-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpart3-3.py
485 lines (439 loc) · 13.9 KB
/
part3-3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
# -*- coding: utf-8 -*-
"""chaitanya_part_3_flatGenrerpart_2.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1u8t2rOc0Xwa1_5mPqQTYbpTY1IRrQ2dy
"""
pip install tensorflow==2.4
import tensorflow as tf
import numpy as np
import torch
import torchvision as tv
from torchvision import transforms, datasets
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt
plt.style.use('seaborn-whitegrid')
# Grab MNIST dataset
trainingSet = datasets.MNIST('', train=True, download=True, transform=transforms.Compose([transforms.ToTensor()]))
testingSet = datasets.MNIST('', train=False, download=False, transform=transforms.Compose([transforms.ToTensor()]))
# Set different batch sizes for each of the 5 different models
batchSizes = [10, 30, 120, 500, 800]
train1 = torch.utils.data.DataLoader(trainingSet, batch_size=batchSizes[0], shuffle=True)
test1 = torch.utils.data.DataLoader(testingSet, batch_size=batchSizes[0], shuffle=True)
train2 = torch.utils.data.DataLoader(trainingSet, batch_size=batchSizes[1], shuffle=True)
test2 = torch.utils.data.DataLoader(testingSet, batch_size=batchSizes[1], shuffle=True)
train3 = torch.utils.data.DataLoader(trainingSet, batch_size=batchSizes[2], shuffle=True)
test3 = torch.utils.data.DataLoader(testingSet, batch_size=batchSizes[2], shuffle=True)
train4 = torch.utils.data.DataLoader(trainingSet, batch_size=batchSizes[3], shuffle=True)
test4 = torch.utils.data.DataLoader(testingSet, batch_size=batchSizes[3], shuffle=True)
train5 = torch.utils.data.DataLoader(trainingSet, batch_size=batchSizes[4], shuffle=True)
test5 = torch.utils.data.DataLoader(testingSet, batch_size=batchSizes[4], shuffle=True)
# Calculate the number of parameters in a neural network
def calcParams(inputModel):
val = sum(params.numel() for params in inputModel.parameters() if params.requires_grad)
return val
# Model 1 - 2 Hidden layer / 20715 Parameters
class Model1 (nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(784, 25)
self.fc2 = nn.Linear(25, 30)
self.fc3 = nn.Linear(30, 10)
def forward(self, val):
val = F.relu(self.fc1(val))
val = F.relu(self.fc2(val))
val = self.fc3(val)
return val
# Model 2 - 2 Hidden layer / 20715 Parameters
class Model2 (nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(784, 25)
self.fc2 = nn.Linear(25, 30)
self.fc3 = nn.Linear(30, 10)
def forward(self, val):
val = F.relu(self.fc1(val))
val = F.relu(self.fc2(val))
val = self.fc3(val)
return val
# Model 3 - 2 Hidden layer / 20715 Parameters
class Model3 (nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(784, 25)
self.fc2 = nn.Linear(25, 30)
self.fc3 = nn.Linear(30, 10)
def forward(self, val):
val = F.relu(self.fc1(val))
val = F.relu(self.fc2(val))
val = self.fc3(val)
return val
# Model 4 - 2 Hidden layer / 20715 Parameters
class Model4 (nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(784, 25)
self.fc2 = nn.Linear(25, 30)
self.fc3 = nn.Linear(30, 10)
def forward(self, val):
val = F.relu(self.fc1(val))
val = F.relu(self.fc2(val))
val = self.fc3(val)
return val
# Model 5 - 2 Hidden layer / 20715 Parameters
class Model5 (nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(784, 25)
self.fc2 = nn.Linear(25, 30)
self.fc3 = nn.Linear(30, 10)
def forward(self, val):
val = F.relu(self.fc1(val))
val = F.relu(self.fc2(val))
val = self.fc3(val)
return val
model1 = Model1()
model2 = Model2()
model3 = Model3()
model4 = Model4()
model5 = Model5()
print(calcParams(model1))
print(calcParams(model2))
print(calcParams(model3))
print(calcParams(model4))
print(calcParams(model5))
# Set up necessary auxilaries for neural net training
model1 = Model1()
model2 = Model2()
model3 = Model3()
model4 = Model4()
model5 = Model5()
costFunc = nn.CrossEntropyLoss()
model1Opt = optim.Adam(model1.parameters(), lr=0.001)
model2Opt = optim.Adam(model2.parameters(), lr=0.001)
model3Opt = optim.Adam(model3.parameters(), lr=0.001)
model4Opt = optim.Adam(model4.parameters(), lr=0.001)
model5Opt = optim.Adam(model5.parameters(), lr=0.001)
# Train all 5 models using different batch sizes
EPOCHS = 50
for index in range(EPOCHS):
# Print index to show progress of training during computation
print(index)
# Model 1
for batch in train1:
inputImages, groundTruth = batch
model1.zero_grad()
output = model1(inputImages.view(-1,784))
cost = costFunc(output, groundTruth)
cost.backward()
model1Opt.step()
# Model 2
for batch in train2:
inputImages, groundTruth = batch
model2.zero_grad()
output = model2(inputImages.view(-1,784))
cost = costFunc(output, groundTruth)
cost.backward()
model2Opt.step()
# Model 3
for batch in train3:
inputImages, groundTruth = batch
model3.zero_grad()
output = model3(inputImages.view(-1,784))
cost = costFunc(output, groundTruth)
cost.backward()
model3Opt.step()
# Model 4
for batch in train4:
inputImages, groundTruth = batch
model4.zero_grad()
output = model4(inputImages.view(-1,784))
cost = costFunc(output, groundTruth)
cost.backward()
model4Opt.step()
# Model 5
for batch in train5:
inputImages, groundTruth = batch
model5.zero_grad()
output = model5(inputImages.view(-1,784))
cost = costFunc(output, groundTruth)
cost.backward()
model5Opt.step()
# Calculate loss and accuracy for every model for training set
trainCostList = []
trainAccList = []
# Model 1
correct = 0
total = 0
costTotal = 0
costCounter = 0
with torch.no_grad():
for batch in train1:
inputImages, groundTruth = batch
output = model1(inputImages.view(-1,784))
cost = costFunc(output, groundTruth)
costTotal += cost
costCounter += 1
for i, outputTensor in enumerate(output):
if torch.argmax(outputTensor) == groundTruth[i]:
correct += 1
total += 1
trainCostList.append(costTotal / costCounter)
trainAccList.append(round(correct/total, 3))
# Model 2
correct = 0
total = 0
costTotal = 0
costCounter = 0
with torch.no_grad():
for batch in train2:
inputImages, groundTruth = batch
output = model2(inputImages.view(-1,784))
cost = costFunc(output, groundTruth)
costTotal += cost
costCounter += 1
for i, outputTensor in enumerate(output):
if torch.argmax(outputTensor) == groundTruth[i]:
correct += 1
total += 1
trainCostList.append(costTotal / costCounter)
trainAccList.append(round(correct/total, 3))
# Model 3
correct = 0
total = 0
costTotal = 0
costCounter = 0
with torch.no_grad():
for batch in train3:
inputImages, groundTruth = batch
output = model3(inputImages.view(-1,784))
cost = costFunc(output, groundTruth)
costTotal += cost
costCounter += 1
for i, outputTensor in enumerate(output):
if torch.argmax(outputTensor) == groundTruth[i]:
correct += 1
total += 1
trainCostList.append(costTotal / costCounter)
trainAccList.append(round(correct/total, 3))
# Model 4
correct = 0
total = 0
costTotal = 0
costCounter = 0
with torch.no_grad():
for batch in train4:
inputImages, groundTruth = batch
output = model4(inputImages.view(-1,784))
cost = costFunc(output, groundTruth)
costTotal += cost
costCounter += 1
for i, outputTensor in enumerate(output):
if torch.argmax(outputTensor) == groundTruth[i]:
correct += 1
total += 1
trainCostList.append(costTotal / costCounter)
trainAccList.append(round(correct/total, 3))
# Model 5
correct = 0
total = 0
costTotal = 0
costCounter = 0
with torch.no_grad():
for batch in train5:
inputImages, groundTruth = batch
output = model5(inputImages.view(-1,784))
cost = costFunc(output, groundTruth)
costTotal += cost
costCounter += 1
for i, outputTensor in enumerate(output):
if torch.argmax(outputTensor) == groundTruth[i]:
correct += 1
total += 1
trainCostList.append(costTotal / costCounter)
trainAccList.append(round(correct/total, 3))
# Calculate loss and accuracy for every model for testing set
testCostList = []
testAccList = []
# Model 1
correct = 0
total = 0
costTotal = 0
costCounter = 0
with torch.no_grad():
for batch in test1:
inputImages, groundTruth = batch
output = model1(inputImages.view(-1,784))
cost = costFunc(output, groundTruth)
costTotal += cost
costCounter += 1
for i, outputTensor in enumerate(output):
if torch.argmax(outputTensor) == groundTruth[i]:
correct += 1
total += 1
testCostList.append(costTotal / costCounter)
testAccList.append(round(correct/total, 3))
# Model 2
correct = 0
total = 0
costTotal = 0
costCounter = 0
with torch.no_grad():
for batch in test2:
inputImages, groundTruth = batch
output = model2(inputImages.view(-1,784))
cost = costFunc(output, groundTruth)
costTotal += cost
costCounter += 1
for i, outputTensor in enumerate(output):
if torch.argmax(outputTensor) == groundTruth[i]:
correct += 1
total += 1
testCostList.append(costTotal / costCounter)
testAccList.append(round(correct/total, 3))
# Model 3
correct = 0
total = 0
costTotal = 0
costCounter = 0
with torch.no_grad():
for batch in test3:
inputImages, groundTruth = batch
output = model3(inputImages.view(-1,784))
cost = costFunc(output, groundTruth)
costTotal += cost
costCounter += 1
for i, outputTensor in enumerate(output):
if torch.argmax(outputTensor) == groundTruth[i]:
correct += 1
total += 1
testCostList.append(costTotal / costCounter)
testAccList.append(round(correct/total, 3))
# Model 4
correct = 0
total = 0
costTotal = 0
costCounter = 0
with torch.no_grad():
for batch in test4:
inputImages, groundTruth = batch
output = model4(inputImages.view(-1,784))
cost = costFunc(output, groundTruth)
costTotal += cost
costCounter += 1
for i, outputTensor in enumerate(output):
if torch.argmax(outputTensor) == groundTruth[i]:
correct += 1
total += 1
testCostList.append(costTotal / costCounter)
testAccList.append(round(correct/total, 3))
# Model 5
correct = 0
total = 0
costTotal = 0
costCounter = 0
with torch.no_grad():
for batch in test5:
inputImages, groundTruth = batch
output = model5(inputImages.view(-1,784))
cost = costFunc(output, groundTruth)
costTotal += cost
costCounter += 1
for i, outputTensor in enumerate(output):
if torch.argmax(outputTensor) == groundTruth[i]:
correct += 1
total += 1
testCostList.append(costTotal / costCounter)
testAccList.append(round(correct/total, 3))
# Calculate sensitivity of every model
sensitivityList = []
# Model 1
# Get gradient norm (From slides)
gradAll = 0.0
fNormAll = 0
counter = 0
for p in model1.parameters():
grad = 0.0
if p.grad is not None:
grad = p.grad
# Calculate Frobenius norm of gradients
fNorm = torch.linalg.norm(grad).numpy()
fNormAll += fNorm
counter += 1
sensitivityList.append(fNormAll / counter)
# Model 2
gradAll = 0.0
fNormAll = 0
counter = 0
for p in model2.parameters():
grad = 0.0
if p.grad is not None:
grad = p.grad
fNorm = torch.linalg.norm(grad).numpy()
fNormAll += fNorm
counter += 1
sensitivityList.append(fNormAll / counter)
# Model 3
gradAll = 0.0
fNormAll = 0
counter = 0
for p in model3.parameters():
grad = 0.0
if p.grad is not None:
grad = p.grad
fNorm = torch.linalg.norm(grad).numpy()
fNormAll += fNorm
counter += 1
sensitivityList.append(fNormAll / counter)
# Model 4
gradAll = 0.0
fNormAll = 0
counter = 0
for p in model4.parameters():
grad = 0.0
if p.grad is not None:
grad = p.grad
fNorm = torch.linalg.norm(grad).numpy()
fNormAll += fNorm
counter += 1
sensitivityList.append(fNormAll / counter)
# Model 5
gradAll = 0.0
fNormAll = 0
counter = 0
for p in model5.parameters():
grad = 0.0
if p.grad is not None:
grad = p.grad
fNorm = torch.linalg.norm(grad).numpy()
fNormAll += fNorm
counter += 1
sensitivityList.append(fNormAll / counter)
# Visulaize Accuracy and Sensitivity by batch size of model
fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
ax1.plot(batchSizes, trainAccList, 'g--', label='Train')
ax1.plot(batchSizes, testAccList, 'c', label='Test')
ax2.plot(batchSizes, sensitivityList, 'b', label='Sensitivity')
ax1.set_title('Effect of Batch Size on Accuracy and Sensitivity')
ax1.set_xlabel('Batch Sizes')
ax1.set_xscale('log')
ax1.set_ylabel('Accuracy')
ax2.set_ylabel('Sensitivity')
ax1.legend(loc='upper right')
# Visulaize Loss and Sensitivity by batch size of model
fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
ax1.plot(batchSizes, trainCostList, 'g--', label='Train')
ax1.plot(batchSizes, testCostList, 'c', label='Test')
ax2.plot(batchSizes, sensitivityList, 'b', label='Sensitivity')
ax1.set_title('Effect of Batch Size on Loss and Sensitivity')
ax1.set_xlabel('Batch Sizes')
ax1.set_xscale('log')
ax1.set_ylabel('Loss')
#colo='b'
ax2.set_ylabel('Sensitivity')
#color='r'
ax1.legend(loc='upper right')