forked from bluenote10/nim-heap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbinaryheap.nim
319 lines (259 loc) · 9.13 KB
/
binaryheap.nim
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import strutils
# helper functions to calculate parent/child relationships
proc parentInd(i: int): int {.inline.} = (i-1) div 2
proc childLInd(i: int): int {.inline.} = 2*i + 1
proc childRInd(i: int): int {.inline.} = 2*i + 2
type
# defining this causes strange Nim bugs
# CompareProc[T] = proc (x: T, y: T): int
Heap*[T] = object
data: seq[T]
size: int
comp: proc (x: T, y: T): int {.gcsafe.} # CompareProc[T], why int not byte?
EmptyHeapError* = object of Exception
proc size*[T](h: Heap[T]): int {.inline.} = h.size
## returns the size of a heap.
proc hasChildAt[T](h: Heap[T], i: int): bool {.inline.} =
## similar to hasIndex but if we already have the parent it suffices to check.
i < h.size
proc hasParentAt[T](h: Heap[T], i: int): bool {.inline.} =
## similar to hasIndex but if we already have the child it suffices to check.
0 <= i
proc indicesWithChildren*[T](h: Heap[T]): Slice[int] {.inline.} =
## helper function returning a slice of nodes with children
## Useful, since some iterations can be omitted for leaves.
let lastIndexWithChildren = (h.size div 2) - 1
0 .. lastIndexWithChildren
proc propFulfilled[T](h: Heap[T], indParent, indChild: int): bool {.inline.} =
## checks the heap property between a given parent/child pair.
h.comp(h.data[indParent], h.data[indChild]) <= 0
template assertHeapProperty[T](h: Heap[T], enabled = true) =
## only for debugging: explicit check if the heap property
## is fulfilled for all nodes
when enabled:
for i in h.indicesWithChildren:
# note: we only know that i has a left child
# the right child is optional and requires a check
let j = childLInd(i)
let k = childRInd(i)
#echo i, j, k
if not h.propFulfilled(i, j):
raise newException(AssertionError, format(
"Propertiy not fulfilled for $#, $# values $#, $#",
i, j, h.data[i], h.data[j]
))
if h.hasChildAt(k) and not h.propFulfilled(i, k):
raise newException(AssertionError, format(
"Propertiy not fulfilled for $#, $# values $#, $#",
i, k, h.data[i], h.data[k]
))
proc swap[T](h: var Heap[T], i, j: int) {.inline.} =
## swaps two nodes in the heap.
let t = h.data[j]
h.data[j] = h.data[i]
h.data[i] = t
#echo "swapping ", i, " with ", j
proc siftup[T](h: var Heap[T], i: int) =
## establishes heap property "upwards".
let j = i.parentInd
if h.hasParentAt(j) and not h.propFulfilled(j,i):
h.swap(i,j)
h.siftup(j)
proc siftdown[T](h: var Heap[T], i: int) =
## establishes heap property "downwards".
let j = i.childLInd
let k = i.childRInd
# Note: Most often we have both children, since siftdown is commonly called
# for the root (after swapping it for removal). Therefore, we check for this
# first:
if h.hasChildAt(j) and h.hasChildAt(k):
# any child violated the heap property?
if not h.propFulfilled(i,j) or not h.propFulfilled(i,k):
# is j a valid parent of k => swap i with j
if h.propFulfilled(j,k):
h.swap(i,j)
h.siftdown(j)
# otherwise k must be the valid parent
else:
h.swap(i,k)
h.siftdown(k)
elif h.hasChildAt(j):
if not h.propFulfilled(i,j):
h.swap(i,j)
h.siftdown(j)
# no children, no hassle
proc newHeap*[T](comparator: proc (x: T, y: T): int): Heap[T] =
## constructs an empty heap using an explicit comparator.
Heap[T](data: newSeq[T](), size: 0, comp: comparator)
proc newHeapFromArray*[T](arr: openarray[T], comparator: proc (x: T, y: T): int = system.cmp): Heap[T] =
## constructs a heap from a given openarray. This performs
## the famous heapify algorithm with a complexity of O(N).
# in order to convert from openarray to seq, we fill manually
var h = Heap[T](data: newSeq[T](arr.len), size: arr.len, comp: comparator)
for i, x in arr:
h.data[i] = x
let indicesWithChildren = h.indicesWithChildren
for i in countdown(indicesWithChildren.b, indicesWithChildren.a):
h.siftdown(i)
#debug i, h.data
result = h
proc peek*[T](h: Heap[T]): T = h.data[0]
## returns the element with highest priority
## without removing it.
proc push*[T](h: var Heap[T], x: T) =
## push (enqueue) an element in the heap
h.data.add(x)
h.siftup(h.size)
h.size.inc
h.assertHeapProperty(defined(debugHeaps))
proc pop*[T](h: var Heap[T]): T =
## pop (dequeue) the min/max element of the heap
if not h.size > 0:
raise newException(EmptyHeapError, "cannot pop element, heap is empty")
# store root for return
result = h.data[0]
# make last node the new root
h.data[0] = h.data[^1] # TODO handle root == last
# handle size modification
h.size.dec
h.data.setlen(h.size)
# restore heap property
h.siftdown(0)
h.assertHeapProperty(defined(debugHeaps))
proc pushPop*[T](h: var Heap[T], x: T): (bool, T) =
## Optimized version of performing a push + pop.
##
## Technical note:
## If the new inserted element ``x`` is a proper parent
## of the current root, a manual push + pop would lead to:
## (1) push ``x`` would "siftup" ``x``
## making it the new root.
## (2) pop would return just ``x`` leading
## to a "siftdown" of some swapped leaf.
## This combined function avoids this. It returns
## the whether the new element has been stored and
## the value that has been popped.
if h.size == 0:
return (false, x)
elif h.comp(x, h.data[0]) <= 0: # cannot call propFulfilled, since x has no index yet
return (false, x)
else:
# x will not end up as new root, but is actually stored
result = (true, h.data[0])
h.data[0] = x
h.siftdown(0)
proc popPush*[T](h: var Heap[T], x: T): T =
## Optimized version of performing a pop + push.
##
## Technical note:
## A regular pop + push would require
## (1) a siftdown of the swapped leaf when
## popping the root
## (2) a siftup of the inserted value
## This combined functions avoids this by
## using the inserted ``x`` directly for
## the siftdown instead of another leaf.
if not h.size > 0:
raise newException(EmptyHeapError, "cannot pop element, heap is empty")
result = h.data[0]
h.data[0] = x
h.siftdown(0)
iterator items*[T](h: Heap[T]): T =
## iterates over all items in the heap in _unsorted_ order
## (i.e., items are generated in O(1)).
for x in h.data:
yield x
iterator sortedItems*[T](h: Heap[T]): T =
## iterates over all items in the heap in sorted order.
## Items are generated in O(log N), resulting in a
## traditional heap sort.
var tmp = h
while tmp.size > 0:
let x = tmp.pop
yield x
when isMainModule:
import unittest
import math
import random
import algorithm
import sequtils
proc randomData[T](N: int, maxVal: T): seq[T] =
result = newSeq[T](N)
for i in 0 ..< N:
result[i] = rand(maxVal-1)
const iterations = 1 .. 100
suite "Heap":
test "relation parent/child":
assert childLInd(0) == 1
assert childRInd(0) == 2
assert parentInd(1) == 0
assert parentInd(2) == 0
for N in 0 .. 100:
assert N == N.childLInd.parentInd
assert N == N.childRInd.parentInd
for N in 1 .. 100:
if N mod 2 == 1:
assert N == N.parentInd.childLInd
else:
assert N == N.parentInd.childRInd
test "push/pop":
for iter in iterations:
randomize(iter)
for N in [1, 10, 100]:
var h = newHeap[int](system.cmp)
for i in 1..N:
h.push(rand(99))
h.assertHeapProperty
for i in 1..N:
discard h.pop
h.assertHeapProperty
h.assertHeapProperty
test "heapify":
for iter in iterations:
for N in [10, 100]:
let data = randomData(N, 100)
let h = newHeapFromArray[int](data) # removing [T] causes internal error! report?
h.assertHeapProperty
let sorted1 = data.sorted(system.cmp)
let sorted2 = toSeq(h.sortedItems)
check sorted1 == sorted2
test "pushPop":
for iter in iterations:
randomize(iter)
for N in [1, 10, 100]:
var h1 = newHeap[int](system.cmp)
var h2 = newHeap[int](system.cmp)
# prefill both
for i in 1..N:
let x = rand(99)
h1.push(x)
h2.push(x)
for i in 1..1000:
let x = rand(99)
h1.push(x)
let y1 = h1.pop
let (_, y2) = h2.pushPop(x)
check y1 == y2
let sorted1 = toSeq(h1.sortedItems)
let sorted2 = toSeq(h2.sortedItems)
check sorted1 == sorted2
test "popPush":
for iter in iterations:
randomize(iter)
for N in [1, 10, 100]:
var h1 = newHeap[int](system.cmp)
var h2 = newHeap[int](system.cmp)
# prefill both
for i in 1..N:
let x = rand(99)
h1.push(x)
h2.push(x)
for i in 1..1000:
let x = rand(99)
let y1 = h1.pop
h1.push(x)
let y2 = h2.popPush(x)
check y1 == y2
let sorted1 = toSeq(h1.sortedItems)
let sorted2 = toSeq(h2.sortedItems)
check sorted1 == sorted2