCLK, uint8_t* pinlist,
byte panelsWide, byte panelsHigh, bool d_buf, uint8_t col_depth, uint8_t n_Rows, byte dmd_pixel_x, byte dmd_pixel_y)
: DMD(new DMD_Pinlist(mux_cnt, mux_list), _pin_nOE, _pin_SCLK, panelsWide, panelsHigh, n_Rows,
new DMD_Pinlist(7, pinlist), d_buf, dmd_pixel_x, dmd_pixel_y), nPlanes(col_depth)
{
fast_Hbyte = true;
rgbpins = data_pins;
running_dmd_R = this;
OE_polarity = OE_PWM_NEGATIVE;
// Allocate and initialize matrix buffer:
mem_Buffer_Size = panelsWide * panelsHigh * DMD_PIXELS_ACROSS * DMD_PIXELS_DOWN * nPlanes / 2;
col_bytes_cnt = nPlanes;
// x3 = 3 bytes holds 4 planes "packed"
if (nPlanes == 3) nPlanes = 4;
uint32_t allocsize = (dbuf == true) ? (mem_Buffer_Size * 2ul) : mem_Buffer_Size;
matrixbuff[0] = (uint8_t*)malloc(allocsize);
memset(matrixbuff[0], 0, allocsize);
// If not double-buffered, both buffers then point to the same address:
matrixbuff[1] = (dbuf == true) ? &matrixbuff[0][mem_Buffer_Size] : matrixbuff[0];
plane = nPlanes - 1;
row = nRows - 1;
swapflag = false;
backindex = 0; // Array index of back buffer
buffptr = matrixbuff[1 - backindex]; // -> front buffer
x_len = WIDTH * multiplex * DisplaysHigh;
// default text colors - green on black
textcolor = Color888(0, 255, 0);
textbgcolor = 0;
}
/*--------------------------------------------------------------------------------------*/
#if (defined(__STM32F1__) || defined(__STM32F4__))
void DMD_RGB_BASE::generate_rgbtable_default(uint8_t options) {
PortType rgbmask[6];
rgbmask_all = 0;
for (uint8_t i = 0; i < 6; i++) {
pinMode(rgbpins[i], OUTPUT);
rgbmask[i] = digitalPinToBitMask(rgbpins[i]); // Pin bit mask
clk_clrmask |= rgbmask[i]; // Add to RGB+CLK bit mask
rgbmask_all |= rgbmask[i];
}
clk_clrmask = clk_clrmask << 16;
//#ifndef DIRECT_OUTPUT
for (int i = 0; i < 256; i++) {
expand[i] = 0;
if (i & 0x01) expand[i] |= rgbmask[0];
if (i & 0x02) expand[i] |= rgbmask[1];
if (i & 0x04) expand[i] |= rgbmask[2];
if (i & 0x08) expand[i] |= rgbmask[3];
if (i & 0x10) expand[i] |= rgbmask[4];
if (i & 0x20) expand[i] |= rgbmask[5];
if (options & CLK_WITH_DATA) expand[i] |= clkmask;
}
}
#endif
/*--------------------------------------------------------------------------------------*/
void DMD_RGB_BASE::setCycleLen() {
this->scan_cycle_len = ((1000000ul / this->default_fps) / (this->nRows * (1 << (this->nPlanes - 1)))) * CYCLES_PER_MICROSECOND;
uint32_t write_time = ((this->x_len) / 64) * this->transfer64bits_time * CYCLES_PER_MICROSECOND;
write_time = (write_time * this->transfer_duty) / this->transfer_duty2;
#if (defined(ARDUINO_ARCH_RP2040))
if (write_time < (min_scan_len * CYCLES_PER_MICROSECOND)) write_time = min_scan_len * CYCLES_PER_MICROSECOND;
#endif
if (this->scan_cycle_len < write_time) this->scan_cycle_len = write_time;
}
/*--------------------------------------------------------------------------------------*/
#if (defined(__STM32F1__) || defined(__STM32F4__))
void DMD_RGB_BASE::initialize_timers(voidFuncPtr handler) {
uint32_t max_cycle_len = this->scan_cycle_len;
if (nPlanes == 4) max_cycle_len = 4 * this->scan_cycle_len;
setup_main_timer(max_cycle_len, handler);
DMD::initialize_timers(NULL);
#if defined(RGB_DMA)
// DMA timer setup
#define TIM_PERIOD 14
timer_init(DMA_TIMER);
timer_pause(DMA_TIMER);
DMA_TIMER_BASE->DIER |= (1 << 11) | (1 << 9); //CH1 & CH3 DMA request enable
DMA_TIMER_BASE->PSC = 0;
DMA_TIMER_BASE->ARR = TIM_PERIOD - 1; // 9 MHz
DMA_TIMER_BASE->CCR3 = TIM_PERIOD / 4; // 1 dma request
DMA_TIMER_BASE->CCR1 = TIM_PERIOD * 3 / 4; // 2 dma request
// dma setup
dma_init(rgbDmaDev);
#if defined(__STM32F4__)
uint8_t* ptr_t = matrixbuff[1 - backindex];
dma_disable(rgbDmaDev, clkTxDmaStream);
dma_disable(rgbDmaDev, datTxDmaStream);
dma_clear_isr_bits(rgbDmaDev, datTxDmaStream);
dma_clear_isr_bits(rgbDmaDev, clkTxDmaStream);
dma_setup_transfer(rgbDmaDev, datTxDmaStream, DmaDataChannel, DMA_SIZE_8BITS, (uint8_t*)datasetreg, (uint8_t*)ptr_t, NULL, (DMA_MINC_MODE | DMA_FROM_MEM));
dma_set_num_transfers(rgbDmaDev, datTxDmaStream, x_len);
// 2 nd dma stream
dma_setup_transfer(rgbDmaDev, clkTxDmaStream, DmaClkChannel, DMA_SIZE_32BITS, (uint32_t*)datasetreg, (uint32_t*)&clk_clrmask, NULL, (DMA_CIRC_MODE | DMA_FROM_MEM));
dma_set_num_transfers(rgbDmaDev, clkTxDmaStream, 1);
dma_enable(rgbDmaDev, datTxDmaStream);
dma_enable(rgbDmaDev, clkTxDmaStream);
#endif
#endif
}
#endif
/*--------------------------------------------------------------------------------------*/
void DMD_RGB_BASE::init(uint16_t user_fps) {
if (user_fps) this->default_fps = user_fps;
this->setCycleLen();
#if (defined(__STM32F1__) || defined(__STM32F4__))
set_pin_modes();
generate_muxmask();
generate_rgbtable();
chip_init();
#elif (defined(ARDUINO_ARCH_RP2040))
generate_muxmask();
#endif
initialize_timers(scan_running_dmd_R);
setBrightness(200);
clearScreen(true);
}
/*--------------------------------------------------------------------------------------*/
#if (defined(__STM32F1__) || defined(__STM32F4__))
void DMD_RGB_BASE::send_to_allRGB(uint16_t data, uint16_t latches) {
uint8_t reg_bit = 0;
const uint16_t b_mask = 0b1000000000000000;
for (uint16_t i = 0; i < x_len; i++) {
reg_bit = i % 16;
if (i == (x_len - latches)) { *latsetreg = latmask; } // switch LE ON
if ((data << reg_bit) & b_mask)
{
*datasetreg = rgbmask_all;
}
else
{
*datasetreg = rgbmask_all << 16;
}
*datasetreg = clkmask;
*datasetreg = clkmask << 16;
}
*latsetreg = latmask << 16;// Latch down
*datasetreg = rgbmask_all << 16; // off all rgb channels
}
#endif
/*--------------------------------------------------------------------------------------*/
uint16_t DMD_RGB_BASE::get_base_addr(int16_t& x, int16_t& y) {
this->transform_XY(x, y);
uint16_t base_addr = 0;
if (multiplex == 1) {
base_addr = (y % pol_displ) * WIDTH * DisplaysHigh + (y / DMD_PIXELS_DOWN) * WIDTH + x;
}
else {
uint8_t pol_y = y % pol_displ;
x += (y / DMD_PIXELS_DOWN) * WIDTH;
base_addr = (pol_y % nRows) * x_len + (x / 8) * multiplex * 8 + (pol_y / nRows) * 8 + x % 8;
}
return base_addr;
}
/*--------------------------------------------------------------------------------------*/
void DMD_RGB_BASE::scan_dmd() {
scan_dmd_p1();
#if (defined(__STM32F1__) || defined(__STM32F4__))
scan_dmd_p2();
scan_dmd_p3();
#endif
}
/*--------------------------------------------------------------------------------------*/
void DMD_RGB_BASE::scan_dmd_p1() {
uint32_t duration;
uint32_t oe_duration;
//volatile static uint8_t* ptr;
// Calculate time to next interrupt BEFORE incrementing plane #.
// This is because duration is the display time for the data loaded
// on the PRIOR interrupt. CALLOVERHEAD is subtracted from the
// result because that time is implicit between the timer overflow
// (interrupt triggered) and the initial LEDs-off line at the start
// of this method.
if (this->plane > 0) duration = ((this->scan_cycle_len) << (this->plane - 1));
else duration = this->scan_cycle_len;
if ((this->plane > 0) || (nPlanes == 1)) oe_duration = (duration * this->brightness) / 255;
else oe_duration = ((duration * this->brightness) / 255) / 2;
#if (defined(ARDUINO_ARCH_RP2040))
pwm_clear_irq(MAIN_slice_num); // clear PWM irq
pwm_set_enabled(MAIN_slice_num, false); // stop MAIN timer
pwm_set_enabled(OE_slice_num, false); // stop OE timer
pwm_set_wrap(MAIN_slice_num, duration); // set new TOP value
pwm_set_gpio_level(pin_DMD_nOE, oe_duration); // setup CC value for OE
#endif
#if (defined(__STM32F1__) || defined(__STM32F4__))
timer_pause(MAIN_TIMER);
timer_set_reload(MAIN_TIMER, (duration - this->callOverhead));
timer_pause(OE_TIMER);
timer_oc_set_mode(OE_TIMER, oe_channel, TIMER_OC_MODE_FROZEN, 0);
timer_set_reload(OE_TIMER, (duration + this->callOverhead * 10));
timer_set_compare(OE_TIMER, oe_channel, oe_duration);
#endif
// Borrowing a technique here from Ray's Logic:
// www.rayslogic.com/propeller/Programming/AdafruitRGB/AdafruitRGB.htm
// This code cycles through all four planes for each scanline before
// advancing to the next line. While it might seem beneficial to
// advance lines every time and interleave the planes to reduce
// vertical scanning artifacts, in practice with this panel it causes
// a green 'ghosting' effect on black pixels, a much worse artifact.
// For OneBitColor set mux BEFORE changing row
if (nPlanes == 1) {
this->set_mux(row);
}
if (++plane >= nPlanes) { // Advance plane counter. Maxed out?
plane = 0; // Yes, reset to plane 0, and
if (++row >= nRows) { // advance row counter. Maxed out?
row = 0; // Yes, reset row counter, then...
if (swapflag == true) { // Swap front/back buffers if requested
backindex = 1 - backindex;
swapflag = false;
}
}
buffptr = matrixbuff[1 - backindex]; // Reset into front buffer
buffptr += row * x_len;
}
// For 4bit Color set mux at 1st Plane
else if (plane == 1) {
this->set_mux(row);
}
#if (defined(ARDUINO_ARCH_RP2040))
dma_channel_wait_for_finish_blocking(dma_chan);
dmd_out_program_reinit(pio, sm_data, data_prog_offs, &pio_config);
dma_channel_set_read_addr(dma_chan, buffptr, true);
pwm_set_counter(MAIN_slice_num, 0);
pwm_set_counter(OE_slice_num, 0);
pwm_set_enabled(MAIN_slice_num, true);
pwm_set_enabled(OE_slice_num, true);
buffptr += displ_len;
#endif
}
#if (defined(__STM32F1__) || defined(__STM32F4__))
void DMD_RGB_BASE::scan_dmd_p2() {
*latsetreg = latmask; // Latch data loaded during *prior* interrupt
*latsetreg = latmask << 16;// Latch down
timer_set_count(MAIN_TIMER, 0);
timer_set_count(OE_TIMER, 0);
timer_oc_set_mode(OE_TIMER, oe_channel, (timer_oc_mode)this->OE_polarity, 0);
timer_generate_update(MAIN_TIMER);
timer_generate_update(OE_TIMER);
timer_resume(OE_TIMER);
timer_resume(MAIN_TIMER);
}
#endif
/*--------------------------------------------------------------------------------------*/
#if (defined(__STM32F1__) || defined(__STM32F4__))
void DMD_RGB_BASE::scan_dmd_p3() {
// buffptr, being 'volatile' type, doesn't take well to optimization.
// A local register copy can speed some things up:
volatile static uint8_t* ptr;
ptr = buffptr;
#if defined(RGB_DMA)
timer_pause(DMA_TIMER);
#if defined(__STM32F1__)
dma_disable(rgbDmaDev, DmaDataChannel);
dma_setup_transfer(rgbDmaDev, DmaDataChannel, (uint8_t*)datasetreg, DMA_SIZE_8BITS, (uint8_t*)ptr, DMA_SIZE_8BITS, (DMA_MINC_MODE | DMA_FROM_MEM | DMA_CCR_PL_HIGH));
dma_set_num_transfers(rgbDmaDev, DmaDataChannel, x_len);
dma_disable(rgbDmaDev, DmaClkChannel);
dma_setup_transfer(rgbDmaDev, DmaClkChannel, (uint32_t*)datasetreg, DMA_SIZE_32BITS, (uint32_t*)&clk_clrmask, DMA_SIZE_32BITS, (DMA_CIRC_MODE | DMA_FROM_MEM | DMA_CCR_PL_VERY_HIGH));
dma_set_num_transfers(rgbDmaDev, DmaClkChannel, x_len);
dma_enable(rgbDmaDev, DmaDataChannel);
dma_enable(rgbDmaDev, DmaClkChannel);
#elif defined(__STM32F4__)
dma_set_mem_addr(rgbDmaDev, datTxDmaStream, ptr);
dma_clear_isr_bits(rgbDmaDev, datTxDmaStream);
dma_set_num_transfers(rgbDmaDev, datTxDmaStream, x_len);
// 2 nd dma stream
dma_enable(rgbDmaDev, datTxDmaStream);
#endif
DMA_TIMER_BASE->CNT = 0;
DMA_TIMER_BASE->CR1 = (1 << 0);
#else // end of if defined(RGB_DMA), start of non-DMA code
#if defined (DIRECT_OUTPUT)
#define pew \
*datasetreg = clk_clrmask; \
*datasetreg = *ptr++;
#else
#define pew \
*datasetreg = clk_clrmask; \
*datasetreg = expand[*ptr++];
#endif
for (uint16_t uu = 0; uu < x_len; uu += 8)
{
// Loop is unrolled for speed:
pew pew pew pew pew pew pew pew
}
*datasetreg = clkmask << 16; // Set clock low
#endif
buffptr += displ_len;
#undef pew
}
#endif
/*--------------------------------------------------------------------------------------*/
void DMD_RGB_BASE::drawPixel(int16_t x, int16_t y, uint16_t c) {
uint8_t r, g, b, bit, limit, * ptr;
DEBUG_TIME_MARK_333;
DEBUG_TIME_MARK;
if (graph_mode == GRAPHICS_NOR) {
if (c == textcolor) c = textbgcolor;
else return;
}
if ((x < 0) || (x >= _width) || (y < 0) || (y >= _height)) return;
// transform X & Y for Rotate and connect scheme
// Adafruit_GFX uses 16-bit color in 5/6/5 format, while matrix needs
// 4/4/4. Pluck out relevant bits while separating into R,G,B:
//r = c >> 12; // RRRRrggggggbbbbb
//g = (c >> 7) & 0xF; // rrrrrGGGGggbbbbb
//b = (c >> 1) & 0xF; // rrrrrggggggBBBBb
extractColors(c,r,g,b);
uint16_t base_addr = get_base_addr(x, y);
ptr = &matrixbuff[backindex][base_addr]; // Base addr
DEBUG_TIME_MARK;
bit = 1;
limit = 1 << nPlanes;
if (y % DMD_PIXELS_DOWN < pol_displ) {
// Data for the upper half of the display is stored in the lower
// bits of each byte.
// Data is stored in the low 6 bits so it can be quickly
// copied to the DATAPORT register w/6 output lines.
for (; bit < limit; bit <<= 1) {
*ptr |= output_mask;
* ptr &= ~0b000111; // Mask out R,G,B in one op
if (r & bit) *ptr |= 0b000001; // Plane N R: bit 2
if (g & bit) *ptr |= 0b000010; // Plane N G: bit 3
if (b & bit) *ptr |= 0b000100; // Plane N B: bit 4
ptr += displ_len; // Advance to next bit plane
}
}
else {
// Data for the lower half of the display is stored in the upper
// bits
for (; bit < limit; bit <<= 1) {
*ptr |= output_mask;
* ptr &= ~0b111000; // Mask out R,G,B in one op
if (r & bit) *ptr |= 0b001000; // Plane N R: bit 5
if (g & bit) *ptr |= 0b010000; // Plane N G: bit 6
if (b & bit) *ptr |= 0b100000; // Plane N B: bit 7
ptr += displ_len; // Advance to next bit plane
}
}
DEBUG_TIME_MARK;
}
/*--------------------------------------------------------------------------------------*/
void DMD_RGB_BASE::drawHByte(int16_t x, int16_t y, uint8_t hbyte, uint16_t bsize, uint8_t* fg_col_bytes,
uint8_t* bg_col_bytes) {
static uint8_t ColorByteMask[] = { 0b000111 , 0b111000 };
if ((hbyte != 0xff)&& (bsize > 8)) bsize = 8;
//if whole line is outside - go out
if (((x + bsize) <= 0) || (x >= WIDTH) || (y < 0) || (y >= HEIGHT)) return;
//if start of line before 0 - draw portion of line from x=0
if (x < 0) {
bsize = bsize + x;
if (hbyte != 0xff) hbyte <<= (x * -1);
x = 0;
}
//if end of line after right edge of screen - draw until WIDTH-1
if ((x + bsize) > WIDTH) bsize = WIDTH - x;
// transform X & Y for Rotate and connect scheme
uint16_t base_addr = get_base_addr(x, y);
uint8_t* ptr_base = &matrixbuff[backindex][base_addr]; // Base addr
DEBUG_TIME_MARK;
uint8_t* mask_ptr, * mask;
uint8_t* col_bytes;
uint8_t* ptr = ptr_base;
if (y % DMD_PIXELS_DOWN < pol_displ) {
mask = ColorByteMask;
}
else {
mask = ColorByteMask + 1;
}
col_bytes = fg_col_bytes;
for (uint16_t j = 0; j < bsize; j++) {
if (hbyte != 0xff) {
if (hbyte & 0x80) {
col_bytes = fg_col_bytes;
}
else {
col_bytes = bg_col_bytes;
}
hbyte <<= 1;
}
ptr = ptr_base + j;
mask_ptr = mask;
for (uint8_t b = 0; b < col_bytes_cnt; b++)
{
*ptr &= ~(*mask_ptr);
*ptr |= output_mask | (col_bytes[b] & (*mask_ptr));
ptr += displ_len;
}
}
DEBUG_TIME_MARK;
}
/*--------------------------------------------------------------------------------------*/
void DMD_RGB_BASE::getColorBytes(uint8_t* cbytes, uint16_t color) {
uint8_t r, g, b, bit, limit;
uint8_t* ptr;
uint8_t empty_col = output_mask;
// special case color = 0
if (color == 0) {
memset(cbytes, empty_col, col_bytes_cnt);
return;
}
// if color found in cash table
if ((colors[last_color] == color) || (colors[last_color = !last_color] == color)) {
ptr = col_cache + last_color * col_bytes_cnt;
memcpy(cbytes, ptr, col_bytes_cnt);
return;
}
// new color
ptr = col_cache + last_color * col_bytes_cnt;
colors[last_color] = color;
memset(ptr, empty_col, col_bytes_cnt);
// Adafruit_GFX uses 16-bit color in 5/6/5 format, while matrix needs
// 4/4/4. Pluck out relevant bits while separating into R,G,B:
uint16_t c = color;
//r = c >> 12; // RRRRrggggggbbbbb
//g = (c >> 7) & 0xF; // rrrrrGGGGggbbbbb
//b = (c >> 1) & 0xF; // rrrrrggggggBBBBb
extractColors(c,r,g,b);
limit = 1 << nPlanes;
bit = 1;
for (; bit < limit; bit <<= 1) {
// Mask out R,G,B in one op
if (r & bit) *ptr |= 0b00001001; // Plane N R: bit 2
if (g & bit) *ptr |= 0b00010010; // Plane N G: bit 3
if (b & bit) *ptr |= 0b00100100; // Plane N B: bit 4
ptr++; // Advance to next bit plane
}
ptr -= col_bytes_cnt;
memcpy(cbytes, ptr, col_bytes_cnt); return;
}
/*--------------------------------------------------------------------------------------*/
void DMD_RGB_BASE::extractColors(uint16_t c, uint8_t &r, uint8_t &g, uint8_t &b) {
uint8_t r0, g0, b0;
r0 = c >> 12; // RRRRrggggggbbbbb
g0 = (c >> 7) & 0xF; // rrrrrGGGGggbbbbb
b0 = (c >> 1) & 0xF; // rrrrrggggggBBBBb
switch (this -> Color_order) {
case DMD_Color_order::RGB :
r = r0;
g = g0;
b = b0;
break;
case DMD_Color_order::RBG :
r = r0;
g = b0;
b = g0;
break;
case DMD_Color_order::BRG :
r = b0;
g = r0;
b = g0;
break;
case DMD_Color_order::BGR :
r = b0;
g = g0;
b = r0;
break;
case DMD_Color_order::GRB :
r = g0;
g = r0;
b = b0;
break;
case DMD_Color_order::GBR :
r = g0;
g = b0;
b = r0;
break;
}
}
/*--------------------------------------------------------------------------------------*/
void DMD_RGB_BASE::fillScreen(uint16_t c) {
if ((c == 0x0000) || (c == 0xffff)) {
uint8_t b;
if (output_mask) b = 0b01000000 | (c & 0b00111111);
else b = c & 0xff;
// For black or white, all bits in frame buffer will be identically
// set or unset (regardless of weird bit packing), so it's OK to just
// quickly memset the whole thing:
memset(matrixbuff[backindex], b, this->mem_Buffer_Size);
}
else {
// Otherwise, need to handle it the long way:
Adafruit_GFX::fillScreen(c);
}
}
/*--------------------------------------------------------------------------------------*/
void DMD_RGB_BASE::clearScreen(byte bNormal) {
// ToDo: bNornal flag should affect screen filling with background color
if (bNormal) {
}
fillScreen(0x0000);
}
/*--------------------------------------------------------------------------------------*/
void DMD_RGB_BASE::shiftScreen(int8_t step) {
uint8_t* ptr = matrixbuff[backindex];
uint8_t mm = output_mask;
if (step < 0) {
for (uint16_t i = 0; i < mem_Buffer_Size;i++) {
if ((i % WIDTH) == (WIDTH - 1)) {
ptr[i] = mm;
}
else {
ptr[i] = ptr[i + 1];
}
}
drawFastVLine(WIDTH - 1, 0, HEIGHT, textbgcolor);
}
else if (step > 0) {
for (uint16_t i = (mem_Buffer_Size)-1; i > 0;i--) {
if ((i % WIDTH) == 0) {
ptr[i] = mm;
}
else {
ptr[i] = ptr[i - 1];
}
}
ptr[0] = mm;
drawFastVLine(0, 0, HEIGHT, textbgcolor);
}
}
/**************************************************************************/
/*!
@brief Draw a perfectly vertical line (this is often optimized in a subclass!)
@param x Top-most x coordinate
@param y Top-most y coordinate
@param h Height in pixels
@param color 16-bit 5-6-5 Color to fill with
*/
/**************************************************************************/
void DMD_RGB_BASE::drawFastVLine(int16_t x, int16_t y,
int16_t h, uint16_t color) {
for (uint16_t yy = 0; yy < h; yy++) {
drawPixel(x, y + yy, color);
}
}
/**************************************************************************/
/*!
@brief Draw a perfectly horizontal line (this is often optimized in a subclass!)
@param x Left-most x coordinate
@param y Left-most y coordinate
@param w Width in pixels
@param color 16-bit 5-6-5 Color to fill with
*/
/**************************************************************************/
void DMD_RGB_BASE::drawFastHLine(int16_t x, int16_t y,
int16_t w, uint16_t color) {
if (w <= 0) return;
if (fast_Hbyte) {
uint8_t fg_col_bytes[col_bytes_cnt];
getColorBytes(fg_col_bytes, color);
drawHByte(x, y, 255, w, fg_col_bytes, fg_col_bytes);
}
else {
for (uint16_t xx = 0; xx < w; xx++) {
drawPixel(x + xx, y, color);
}
}
}
/*--------------------------------------------------------------------------------------*/
void DMD_RGB_BASE::setMarqueeColor(uint16_t text_color, uint16_t bg_color)
{
this->setTextColor(text_color, bg_color);
marqueeType_MultiColor = false;
}
void DMD_RGB_BASE::setMarqueeColor(DMD_Colorlist* colors) {
marqueeType_MultiColor = true;
marqueeColors = colors;
}
/*--------------------------------------------------------------------------------------
Service routine to call drawString<color16> or drawString<DMD_Colorlist> instance
inside the marquee methods. Virtual, overrides base DMD method.
--------------------------------------------------------------------------------------*/
void DMD_RGB_BASE::drawMarqueeString(int bX, int bY, const char* bChars, int length,
int16_t miny, int16_t maxy, byte orientation)
{
if (marqueeType_MultiColor) {
this->drawString(bX, bY, bChars, length, marqueeColors, miny, maxy, orientation);
}
else {
this->drawString(bX, bY, bChars, length, textcolor, miny, maxy, orientation);
}
}
/*--------------------------------------------------------------------------------------*/
// Promote 3/3/3 RGB to Adafruit_GFX 5/6/5
uint16_t DMD_RGB_BASE::Color333(uint8_t r, uint8_t g, uint8_t b) {
// RRRrrGGGgggBBBbb
return ((r & 0x7) << 13) | ((r & 0x6) << 10) |
((g & 0x7) << 8) | ((g & 0x7) << 5) |
((b & 0x7) << 2) | ((b & 0x6) >> 1);
}
/*--------------------------------------------------------------------------------------*/
// Promote 4/4/4 RGB to Adafruit_GFX 5/6/5
uint16_t DMD_RGB_BASE::Color444(uint8_t r, uint8_t g, uint8_t b) {
// RRRRrGGGGggBBBBb
return ((r & 0xF) << 12) | ((r & 0x8) << 8) |
((g & 0xF) << 7) | ((g & 0xC) << 3) |
((b & 0xF) << 1) | ((b & 0x8) >> 3);
}
/*--------------------------------------------------------------------------------------*/
// Demote 8/8/8 to Adafruit_GFX 5/6/5
// If no gamma flag passed, assume linear color
uint16_t DMD_RGB_BASE::Color888(uint8_t r, uint8_t g, uint8_t b) {
return ((uint16_t)(r & 0xF8) << 8) | ((uint16_t)(g & 0xFC) << 3) | (b >> 3);
}
#if defined(DEBUG2)
/*--------------------------------------------------------------------------------------*/
void DMD_RGB_BASE::dumpMask(void) {
for (uint8_t i = 0; i < 6; i++) {
Serial.print(F("i: "));Serial.print(i);
Serial.print(F(" Pin: "));Serial.print(rgbpins[i]);
PortType mask = digitalPinToBitMask(rgbpins[i]);
Serial.print(F(" Mask 0x"));Serial.println(mask, HEX);
}
for (uint8_t i = 0; i < nRows; i++)
{
Serial.print(F("mux: "));Serial.print(i);
Serial.print(F(" Mask 0x"));Serial.println(mux_mask[i], HEX);
}
Serial.print(F(" CLK Mask 0x"));Serial.println(clkmask, HEX);
}
#endif
/*--------------------------------------------------------------------------------------*/
DMD_RGB_BASE::~DMD_RGB_BASE()
{
#if (defined(__STM32F1__) || defined(__STM32F4__))
free(matrixbuff[0]);
#endif
#if defined(DEBUG2)
free((uint16_t*)dd_ptr);
#endif
}