-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathplos_authInflation.R
170 lines (153 loc) · 6.64 KB
/
plos_authInflation.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
options(PlosApiKey = "<insert your API key here!>")
#install_github("rplos", "ropensci")
library("rplos")
library("ggplot2")
require("dplyr")
# Convert author strings to counts
countAuths <- function(cell)
length(unlist(strsplit(cell, ";")))
countAuths <- Vectorize(countAuths)
# Query PLoS API for 1k papers per journal per year,
# count the number of authors and return a data.frame
getAuths <- function(j, lim=1000, start.year=2006){
cat("Getting results for journal: ", j, "\n")
# seem to be in reverse order by year?
results <- sapply(start.year:2013, function(i) data.frame(year = i,
auths = searchplos(
q = paste0('publication_date:[', i,
'-01-01T00:00:00Z TO ', i,
'-12-31T23:59:59Z]'),
fl = "author",
fq = list("doc_type:full",
paste0("cross_published_journal_key:", j)),
start=0, limit=lim, sleep=6),
year=i), simplify=F)
results <- do.call(rbind, results)
results$counts <- countAuths(results$author)
results$journal <- j
results
}
journals <- journalnamekey()
plos.all <- sapply(journals[c(1:5, 7)], getAuths, simplify=F)
plos <- do.call(rbind, plos.all)
# Fig. 1: Bean plot showing distribution of author counts
# per journal overall
svg("../figures/authInflation_f1_beanplot.svg", 6, 8)
ggplot(plos, aes(x=journal, y=counts, fill=journal)) +
geom_violin(scale="width") +
geom_boxplot(width=.12, fill=I("black"), notch=T,
outlier.size=NA, col="grey40") +
stat_summary(fun.y="median", geom="point", shape=20, col="white") +
scale_y_log10(breaks=c(1:5, seq(10, 50, by=10), 100, 200, 300)) +
coord_flip() + labs(x="", y="Number of authors per paper") +
theme_classic() + theme(legend.position="none") +
scale_fill_brewer()
dev.off()
# Fig 2. ECDFs of the author count distributions
svg("../figures/authInflation_f2_ecdf.svg", 5, 5)
ggplot(plos, aes(x=counts, col=journal)) +
stat_ecdf(geom="smooth", se=F, size=1.2) + theme_bw() +
scale_x_log10(breaks=c(1:5, seq(10, 50, by=10), 100, 200, 300)) +
theme(legend.position=c(.75,.33)) +
labs(x="Number of authors per paper", y="ECDF",
col="") + coord_cartesian(xlim=c(1,300)) +
scale_color_brewer(type="qual", palette=6)
dev.off()
# Fig 3. Trends in author counts over time with
# confidence limits on the means
svg("../figures/authInflation_f3_ribbon.svg", 7, 7)
ggplot(plos, aes(x=year, y=counts, col=journal, fill=journal)) +
stat_summary(fun.data="mean_cl_boot", geom="ribbon",
width=.2, alpha=I(.5)) +
stat_summary(fun.y="mean", geom="line") +
labs(list(x="Year", y="Mean number of authors per paper")) +
theme_bw() + theme(legend.position=c(.2,.85)) +
scale_fill_brewer(type="qual", palette=2,
guide=guide_legend(direction="vertical",
label.position="bottom",
title=NULL, ncol=2,
label.hjust=0.5)) +
scale_color_brewer(type="qual", palette=2, guide="none")
dev.off()
# from http://stackoverflow.com/a/17024184/1274516
# show regression equation on each graph facet
lm_eqn <- function(df){
m <- summary(lm(counts ~ year, df))
eq <- substitute(~~y~"="~beta*x+i~(R^2==r2),
list(beta = format(m$coefficients[2,"Estimate"],
digits = 3),
i = format(m$coefficients[1,"Estimate"], digits=3),
r2 = format(m$r.squared, digits=2)))
as.character(as.expression(eq))
}
means <- group_by(plos, journal, year) %.% summarise(counts=mean(counts))
b <- by(means, means$journal, lm_eqn)
df <- data.frame(beta=unclass(b), journal=names(b))
summary(lm(counts ~ year + journal, data=means))
means <- group_by(means, journal) %.% summarise(m=max(counts))
df$top <- means$m * 1.2
# Fig 4. Facetted linear regression of author inflation per journal
svg("../figures/authInflation_f4_regression.svg", 8.5, 6)
ggplot(plos, aes(x=year, y=counts, col=journal, fill=journal)) +
stat_summary(fun.data="mean_cl_boot", geom="errorbar",
width=.2, alpha=I(.5)) +
stat_summary(fun.y="mean", geom="point") +
facet_wrap(~journal, scales="free_y") +
geom_smooth(method="lm") +
scale_x_continuous(breaks=2006:2013) +
labs(list(x="", y="Mean number of authors per paper")) +
theme_bw() + theme(axis.text.x=element_text(angle=45, hjust=1)) +
scale_fill_brewer(type="qual", palette=2, guide="none") +
scale_color_brewer(type="qual", palette=2, guide="none") +
geom_text(data=df, aes(x=2009.5, y=top, label=beta), size=3, parse=T)
dev.off()
# Overall estimate of author inflation?
# .21 extra authors per paper per year, on average
s <- summary(lm(counts ~ year + journal, data=plos))
# Summary barchart data:
bc <- data.frame(journal = unique(means$journal),
trend = c(0.2490979,
0.1211823,
0.5201688,
0.4088536,
0.05894102,
0.1828939),
std.err = c(0.08224567,
0.02213142,
0.1493662,
0.06361849,
0.03891493,
0.03798822),
IF = c(12.690,
4.867,
8.517,
15.253,
3.730,
8.136))
bc$journal <- factor(bc$journal, levels=bc$journal[order(bc$trend)])
# Fig 5. Barchart of author inflation estimate per journal.
svg("../figures/authInflation_f5_barchart.svg", 5, 7)
ggplot(bc, aes(x=journal, y=trend, fill=journal, ymin=trend-std.err,
ymax=trend+std.err)) +
geom_bar(stat="identity") +
geom_errorbar(width=.2) +
scale_y_continuous(expand=c(0,0)) +
theme_classic() +
labs(x="",
y="Estimate of annual author inflation (additional mean authors per paper)") +
theme(axis.text.x=element_text(angle=45, hjust=1)) +
scale_fill_brewer(palette="Blues", guide="none")
dev.off()
pcc <- cor(bc$trend, bc$IF)
# Fig 6. Correlation of author inflation and journal impact factors.
svg("../figures/authInflation_f6_IFcor.svg", 5, 5)
ggplot(bc, aes(x=trend, y=IF, col=journal)) +
geom_text(aes(label=journal)) + xlim(0,.6) +
labs(x="Author inflation estimate",
y="Journal impact factor (2012)") +
scale_color_brewer(type="qual", palette=2, guide="none") +
annotate("text", x=.05, y=15,
label=paste0("rho == ", format(pcc, digits=2)), parse=T)
dev.off()
# N.S. (p = 0.18)
cor.test(bc$trend, bc$IF)