-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathrun_eval.py
141 lines (113 loc) · 4.97 KB
/
run_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
import random
import re
import shutil
import time
from collections import deque
import cv2
import gym
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from skimage import transform
from ppo import PPO
from vae.models import ConvVAE, MlpVAE
from CarlaEnv.wrappers import angle_diff, vector
from utils import VideoRecorder, compute_gae
from vae_common import create_encode_state_fn, load_vae
from reward_functions import reward_functions
USE_ROUTE_ENVIRONMENT = False
if USE_ROUTE_ENVIRONMENT:
from CarlaEnv.carla_route_env import CarlaRouteEnv as CarlaEnv
else:
from CarlaEnv.carla_lap_env import CarlaLapEnv as CarlaEnv
def run_eval(env, model, video_filename=None):
# Init test env
state, terminal, total_reward = env.reset(is_training=False), False, 0
rendered_frame = env.render(mode="rgb_array")
# Init video recording
if video_filename is not None:
print("Recording video to {} ({}x{}x{}@{}fps)".format(video_filename, *rendered_frame.shape, int(env.average_fps)))
video_recorder = VideoRecorder(video_filename,
frame_size=rendered_frame.shape,
fps=env.average_fps)
video_recorder.add_frame(rendered_frame)
else:
video_recorder = None
episode_idx = model.get_episode_idx()
# While non-terminal state
while not terminal:
env.extra_info.append("Episode {}".format(episode_idx))
env.extra_info.append("Running eval...".format(episode_idx))
env.extra_info.append("")
# Take deterministic actions at test time (std=0)
action, _ = model.predict(state, greedy=True)
state, reward, terminal, info = env.step(action)
if info["closed"] == True:
break
# Add frame
rendered_frame = env.render(mode="rgb_array")
if video_recorder is not None:
video_recorder.add_frame(rendered_frame)
total_reward += reward
# Release video
if video_recorder is not None:
video_recorder.release()
if info["closed"] == True:
exit(0)
return total_reward
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Runs the model in evaluation mode")
# Model params
parser.add_argument("--model_name", type=str, required=True, help="Name of the model to train. Output written to models/model_name")
parser.add_argument("--reward_fn", type=str,
default="reward_speed_centering_angle_multiply",
help="Reward function to use. See reward_functions.py for more info.")
parser.add_argument("--vae_model", type=str,
default="vae/models/seg_bce_cnn_zdim64_beta1_kl_tolerance0.0_data/",
help="Trained VAE model to load")
parser.add_argument("--vae_model_type", type=str, default=None, help="VAE model type (\"cnn\" or \"mlp\")")
parser.add_argument("--vae_z_dim", type=int, default=None, help="Size of VAE bottleneck")
# Environment settings
parser.add_argument("--synchronous", type=int, default=True, help="Set this to True when running in a synchronous environment")
parser.add_argument("--fps", type=int, default=30, help="Set this to the FPS of the environment")
parser.add_argument("--action_smoothing", type=float, default=0.0, help="Action smoothing factor")
parser.add_argument("-start_carla", action="store_true", help="Automatically start CALRA with the given environment settings")
# Recording
parser.add_argument("--record_to_file", type=str, default=None, help="File to record evaluation video to (outputs in .avi format)")
args = parser.parse_args()
# Load VAE
vae = load_vae(args.vae_model, args.vae_z_dim, args.vae_model_type)
# Create state encoding fn
measurements_to_include = set(["steer", "throttle", "speed"])
encode_state_fn = create_encode_state_fn(vae, measurements_to_include)
# Create env
print("Creating environment...")
env = CarlaEnv(obs_res=(160, 80),
action_smoothing=args.action_smoothing,
encode_state_fn=encode_state_fn,
reward_fn=reward_functions[args.reward_fn],
synchronous=args.synchronous,
fps=args.fps,
start_carla=args.start_carla)
# Set seeds
seed = 0
if isinstance(seed, int):
tf.random.set_random_seed(seed)
np.random.seed(seed)
random.seed(seed)
env.seed(seed)
# Create model
print("Creating model...")
input_shape = np.array([vae.z_dim + len(measurements_to_include)])
model = PPO(input_shape, env.action_space,
model_dir=os.path.join("models", args.model_name))
model.init_session(init_logging=False)
model.load_latest_checkpoint()
# Run eval
print("Running eval...")
run_eval(env, model, video_filename=args.record_to_file)
# Close env
print("Done!")
env.close()