-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathchat-with-documents.py
71 lines (58 loc) · 2.37 KB
/
chat-with-documents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import sys
import os
import qdrant_client
from pathlib import Path
from llama_index import (
VectorStoreIndex,
ServiceContext,
download_loader)
from llama_index.llms import Ollama
from llama_index.storage.storage_context import StorageContext
from llama_index.vector_stores.qdrant import QdrantVectorStore
def read_single_json(path: str):
JSONReader = download_loader("JSONReader")
loader = JSONReader()
return loader.load_data(Path(path))
def read_single_pdf(path: str):
PDFReader = download_loader("PDFReader")
loader = PDFReader()
return loader.load_data(Path(path))
def create_qdrant_clinet(path: str):
return qdrant_client.QdrantClient(path=path)
def create_collection(data_filename: str):
basename = data_filename.split(".")[0].replace(" ", "_")
extension = data_filename.split(".")[-1]
path = os.path.join("data", data_filename)
match extension:
case "pdf":
loaded_documents = read_single_pdf(path)
case "json":
loaded_documents = read_single_json(path)
return loaded_documents, basename
def initialize_qdrant(documents, client, collection_name, llm_model):
"""define the vector database and index
:return
query_engine index object
"""
vector_store = QdrantVectorStore(client=client, collection_name=collection_name)
service_context = ServiceContext.from_defaults(llm=llm_model, embed_model="local")
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(documents,
service_context=service_context,
storage_context=storage_context)
query_engine = index.as_query_engine(streaming=True)
return query_engine
if __name__ == "__main__":
# definition of variables
data_filename = os.environ['DOCUMENT_FILENAME']
llm_model = Ollama(model="mixtral") # "gemma"
client = create_qdrant_clinet(path=os.environ['QUADRANT_PATH'])
documents, collection_name = create_collection(data_filename)
query_engine = initialize_qdrant(documents, client, collection_name, llm_model)
# main CLI interaction loop
while True:
query_message = input("Q: ")
response = query_engine.query(query_message)
response.print_response_stream()
sys.stdout.flush()
sys.stdout.write("\n")