(简体中文|English)
In this document, we mainly focus on how to develop a new server side operator for PaddleServing. Before we start to write a new operator, let's look at some sample code to get the basic idea of writing a new operator for server. We assume you have known the basic computation logic on server side of PaddleServing, please reference to if you do not know much about it. The following code can be visited at core/general-server/op
of Serving repo.
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#ifdef BCLOUD
#ifdef WITH_GPU
#include "paddle/paddle_inference_api.h"
#else
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#endif
#else
#include "paddle_inference_api.h" // NOLINT
#endif
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
namespace baidu {
namespace paddle_serving {
namespace serving {
class GeneralInferOp
: public baidu::paddle_serving::predictor::OpWithChannel<GeneralBlob> {
public:
typedef std::vector<paddle::PaddleTensor> TensorVector;
DECLARE_OP(GeneralInferOp);
int inference();
};
} // namespace serving
} // namespace paddle_serving
} // namespace baidu
The header file above declares a PaddleServing operator called GeneralInferOp
. At runtime, the function int inference()
will be called. Usually we define a server side operator to be a subclass ofbaidu::paddle_serving::predictor::OpWithChannel
, and GeneralBlob
data structure is used.
GeneralBlob
is a data structure that can be used between server side operators. The tensor_vector
is the most important data structure in GeneralBlob
. An operator on server side can have multiple paddle::PaddleTensor
as inputs, and have multiple paddle::PaddleTensor
as outputs. In particular, tensor_vector
can be feed into Paddle inference engine directly with zero copy.
struct GeneralBlob {
std::vector<paddle::PaddleTensor> tensor_vector;
int64_t time_stamp[20];
int p_size = 0;
int _batch_size;
void Clear() {
size_t tensor_count = tensor_vector.size();
for (size_t ti = 0; ti < tensor_count; ++ti) {
tensor_vector[ti].shape.clear();
}
tensor_vector.clear();
}
int SetBatchSize(int batch_size) { _batch_size = batch_size; }
int GetBatchSize() const { return _batch_size; }
std::string ShortDebugString() const { return "Not implemented!"; }
};
int GeneralInferOp::inference() {
VLOG(2) << "Going to run inference";
const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name());
VLOG(2) << "Get precedent op name: " << pre_name();
GeneralBlob *output_blob = mutable_data<GeneralBlob>();
if (!input_blob) {
LOG(ERROR) << "Failed mutable depended argument, op:" << pre_name();
return -1;
}
const TensorVector *in = &input_blob->tensor_vector;
TensorVector *out = &output_blob->tensor_vector;
int batch_size = input_blob->GetBatchSize();
VLOG(2) << "input batch size: " << batch_size;
output_blob->SetBatchSize(batch_size);
VLOG(2) << "infer batch size: " << batch_size;
Timer timeline;
int64_t start = timeline.TimeStampUS();
timeline.Start();
if (InferManager::instance().infer(engine_name().c_str(), in, out, batch_size)) {
LOG(ERROR) << "Failed do infer in fluid model: " << engine_name().c_str();
return -1;
}
int64_t end = timeline.TimeStampUS();
CopyBlobInfo(input_blob, output_blob);
AddBlobInfo(output_blob, start);
AddBlobInfo(output_blob, end);
return 0;
}
DEFINE_OP(GeneralInferOp);
input_blob
and output_blob
both have multiple paddle::PaddleTensor
, and the Paddle Inference library can be called through InferManager::instance().infer(engine_name().c_str(), in, out, batch_size)
. Most of the other code in this function is about profiling, we may remove redudant code in the future as well.
Basically, the above code can implement a new operator. If you want to visit dictionary resource, you can reference core/predictor/framework/resource.cpp
to add global visible resources. The initialization of resources is executed at the runtime of starting server.
After you have defined a C++ operator on server side for Paddle Serving, the last step is to add a registration in Python API for PaddleServing server API, python/paddle_serving_server/dag.py
in the repo has the code piece.
self.op_dict = {
"general_infer": "GeneralInferOp",
"general_reader": "GeneralReaderOp",
"general_response": "GeneralResponseOp",
"general_text_reader": "GeneralTextReaderOp",
"general_text_response": "GeneralTextResponseOp",
"general_single_kv": "GeneralSingleKVOp",
"general_dist_kv": "GeneralDistKVOp"
}
In python/paddle_serving_server/server.py
file, only the class name of the C++ OP class that needs to load the model and execute prediction is added.
For example, general_reader
, need to be added in the 👆 code, but not in the 👇 code. Because it only does some simple data processing without loading the model and call prediction.
default_engine_types = [
'GeneralInferOp',
'GeneralDistKVInferOp',
'GeneralDistKVQuantInferOp',
'GeneralDetectionOp',
]