-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_kosmos.py
162 lines (132 loc) · 6.56 KB
/
train_kosmos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import time
import torch
from accelerate.utils import set_seed
from datasets import load_dataset
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader
from transformers import get_scheduler, default_data_collator, get_linear_schedule_with_warmup
from torch.optim import AdamW
from kosmos import Kosmos, KosmosTokenizer
from accelerate import Accelerator
from rich.progress import Progress
from datasets import Image
from bitsandbytes.optim import AdamW8bit
def count_number_of_parameters(model, only_trainable: bool = True) -> int:
if only_trainable:
num_params: int = sum(p.numel()
for p in model.parameters() if p.requires_grad)
else:
num_params: int = sum(p.numel() for p in model.parameters() if p)
return int(num_params)
def prep_sample(sample):
question = sample["question"]
answer = sample["answer"].split("|!+")[1]
explanation = sample["explanation"]
text = f"Question: {question} Answer: {answer} Explanation: {explanation}"
image = sample["image"]
return {
"image": image,
"target_text": text
}
def train(args):
accelerator = Accelerator(
mixed_precision="fp16"
)
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
model = Kosmos()
model = model.to(accelerator.device)
optimizer = AdamW8bit(model.parameters(), lr=args.learning_rate,
weight_decay=args.weight_decay)
lr_scheduler = get_linear_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=args.warmup_steps,
num_training_steps=args.max_steps,
)
tokenizer = KosmosTokenizer()
dataset = load_dataset("bjoernp/vqax", split="test")
#dataset = dataset.cast_column("URL", Image)
dataset = dataset.map(prep_sample, num_proc=8)
remove_columns = ['id', 'img_id', 'question', 'answer',
'explanation', 'none', 'image', 'target_text']
dataset = dataset.map(tokenizer.tokenize, batched=True,
batch_size=128, remove_columns=remove_columns)
train_dataloader = DataLoader(
dataset, collate_fn=default_data_collator, batch_size=args.batch_size, pin_memory=True
)
model, train_dataloader, optimizer, lr_scheduler = accelerator.prepare(model, train_dataloader, optimizer,
lr_scheduler)
model.train()
accelerator.register_for_checkpointing(lr_scheduler)
model.clip_model.requires_grad_(False)
model.clip_model.encoder.layers[-1].requires_grad_(True)
accelerator.print(
f"Number of parameters: {count_number_of_parameters(model):,}")
accelerator.print(
f"Number of trainable parameters: {count_number_of_parameters(model, only_trainable=True):,}")
# Log model and optimizer parameters to wandb
accelerator.init_trackers(project_name="kosmos")
train_loader = iter(train_dataloader)
epoch_loss = 0
total_loss = 0
start_time = time.time()
with Progress() as progress:
task = progress.add_task("[red]Training...", total=args.max_steps)
for step in range(0, args.max_steps):
batch_start = time.time()
batch = next(train_loader)
outputs = model(**batch, self_attn_padding_mask=batch["attention_mask"])
# Shift so that tokens < n predict n
outputs = torch.cat([outputs[:, :1], outputs[:, 67:]], dim=1).contiguous()
# shift_logits = outputs[..., :-1, :].contiguous()
# shift_labels = batch["labels"][..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
one_hot_labels = torch.nn.functional.one_hot(batch["labels"][:, 1:], num_classes=32002).float()
loss = loss_fct(outputs[:,:-1], one_hot_labels)
epoch_loss += loss.detach().float()
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
batch_end = time.time()
logs = {
"loss": loss.item(),
"perplexity": torch.exp(loss).item(),
"lr": lr_scheduler.get_last_lr()[0],
"examples": args.batch_size * (step + 1),
"examples_per_second": args.batch_size / (batch_end - batch_start),
}
if step % args.log_every == args.log_every - 1:
accelerator.log(logs, step=step)
progress.update(task, advance=1, description=f"Step Loss: {loss.item():.5f} "
f"| Mean Loss: {(total_loss + epoch_loss) / step:.5f} "
f"| Mean PPL: {torch.exp((total_loss + epoch_loss) / step):.2f} "
f"| Examples: {args.batch_size * (step + 1)} "
f"| Examples/s: {args.batch_size / (batch_end - batch_start):.2f} "
f"| Elapsed: {time.strftime('%H:%M:%S', time.gmtime(time.time() - start_time))}")
if step % args.save_every == args.save_every - 1:
train_epoch_loss = epoch_loss / args.save_every
total_loss += epoch_loss
epoch_loss = 0
accelerator.log({
"train_ppl": torch.exp(train_epoch_loss),
"train_epoch_loss": train_epoch_loss,
}, step=step)
progress.print(f"Saving checkpoint at step {step}...")
accelerator.save_state(
f"{args.checkpoint_dir}/checkpoint_at_step_{step}/")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--checkpoint_dir", type=str, default="checkpoints")
parser.add_argument("--learning_rate", type=float, default=1e-5)
parser.add_argument("--weight_decay", type=float, default=0.01)
parser.add_argument("--warmup_steps", type=int, default=0)
parser.add_argument("--max_steps", type=int, default=100000)
parser.add_argument("--batch_size", type=int, default=4)
parser.add_argument("--log_every", type=int, default=1)
parser.add_argument("--save_every", type=int, default=100)
parser.add_argument("--seed", type=int, default=None)
args = parser.parse_args()
train(args)