-
Notifications
You must be signed in to change notification settings - Fork 0
/
mm.c
792 lines (673 loc) · 20.5 KB
/
mm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
/*
*
* This implementation uses segregated free lists. A global array
* contains pointer to 15 distinct free lists, where each list holds
* free blocks in a certain range.
*
* Index 0 - 32 byte blocks
* Index 1 - 33-64 byte blocks
* Index 2 - 65-128 byte blocks
* ...
* Index 14 - 32769-65536 byte blocks
*
* The format of an allocated block is the following:
* [8 byte header][16 byte aligned data][8 byte footer]
*
* The format of a free block is the following:
* [8 byte header][8 byte pointer to previous block][unused][8 byte pointer to next block][8 byte footer]
*
* The header and footer fields are identical, and contain
* the size of the entire block. The least significant bit
* of the size refers to the allocation of the block (0 == free, 1 == allocated)
* The pointers point to the header of the adjacent block in the free list.
*
* When a block is freed, it is added to the front of the existing free list.
* When a block is allocated, it is removed from the free list.
*
* When allocating a block that is bigger than the allocation request, the block is split,
* and the remainder is added to a free list.
*
* Before any block is added to a free list, it is coalesced with its
* neighboring blocks, if possible.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <unistd.h>
#include <string.h>
#include <stdint.h>
#include "mm.h"
#include "memlib.h"
/*********************************************************
* NOTE TO STUDENTS: Before you do anything else, please
* provide your team information in the following struct.
********************************************************/
team_t team = {
/* Team name */
"Kotopoulos",
/* First member's full name */
"Bradley Kotsopoulos",
/* First member's email address */
"brad.kotsopoulos@mail.utoronto.ca",
/* Second member's full name (leave blank if none) */
"",
/* Second member's email address (leave blank if none) */
""
};
/*************************************************************************
* Basic Constants and Macros
* You are not required to use these macros but may find them helpful.
*************************************************************************/
static const unsigned int arrayLength = 15; // number of free lists
static char* array[15]; // array of free list pointers
static char* heapStart; // pointer to first byte used on heap
enum Status
{
FREE = 0,
ALLOCATED
};
/**********************************************************
* HELPER FUNCTIONS
**********************************************************/
// Round up a block size to the nearest
// 16 bytes
static unsigned int roundUp(size_t size)
{
if( 0 == size % 16 )
return (unsigned int) size;
size &= ~15;
size += 16;
return (unsigned int) size;
}
// given size, multiple of 16 between 2^5 and 2^19,
// find the corresponding array index, by rounding
// the size up to the next power of 2, corresponding
// to the free list pointed to by array[index]
static unsigned int getIndex(unsigned int size)
{
assert(size >= 32);
if( size == 32 )
return 0;
else if( size <= 64 )
return 1;
else if( size <= 128 )
return 2;
else if( size <= 256 )
return 3;
else if( size <= 512 )
return 4;
else if( size <= 1024 )
return 5;
else if( size <= 2048 )
return 6;
else if( size <= 4096 )
return 7;
else if( size <= 8192 )
return 8;
else if( size <= 16384 )
return 9;
else if( size <= 32768 )
return 10;
else if( size <= 65536 )
return 11;
else if( size <= 131072 )
return 12;
else if( size <= 262144 )
return 13;
else // if( size <= 524288 )
return 14;
}
// given a pointer to a block header
// or footer, zero out the allocated
// bit and return the size
static unsigned int getSize(char* bp)
{
return *(uintptr_t*)bp & ~1;
}
// given a pointer to a block header
// or footer, return the value of
// the lowest bit, corresponding to
// the allocation of the block
static enum Status getAlloc(char* bp)
{
if( 0 == ( (*(uintptr_t*)bp) & 1 ) )
return FREE;
else
return ALLOCATED;
}
// given a pointer to the first byte in a block,
// set the header and footer to the size
// and allocation parameter
static void setSizeAlloc(char* bp, unsigned int size, enum Status alloc)
{
char* lastHeader = bp + size - 8;
if( ALLOCATED == alloc )
{
*(uintptr_t*)bp = (size | 1);
*(uintptr_t*)lastHeader = (size | 1);
}
else if( FREE == alloc )
{
*(uintptr_t*)bp = (size & ~1);
*(uintptr_t*)lastHeader = (size & ~1);
}
}
// given a pointer to the first byte in a block
// return a pointer to the previous block in the free list
static char* getPrev(char* bp)
{
unsigned long long pointer = *((uintptr_t*)bp + 1);
return (char*) pointer;
}
// given a pointer to the first byte in a block,
// set the pointer to the previous block in the list
static void setPrev(char* bp, char* prev)
{
*((uintptr_t*)bp + 1) = (unsigned long long)prev;
}
// given a pointer to the first byte in a block
// return a pointer to the next block in the free list
static char* getNext(char* bp)
{
unsigned int size = getSize(bp);
bp += size - 16;
unsigned long long pointer = *(uintptr_t*)bp;
return (char*) pointer;
}
// given a pointer to the first byte in a block,
// set the pointer to the next block in the list
static void setNext(char* bp, char* next)
{
unsigned int size = getSize(bp);
bp += size - 16;
*(uintptr_t*)bp = (unsigned long long)next;
}
// remove the block pointed to by bp
// from the free list by skipping over it
static void removeFromList(char* bp)
{
unsigned int size = getSize(bp);
unsigned int index = getIndex(size);
char* nextPtr = getNext(bp);
char* prevPtr = getPrev(bp);
if( !prevPtr )
{
array[index] = nextPtr;
}
else
{
setNext(prevPtr, nextPtr);
}
if( nextPtr )
{
setPrev(nextPtr, prevPtr);
}
setNext(bp, NULL);
setPrev(bp, NULL);
}
/**********************************************************
* mm_init
* Initialize the heap to ensure 16 byte alignment,
* and initialize the free lists to empty
**********************************************************/
int mm_init(void)
{
int i = 0;
for(; i < arrayLength; i++)
{
array[i] = NULL;
}
// want to start heap where it is 8 byte aligned
// but not 16 byte aligned, so that the data section
// of an allocated block will be 16 byte aligned, since
// the header at the front of the block takes 8 bytes
// note: all blocks are multiples of 16 bytes, so
// if the first block is aligned properly,
// all subsequent blocks will be as well
unsigned long long nextHeapSpot = (unsigned long long)mem_heap_hi() + 1;
while( (nextHeapSpot & 0xF) != 0x8 )
{
mem_sbrk(8);
nextHeapSpot = (unsigned long long)mem_heap_hi() + 1;
}
heapStart = (char*) nextHeapSpot;
return 0;
}
/**********************************************************
* coalesce
* Covers the 4 cases discussed in the text:
* - both neighbours are allocated
* - the next block is available for coalescing
* - the previous block is available for coalescing
* - both neighbours are available for coalescing
*
* Returns a pointer to the first byte in the largest
* contiguous free block possible, where the entire
* block has been remove from all possible free lists
* and has the correct size set
**********************************************************/
void* coalesce(void *bp)
{
unsigned int size = getSize(bp);
char* prevFooter = bp - 8;
char* nextHeader = bp + size;
enum Status nextAlloc, prevAlloc;
if( mem_heap_hi() == nextHeader - 1 )
{
// if the next block is outside of the heap,
// treat it as allocated and don't check it
nextAlloc = ALLOCATED;
}
else
{
nextAlloc = getAlloc(nextHeader);
}
if( heapStart == bp )
{
// if the previous block is below the
// start of the heap, treat it as allocated
// and don't check it
prevAlloc = ALLOCATED;
}
else
{
prevAlloc = getAlloc(prevFooter);
}
if( ALLOCATED == prevAlloc && ALLOCATED == nextAlloc )
{
return bp;
}
else if( FREE == prevAlloc && ALLOCATED == nextAlloc )
{
unsigned int prevSize = getSize(prevFooter);
unsigned int totalSize = prevSize + size;
char* prevHeader = bp - prevSize;
// STEP 1: Remove Previous block from respective list
removeFromList(prevHeader);
// STEP 2: Set the size in both blocks to the total size
setSizeAlloc(prevHeader, totalSize, FREE);
return prevHeader;
}
else if( ALLOCATED == prevAlloc && FREE == nextAlloc )
{
unsigned int nextSize = getSize(nextHeader);
unsigned int totalSize = nextSize + size;
// STEP 1: Remove Next block from respective list
removeFromList(nextHeader);
// STEP 2: Set the size in both blocks to the total size
setSizeAlloc(bp, totalSize, FREE);
return bp;
}
else
{
unsigned int prevSize = getSize(prevFooter);
unsigned int nextSize = getSize(nextHeader);
unsigned int totalSize = prevSize + size + nextSize;
char* prevHeader = bp - prevSize;
// STEP 1: Remove Previous and Next block from respective list
removeFromList(prevHeader);
removeFromList(nextHeader);
// STEP 2: Set the size in all three blocks to the total size
setSizeAlloc(prevHeader, totalSize, FREE);
return prevHeader;
}
}
/**********************************************************
* extend_heap
* Extend the heap by one block, where the size of the block
* corresponds to the largest block allowable in the free list
* noted by the index passed in
*
* returns a pointer to the beginning of the last new block
* created
**********************************************************/
char* extend_heap(unsigned int index)
{
// number of blocks to extend the heap by (for small requests
// over extend the heap, to save from calling mem_sbrk too
// many times)
unsigned int numBlocks = (index < 3) ? 16 : 1;
unsigned int blockSize = 1 << (index + 5);
char *bp;
if ( (bp = mem_sbrk(numBlocks * blockSize)) == (void *)-1 )
return NULL;
array[index] = bp;
int i = 0;
char* iter = bp;
char* prevPtr = NULL;
for(; i < numBlocks; i++)
{
// for each of the numBlocks that we just created,
// set the next and previous pointers to maintain
// the linked list, and set the size/allocated field
setSizeAlloc(iter, blockSize, FREE);
setPrev(iter, prevPtr);
char* nextPtr = ( (numBlocks - 1) == i) ? NULL : iter + blockSize;
setNext(iter, nextPtr);
prevPtr = iter;
iter += blockSize;
}
return prevPtr;
}
/**********************************************************
* find_fit
* Traverse the corresponding free list, searching for a
* block to fit totalSize
* Return NULL if no free blocks can handle that size
**********************************************************/
void* find_fit(unsigned int totalSize, unsigned int arrayIndex)
{
char* iter = (char*) array[arrayIndex];
while( iter && totalSize > getSize(iter) )
{
iter = getNext(iter);
}
// Can either be NULL, if no suitable block found
// or a pointer to the suitable block
return iter;
}
/**********************************************************
* place
* Given a block in a free list, we want to prepare this
* block to be returned by mm_malloc
*
* Remove the block from its free list, set it to allocated,
* clear the next/previous pointers, and return a pointer
* to just the data portion (skip the header)
*
* If their is enough unneeded space in the chosen block
* to make a new block, split the two blocks, and "free"
* the unused portion so that it is stored appropriately
**********************************************************/
char* place(char* bp, unsigned int totalSizeNeeded, unsigned int arrayIndex)
{
// marks the current block as allocated
// returns a pointer to the data section of this block
unsigned int blockSize = getSize(bp);
// STEP 1: remove from list
removeFromList(bp);
if( totalSizeNeeded + 32 <= blockSize )
{
// then we split it up and free
unsigned int extraSize = blockSize - totalSizeNeeded;
blockSize = totalSizeNeeded;
char* toFree = bp + blockSize;
setSizeAlloc(toFree, extraSize, ALLOCATED);
setSizeAlloc(bp, blockSize, ALLOCATED);
setNext(bp, NULL);
setPrev(bp, NULL);
setNext(toFree, NULL);
setPrev(toFree, NULL);
// free the portion of the block that
// isn't needed
mm_free(toFree + 8);
}
else
{
// STEP 2: clear pointer fields in block, set to allocated
setSizeAlloc(bp, blockSize, ALLOCATED);
setNext(bp, NULL);
setPrev(bp, NULL);
}
// STEP 3: return pointer to data segment only
return bp + 8;
}
/**********************************************************
* mm_free
* Coalesce the block with its neighbouring blocks, and
* insert it at the beginning of appropriate free list
**********************************************************/
void mm_free(void *bp)
{
if(bp == NULL){
return;
}
char* blockPointer = (char*)bp - 8;
// call coalesce, block pointer may now point to header of bigger block
blockPointer = coalesce(blockPointer);
unsigned int blockSize = getSize(blockPointer);
unsigned int arrayIndex = getIndex(blockSize);
char* oldHead = array[arrayIndex];
setPrev(blockPointer, NULL);
array[arrayIndex] = blockPointer;
setNext(blockPointer, oldHead);
if(oldHead)
setPrev(oldHead, blockPointer);
setSizeAlloc(blockPointer, blockSize, FREE);
}
/**********************************************************
* mm_malloc
* Translate the request size to a block size, and determine
* which free list this corresponds to
*
* Search the free list for the first block that fits,
* moving to the next higher list if no blocks are found
*
* If a fit is found, the block is prepared by place()
*
* If no fit is found in any of the lists, the heap is
* extended to meet the request
**********************************************************/
void *mm_malloc(size_t size)
{
/* Ignore spurious requests */
if ( 0 == size )
return NULL;
unsigned int roundedSize = roundUp(size); // round to nearest 16
unsigned int totalSize = roundedSize + 16; // how much we need in total
unsigned int arrayIndex = getIndex(totalSize); // find appropriate list index for size
for(; arrayIndex < arrayLength; arrayIndex++)
{
if( NULL == array[arrayIndex] )
{
continue;
}
// guaranteed that free list has entries in it
// but maybe they don't fit?
// Search the free list for a fit
char* bp = find_fit(totalSize, arrayIndex);
if ( bp )
{
return place(bp, totalSize, arrayIndex);
}
}
// either all lists are empty, or we couldn't find
// any blocks that fit, either way,
// just force allocate for this request
// STEP 0: Find original array index
arrayIndex = getIndex(totalSize);
// STEP 1: Save original list for original index
void* oldBeginning = array[arrayIndex];
// STEP 2: Call extend heap
void* newEnd = extend_heap(arrayIndex);
if( !newEnd )
return NULL;
// STEP 3: Append old list to new list
// new->next = old
// old->prev = new
setNext(newEnd, oldBeginning);
if( oldBeginning )
setPrev(oldBeginning, newEnd);
// STEP 4: find_fit and place
char* bp = find_fit(totalSize, arrayIndex);
if ( bp )
{
return place(bp, totalSize, arrayIndex);
}
else
{
assert(0);
return NULL;
}
}
/**********************************************************
* mm_realloc
* If the new data size is smaller than the old data size,
* the pointer is immediately returned, as the block size
* doesn't change, but we not have some unused bytes
*
* If the new data size is larger, we try to join this
* allocated block with any neighbouring free blocks. If
* this new coalesced block is large enough, we shift the
* data to be at the start of the new block, and return
*
* If this new coalesced block still can't meet the request,
* we just free this block, and allocated a new block that
* is large enough, and copy over the old data to the new block.
*********************************************************/
void *mm_realloc(void *ptr, size_t size)
{
/* If size == 0 then this is just free, and we return NULL. */
if(size == 0){
mm_free(ptr);
return NULL;
}
/* If oldptr is NULL, then this is just malloc. */
if (ptr == NULL)
return (mm_malloc(size));
char* blockHeader = (char*)ptr - 8;
unsigned int blockSize = getSize(blockHeader);
unsigned int oldDataSize = blockSize - 16;
unsigned int newDataSize = (unsigned int)size;
if( newDataSize == oldDataSize )
return ptr;
else if( newDataSize < oldDataSize )
{
if( (oldDataSize - newDataSize) >= 32 )
{
// can split off the new unused bytes
// and make a new block, but not worthwhile
// performance-wise
return ptr;
}
else
{
// not releasing enough bytes to make a new block
return ptr;
}
}
else //( newDataSize > oldDataSize )
{
char* biggestBlock = coalesce(blockHeader);
unsigned int newSize = getSize(biggestBlock);
setSizeAlloc(biggestBlock, newSize, ALLOCATED);
if( newSize - 16 >= newDataSize )
{
// can split off the unused bytes
// and make a new block
memmove(biggestBlock + 8, ptr, oldDataSize);
return biggestBlock + 8;
}
else
{
// just malloc/free
char* newBlock = (char*)mm_malloc(newDataSize);
if( !newBlock )
return NULL;
memcpy(newBlock, ptr, oldDataSize);
mm_free(biggestBlock + 8);
return newBlock;
}
}
}
/**********************************************************
* mm_check
* Check the consistency of the memory heap
* Return nonzero if the heap is consistant.
*********************************************************/
int mm_check(void)
{
char* pBlock;
char* heapHigh = mem_heap_hi();
// Check if every block in free list marked as free?
// For each free list, iterate through all blocks
// in the free list, checking that each one is
// marked as FREE
//
// This also serves to check that all of the size fields
// and next/previous pointers in the free lists are accurate,
// or else we wouldn't be able to successfully traverse
// the lists
unsigned int i = 0;
for(; i < arrayLength; i++)
{
// Iterate through each free list until we get to the
// last block in the list
pBlock = array[i];
char* saveFirstBlock = pBlock;
while( pBlock && getNext(pBlock) )
{
if( ALLOCATED == getAlloc(pBlock) )
return 0;
pBlock = getNext(pBlock);
}
// Once we reach the last block, we want to see if we
// can then iterate backwards through the list
// and reach the first block in the list again
//
// This proves that all of the previous pointers are
// correct, or else we would access memory out of bounds
// or dereference a NULL pointer before arriving back
// where we started
while( pBlock && pBlock != saveFirstBlock )
{
pBlock = getPrev(pBlock);
}
if( pBlock != saveFirstBlock )
return 0;
}
// Iterate through the entire heap from start to finish,
// one block at a time, checking multiple things
// (see comments inside the loop)
// pointers in heap block point to valid heap addresses?
// contiguous free blocks that escaped coalescing?
// every free block in free list?
pBlock = heapStart;
unsigned int consecutiveFreeBlocks = 0;
while( heapHigh != pBlock - 1)
{
if( FREE == getAlloc(pBlock) )
{
consecutiveFreeBlocks++;
// For every free block we find in the heap,
// use the size to determine which free list
// it should be on, and iterate through that
// free list, looking for this block.
//
// If we reach the end of the free list without
// finding it, return an error
unsigned int index = getIndex(getSize(pBlock));
char* pFreeListIter = array[index];
while( pFreeListIter && pFreeListIter != pBlock )
pFreeListIter = getNext(pFreeListIter);
if( pFreeListIter != pBlock )
return 0;
}
// If we see 2 consecutive free blocks, they somehow
// escaped coalescing, and we return an error
if( 2 == consecutiveFreeBlocks )
return 0;
// If, at any point, our pointer points to memory
// outside of the heap, return an error
//
// This would indicate that a size field of a
// free or allocated block is incorrect
if( pBlock < heapStart || pBlock > heapHigh )
return 0;
// Check to see that the size field in the
// header of a block matches the field in the
// footer
unsigned int size = getSize(pBlock);
if( size != getSize(pBlock + size - 8) )
return 0;
// Check to see that the allocated field in the
// header of a block matches the field in the
// footer
enum Status status = getAlloc(pBlock);
if( status != getAlloc(pBlock + size - 8) )
return 0;
pBlock = getNext(pBlock);
}
return 1;
}