-
Notifications
You must be signed in to change notification settings - Fork 112
/
image.py
executable file
·252 lines (206 loc) · 7.75 KB
/
image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#!/usr/bin/python
# encoding: utf-8
import random
import os
import pdb
import numpy as np
from PIL import Image
from PIL import ImageFile
from cfg import cfg
ImageFile.LOAD_TRUNCATED_IMAGES = True
def scale_image_channel(im, c, v):
cs = list(im.split())
cs[c] = cs[c].point(lambda i: i * v)
out = Image.merge(im.mode, tuple(cs))
return out
def distort_image(im, hue, sat, val):
im = im.convert('HSV')
cs = list(im.split())
cs[1] = cs[1].point(lambda i: i * sat)
cs[2] = cs[2].point(lambda i: i * val)
def change_hue(x):
x += hue*255
if x > 255:
x -= 255
if x < 0:
x += 255
return x
cs[0] = cs[0].point(change_hue)
im = Image.merge(im.mode, tuple(cs))
im = im.convert('RGB')
#constrain_image(im)
return im
def rand_scale(s):
scale = random.uniform(1, s)
if(random.randint(1,10000)%2):
return scale
return 1./scale
def random_distort_image(im, hue, saturation, exposure):
dhue = random.uniform(-hue, hue)
dsat = rand_scale(saturation)
dexp = rand_scale(exposure)
res = distort_image(im, dhue, dsat, dexp)
return res
def data_augmentation(img, shape, jitter, hue, saturation, exposure, flag=True):
oh = img.height
ow = img.width
dw =int(ow*jitter)
dh =int(oh*jitter)
if flag:
pleft = random.randint(-dw, dw)
pright = random.randint(-dw, dw)
ptop = random.randint(-dh, dh)
pbot = random.randint(-dh, dh)
flip = random.randint(1,10000)%2
swidth = ow - pleft - pright
sheight = oh - ptop - pbot
sx = float(swidth) / ow
sy = float(sheight) / oh
cropped = img.crop( (pleft, ptop, pleft + swidth - 1, ptop + sheight - 1))
dx = (float(pleft)/ow)/sx
dy = (float(ptop) /oh)/sy
sized = cropped.resize(shape)
if flip:
sized = sized.transpose(Image.FLIP_LEFT_RIGHT)
img = random_distort_image(sized, hue, saturation, exposure)
else:
# pleft, pright, ptop, pbot, flip = 0, 0, 0, 0, 0
flip, dx, dy, sx, sy = 0, 0, 0, 1, 1
img = img.resize(shape)
return img, flip, dx,dy,sx,sy
def fill_truth_detection(labpath, w, h, flip, dx, dy, sx, sy):
max_boxes = cfg.max_boxes
label = np.zeros((max_boxes,5))
if os.path.exists(labpath) and os.path.getsize(labpath):
bs = np.loadtxt(labpath)
if bs is None:
return label
bs = np.reshape(bs, (-1, 5))
cc = 0
for i in range(bs.shape[0]):
# Filter out bboxes not in base classes
imgid = labpath.split('/')[-1].split('.')[0]
clsid = int(bs[i][0])
# if clsid not in cfg.base_ids:
# continue
if clsid in cfg.base_ids:
keepit = True
elif cfg.yolo_joint and imgid in cfg.metaids:
keepit = True
else:
keepit = False
if not keepit:
continue
x1 = bs[i][1] - bs[i][3]/2
y1 = bs[i][2] - bs[i][4]/2
x2 = bs[i][1] + bs[i][3]/2
y2 = bs[i][2] + bs[i][4]/2
x1 = min(0.999, max(0, x1 * sx - dx))
y1 = min(0.999, max(0, y1 * sy - dy))
x2 = min(0.999, max(0, x2 * sx - dx))
y2 = min(0.999, max(0, y2 * sy - dy))
bs[i][1] = (x1 + x2)/2
bs[i][2] = (y1 + y2)/2
bs[i][3] = (x2 - x1)
bs[i][4] = (y2 - y1)
if flip:
bs[i][1] = 0.999 - bs[i][1]
if bs[i][3] < 0.001 or bs[i][4] < 0.001:
continue
label[cc] = bs[i]
cc += 1
if cc >= 50:
break
label = np.reshape(label, (-1))
return label
def fill_truth_detection_meta(labpath, w, h, flip, dx, dy, sx, sy):
max_boxes = cfg.max_boxes
n_cls = len(cfg.base_classes)
label = np.zeros((n_cls, max_boxes, 5))
if os.path.exists(labpath) and os.path.getsize(labpath):
bs = np.loadtxt(labpath)
if bs is None:
return label
bs = np.reshape(bs, (-1, 5))
ccs = [0] * n_cls
for i in range(bs.shape[0]):
# Filter out bboxes not in base classes
clsid = int(bs[i][0])
if clsid not in cfg.base_ids:
continue
x1 = bs[i][1] - bs[i][3]/2
y1 = bs[i][2] - bs[i][4]/2
x2 = bs[i][1] + bs[i][3]/2
y2 = bs[i][2] + bs[i][4]/2
x1 = min(0.999, max(0, x1 * sx - dx))
y1 = min(0.999, max(0, y1 * sy - dy))
x2 = min(0.999, max(0, x2 * sx - dx))
y2 = min(0.999, max(0, y2 * sy - dy))
bs[i][1] = (x1 + x2)/2
bs[i][2] = (y1 + y2)/2
bs[i][3] = (x2 - x1)
bs[i][4] = (y2 - y1)
if flip:
bs[i][1] = 0.999 - bs[i][1]
if bs[i][3] < 0.001 or bs[i][4] < 0.001:
continue
# Copy bbox info for building target
ind = cfg.base_ids.index(clsid)
if ind >= n_cls or ccs[ind]>= cfg.max_boxes:
pdb.set_trace()
label[ind][ccs[ind]] = bs[i]
label[ind][ccs[ind]][0] = ind
ccs[ind] += 1
if sum(ccs) >= 50:
break
label = np.reshape(label, (n_cls, -1))
return label
def load_label(labpath, w, h, flip, dx, dy, sx, sy):
label = []
# if os.path.exists(labpath) and os.path.getsize(labpath):
if os.path.getsize(labpath):
bs = np.loadtxt(labpath)
if bs is None:
return label
bs = np.reshape(bs, (-1, 5))
cc = 0
for i in range(bs.shape[0]):
x1 = bs[i][1] - bs[i][3]/2
y1 = bs[i][2] - bs[i][4]/2
x2 = bs[i][1] + bs[i][3]/2
y2 = bs[i][2] + bs[i][4]/2
x1 = min(0.999, max(0, x1 * sx - dx))
y1 = min(0.999, max(0, y1 * sy - dy))
x2 = min(0.999, max(0, x2 * sx - dx))
y2 = min(0.999, max(0, y2 * sy - dy))
bs[i][1] = (x1 + x2)/2
bs[i][2] = (y1 + y2)/2
bs[i][3] = (x2 - x1)
bs[i][4] = (y2 - y1)
if flip:
bs[i][1] = 0.999 - bs[i][1]
if bs[i][3] < 0.001 or bs[i][4] < 0.001:
continue
# label[cc] = bs[i]
label.append(bs[i, 1:])
cc += 1
if cc >= 50:
break
return label
def load_data_detection(imgpath, labpath, shape, jitter, hue, saturation, exposure, data_aug=True):
# labpath = imgpath.replace('images', 'labels').replace('JPEGImages', 'labels').replace('.jpg', '.txt').replace('.png','.txt')
# labpath = imgpath.replace('images', 'labels_1c/aeroplane').replace('JPEGImages', 'labels_1c/aeroplane').replace('.jpg', '.txt').replace('.png','.txt')
## data augmentation
img = Image.open(imgpath).convert('RGB')
img,flip,dx,dy,sx,sy = data_augmentation(img, shape, jitter, hue, saturation, exposure, flag=data_aug)
if cfg.metayolo:
label = fill_truth_detection_meta(labpath, img.width, img.height, flip, dx, dy, 1./sx, 1./sy)
else:
label = fill_truth_detection(labpath, img.width, img.height, flip, dx, dy, 1./sx, 1./sy)
return img,label
def load_data_with_label(imgpath, labpath, shape, jitter, hue, saturation, exposure, data_aug=True):
## data augmentation
img = Image.open(imgpath).convert('RGB')
img,flip,dx,dy,sx,sy = data_augmentation(img, shape, jitter, hue, saturation, exposure, flag=data_aug)
label = load_label(labpath, img.width, img.height, flip, dx, dy, 1./sx, 1./sy)
return img, label