-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
116 lines (103 loc) · 5.33 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
from constants import *
from model.model_utils import *
import numpy as np
import random
import torch
from torch.autograd import Variable
from hparams import hparams
from utils import *
def train(input_batches, input_lens, target_batches, target_lens, kwd_labels, kwd_masks,
encoder, decoder, kwd_predictor, kwd_bridge, optimizers,
SOS_idx, max_target_length, batch_size, teacher_forcing_ratio, kwd_weight=None):
# if not update_kwd_predictor, kwd_predictor_optimizer will not be included
for optimizer0 in optimizers:
optimizer0.zero_grad()
if hparams.USE_CUDA:
input_batches = torch.LongTensor(input_batches).cuda().transpose(0, 1)
target_batches = torch.LongTensor(target_batches).cuda().transpose(0, 1)
kwd_labels = torch.FloatTensor(kwd_labels).cuda()
kwd_masks = torch.FloatTensor(kwd_masks).cuda()
else:
input_batches = torch.LongTensor(input_batches).transpose(0, 1)
target_batches = torch.LongTensor(target_batches).transpose(0, 1)
kwd_labels = torch.FloatTensor(kwd_labels)
kwd_masks = torch.FloatTensor(kwd_masks)
# Run post words through encoder
encoder_outputs, encoder_hidden = encoder(input_batches, input_lens, None)
logits = kwd_predictor(input_batches, input_lens)
e_features, d_features = kwd_bridge(logits, kwd_mask=kwd_labels) # use label as mask in training
# Prepare input and output variables [2, batch_size, hidden_size]
decoder_hidden = encoder_hidden[:decoder.n_layers] + encoder_hidden[decoder.n_layers:]
if not hparams.NO_ENCODER_BRIDGE:
### Replace SOS token embedding with the features obtained from kwd predictor
encoder_outputs[0, :, :] = e_features
# masked loss
if not hparams.FREEZE_KWD_MODEL:
if kwd_weight is None:
loss_kwd = torch.nn.BCEWithLogitsLoss()(logits*kwd_masks, kwd_labels)
else:
loss_kwd = torch.nn.BCEWithLogitsLoss(pos_weight=kwd_weight)(logits*kwd_masks, kwd_labels)
if hparams.USE_CUDA:
decoder_input = torch.LongTensor([SOS_idx] * batch_size).cuda()
# all_decoder_outputs = torch.zeros(max_target_length, batch_size, decoder.output_size).cuda()
else:
decoder_input = torch.LongTensor([SOS_idx] * batch_size)
# all_decoder_outputs = torch.zeros(max_target_length, batch_size, decoder.output_size)
all_decoder_outputs = []
use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False
# Run through decoder one time step at a time
for t in range(max_target_length):
if (not hparams.NO_DECODER_BRIDGE) and ((t == 0 and hparams.DECODER_CONDITION_TYPE == 'replace') or \
hparams.DECODER_CONDITION_TYPE == 'concat'):
decoder_output, decoder_hidden = decoder(decoder_input, decoder_hidden, encoder_outputs, d_features)
else:
decoder_output, decoder_hidden = decoder(decoder_input, decoder_hidden, encoder_outputs)
# all_decoder_outputs[t] = decoder_output
all_decoder_outputs.append(decoder_output)
if use_teacher_forcing:
decoder_input = target_batches[t] # Next input is current target
else: # Greeding decoding
for b in range(batch_size):
topi = decoder_output[b].topk(1)[1][0]
decoder_input[b] = topi.squeeze().detach()
all_decoder_outputs = torch.cat(all_decoder_outputs, dim=0).view(max_target_length, batch_size, decoder.output_size)
loss_fn = torch.nn.NLLLoss()
loss_seq2seq = masked_cross_entropy(
all_decoder_outputs.transpose(0, 1).contiguous(), # -> batch x seq
target_batches.transpose(0, 1).contiguous(), # -> batch x seq
target_lens, loss_fn, max_target_length
)
loss = loss_seq2seq if hparams.FREEZE_KWD_MODEL else loss_seq2seq + hparams.KWD_LOSS_RATIO * loss_kwd
loss.backward()
for model in (encoder, decoder, kwd_predictor, kwd_bridge):
torch.nn.utils.clip_grad_norm_(model.parameters(), hparams.MAX_GRAD_NORM)
for optimizer0 in optimizers:
optimizer0.step()
return loss.item()
def train_kwd(input_batches, input_lens, kwd_labels, kwd_masks, kwd_predictor, kwd_optimizer, kwd_weight=None):
# Zero gradients of both optimizers
kwd_optimizer.zero_grad()
if hparams.NO_NEG_SAMPLE:
kwd_masks = torch.ones(kwd_labels.shape)
if hparams.USE_CUDA:
input_batches = torch.LongTensor(input_batches).cuda().transpose(0, 1)
kwd_labels = torch.FloatTensor(kwd_labels).cuda()
kwd_masks = torch.FloatTensor(kwd_masks).cuda()
else:
input_batches = torch.LongTensor(input_batches).transpose(0, 1)
kwd_labels = torch.FloatTensor(kwd_labels)
kwd_masks = torch.FloatTensor(kwd_masks)
logits = kwd_predictor(input_batches, input_lens)
# masked loss
if kwd_weight is None:
criterion = torch.nn.BCEWithLogitsLoss()
else:
criterion = torch.nn.BCEWithLogitsLoss(pos_weight=kwd_weight)
loss = criterion(logits*kwd_masks, kwd_labels)
if hparams.KWD_PREDICTOR_TYPE == 'cnnpost':
# additional loss
loss += criterion(kwd_predictor.logits_pre*kwd_masks, kwd_labels)
loss.backward()
torch.nn.utils.clip_grad_norm_(kwd_predictor.parameters(), hparams.MAX_GRAD_NORM)
kwd_optimizer.step()
return loss.item()