forked from PreferredAI/cornac
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhft_example.py
67 lines (59 loc) · 2.22 KB
/
hft_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Copyright 2018 The Cornac Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Example for Hidden Factors as Topics (HFT) with Movilen 1M dataset """
import cornac
from cornac.data import Reader
from cornac.datasets import movielens
from cornac.eval_methods import RatioSplit
from cornac.data import TextModality
from cornac.data.text import BaseTokenizer
# HFT jointly models the user-item preferences and item texts (e.g., product reviews) with shared item factors
# Below we fit HFT to the MovieLens 1M dataset. We need both the ratings and movie plots information
plots, movie_ids = movielens.load_plot()
ml_1m = movielens.load_feedback(variant="1M", reader=Reader(item_set=movie_ids))
# Instantiate a TextModality, it makes it convenient to work with text auxiliary information
# For more details, please refer to the tutorial on how to work with auxiliary data
item_text_modality = TextModality(
corpus=plots,
ids=movie_ids,
tokenizer=BaseTokenizer(sep="\t", stop_words="english"),
max_vocab=5000,
max_doc_freq=0.5,
)
# Define an evaluation method to split feedback into train and test sets
ratio_split = RatioSplit(
data=ml_1m,
test_size=0.2,
exclude_unknowns=True,
item_text=item_text_modality,
verbose=True,
seed=123,
)
# Instantiate HFT model
hft = cornac.models.HFT(
k=10,
max_iter=40,
grad_iter=5,
l2_reg=0.001,
lambda_text=0.01,
vocab_size=5000,
seed=123,
)
# Instantiate MSE for evaluation
mse = cornac.metrics.MSE()
# Put everything together into an experiment and run it
cornac.Experiment(
eval_method=ratio_split, models=[hft], metrics=[mse], user_based=False
).run()