forked from hillerlab/REforge
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREforge_statistics.py
executable file
·209 lines (180 loc) · 8.25 KB
/
REforge_statistics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from __future__ import print_function
import os
import sys
import logging
import math
import subprocess
import rpy2
import rpy2.robjects as robjects
import rpy2.robjects.packages as rpackages
from Bio import SeqIO
from Scoring_utilities import read_sequences_and_prune_tree, dollo_parsimony
__description__ = "Analyses transcription factor motifs with respect to their differences in binding within a phylogeny of CRM sequences and the associated phenotype"
scorefile = "scores"
def __get_arguments():
global scorefile
import argparse
app = argparse.ArgumentParser(description=__description__)
app.add_argument("treefile", type=str, help="phylogenetic tree given in newick format")
app.add_argument("motiffile", type=str, help="wtmx file containing all transcription factor motifs")
app.add_argument("lossfile", type=str, help="file listing trait loss species; one line per species")
app.add_argument("elementfile", type=str, help="file listing putative elements; one line per fasta file (.fa or .fasta)")
app.add_argument("--scorefile", type=str, help="name of score file")
app.add_argument("--filterspecies", type=str, help="skip species")
app.add_argument("--elements", type=str, help="restrict score file to the elements specified in this file")
app.add_argument("--verbose", "-v", action="store_true")
app.add_argument("--debug", "-d", action="store_true")
args = app.parse_args()
if args.scorefile is not None: scorefile = args.scorefile
return args
def test_significance(s, p):
""" computes significance of a positive Pearson correlation between s and (binary) p """
# cohensd = robjects.r('function (x, y) { cd <- (mean(x) - mean(y)) / sd(y) }')
# maxZscore = robjects.r('function (x, y) { cd <- (max(x) - mean(y)) / sd(y) }')
r_s = robjects.FloatVector(s)
r_p = robjects.FloatVector(p)
data = robjects.DataFrame({"Val":r_s, "P":r_p}) # is ordered alphabetically, ie data[0] corresponds to P
data0 = robjects.r['subset'](data, data.rx('P').ro == 0)
data1 = robjects.r['subset'](data, data.rx('P').ro == 1)
### Compute t-test
# t = robjects.r['t.test'](robjects.r('Val ~ P'), alternative="less", data=data )
### Compute Pearson correlation
Pearson = robjects.r['cor.test'](data.rx2('P'), data.rx2('Val'), method="pearson", exact=True, alternative="greater")
### Compute Spearman correlation
# Spearman = robjects.r['cor.test'](data.rx2('P'), data.rx2('Val'), method="spearman", exact=True, alternative="greater")
### Compute Wilcoxon rank-sum
# try:
# w = robjects.r['wilcox.test'](robjects.r('Val ~ P'), data=data, alternative="less", **{'conf.int': True})
# except rpy2.rinterface.RRuntimeError as err:
# logging.warning(err)
# w = None
# if len(data0.rx2('Val')) > len(data1.rx2('Val')):
# logging.fatal("less background than foreground scores - background scores are used as variance estimation for Cohen's D")
# cd = cohensd(data0.rx2('Val'), data1.rx2('Val'))
# zs = maxZscore(data0.rx2('Val'), data1.rx2('Val'))
# ave = (Pearson.rx2('estimate')[0] + Spearman.rx2('estimate')[0]) / 2
# df = len(p) - 2
# statistic = robjects.r['c']( t = math.sqrt(df) * ave/math.sqrt(1 - ave**2) )
# PearsonSpearmanP = 1 - robjects.r['pt'](statistic, df)[0]
# texts = []
# for p in [PearsonSpearmanP, Pearson.rx2('p.value')[0], Spearman.rx2('p.value')[0], w.rx2('p.value')[0] if w is not None else 'NA', t.rx2('p.value')[0]]:
# if p == 'NA': texts.append("NA")
# else: texts.append("%e"%p)
# if w is None: texts.append("NA")
# else: texts.append("%e"%w.rx2('conf.int').rx(2)[0])
# texts.extend([ "%e"%t.rx2('conf.int').rx(2)[0], "%f"%cd[0], "%f"%zs[0] ])
ret_val = str(Pearson.rx2('p.value')[0])
# ret_val = "\t".join(texts)
return ret_val
def compute_and_output_significance(args, scoreData, elements):
""" creates computes significance for every element and creates summarizing file """
full_suffix = scorefile
if args.elements: full_suffix += '_' + os.path.basename(args.elements)
with open("significant_elements_%s.tsv"%full_suffix, "w") as summary:
summary.write("element\tPearson\tNoPos\tNoNeg\n")
for cne in elements:
if cne+"+" in scoreData and cne+"-" in scoreData:
phenotypes = [1]*len(scoreData[cne+"+"]) + [0]*len(scoreData[cne+"-"])
scores = scoreData[cne+"+"] + scoreData[cne+"-"]
if phenotypes.count(0) > 1 and phenotypes.count(1) > 1:
try:
pvalue = test_significance(scores, phenotypes)
except Exception as err:
logging.warning("Error in test_significance of %s"%cne)
logging.warning("scores: %s"%(str(scores)))
logging.warning("phenotypes: %s"%(str(phenotypes)))
raise err
summary.write("{0:15}\t{1}\t{2}\t{3}\n".format(cne, pvalue, phenotypes.count(0), phenotypes.count(1)))
else:
summary.write("{0:15}\tNA\t{1}\t{2}\n".format(cne, phenotypes.count(0), phenotypes.count(1)) )
else:
logging.info("scoreData for CRE %s is missing"%cne)
def __analyse_sequences():
import functools
args = __get_arguments()
if args.debug:
logging.basicConfig(level=logging.DEBUG)
logging.debug("logging level is DEBUG")
elif args.verbose:
logging.basicConfig(level=logging.INFO)
logging.info("logging level is INFO")
else:
logging.basicConfig(level=logging.WARNING)
logging.debug("logging level is WARNING")
elements = [line.strip() for line in open(args.elementfile, "r")]
transcription_factors = [args.motiffile]
#########################
# read scores
logging.info("reading scorefile")
scoreFileContent = {}
if args.elements:
logging.info("cropping scorefile down to element list")
sf = subprocess.check_output("grep -f %s %s"%(args.elements, scorefile), shell=True).decode('utf-8').strip().split('\n')
else:
sf = open(scorefile)
counter=0
c_nan = 0
for line in sf:
counter += 1
parts = line.split()
if parts[-1] != '<': logging.fatal("Malformed %s file - line does not end with '<': %s"%(scorefile, line))
tf, cne = parts[0], parts[1]
if (tf, cne) in scoreFileContent: logging.fatal("Malformed %s file - two entries for TF-CNE pair: %s"%(scorefile, line))
if cne in elements:
scoreFileContent[tf,cne] = {}
try:
for part in parts[2:-1]:
branch, score = part.split(':')
if math.isfinite(float(score)):
scoreFileContent[(tf,cne)][branch] = float(score)
else:
c_nan += 1
except Exception as err:
logging.fatal("Error occured while parsing %s at line '%s'"%(scorefile, line))
raise err
if not args.elements: sf.close()
logging.info("finished reading scorefile")
if c_nan > 0: logging.warning("%d NaN or Inf values have been skipped"%c_nan)
logging.info("%d lines read"%counter)
#########################
# retrieve trait loss branches
with open(args.lossfile) as lf:
losses = [line.strip() for line in lf]
dismiss_species = args.filterspecies.split(",") if args.filterspecies else []
sub_phylos = {}
for cne in elements:
pruned_tree, _ = read_sequences_and_prune_tree(cne, args.treefile, dismiss_species)
sub_phylos[cne] = dollo_parsimony(pruned_tree, losses) # annotate with trait
logging.info("trait loss information read and computed")
#########################
# read, classify and analyse scores
scoreData = {key+"-": [] for key in elements}
scoreData.update({key+"+": [] for key in elements})
# skip_cne = True
cache = {}
ch, cm = 0,0
for cne in elements:
branch_ends = [n.name for n in sub_phylos[cne].get_nonterminals()] + [n.name for n in sub_phylos[cne].get_terminals()]
branch_ends.remove(sub_phylos[cne].root.name)
for branch_end in branch_ends:
branch = ([sub_phylos[cne].root] + sub_phylos[cne].get_path(branch_end))[-2].name +'>' + branch_end
if (str(sub_phylos[cne]), branch_end) in cache:
trait = cache[(str(sub_phylos[cne]), branch_end)]
ch += 1
else:
trait = sub_phylos[cne].find_any(branch_end).trait
cache[(str(sub_phylos[cne]), branch_end)] = trait
cm += 1
for tf in transcription_factors:
if branch in scoreFileContent[(tf,cne)]:
score = scoreFileContent[(tf,cne)][branch]
if trait: scoreData[cne + "+"].append(score)
else: scoreData[cne + "-"].append(score)
logging.debug("Hits: %d; Misses: %d"%(ch, cm))
#########################
# assess phenotype-divergence association
compute_and_output_significance(args, scoreData, elements)
if __name__ == "__main__":
sys.exit(__analyse_sequences())