Skip to content

GPT‐Academic项目自译解报告

binary-husky edited this page Aug 29, 2023 · 6 revisions

chatgpt-academic项目自译解报告 (Chinese + English)

(Author补充:以下分析均由本项目调用ChatGPT一键生成,如果有不准确的地方,全怪GPT😄)

文件名 功能描述
check_proxy.py 检查代理是否有效,并获取代理的地理位置信息。
colorful.py 在终端中输出彩色的文本。
config.py 配置程序的参数和选项。
config_private.py 包含不同API的相关配置信息。
core_functional.py 包含核心功能的描述和处理函数。
cradle.py 用于解析项目源代码、对话历史存档、批量翻译PDF文档等功能。
cradle2.py 可能是cradle功能的改进版本或者拓展实现。
crazy_functional.py 提供各种功能函数和工具,如数据分批处理、命令行参数解析等。
main.py 搭建一个交互界面,提供问答机器人和其他高级功能。
multi_language.py 多语言翻译工具,支持翻译源代码和其他文本。
toolbox.py 提供一些实用函数和装饰器,帮助实现常用功能。
crazy_functions\chatglm微调工具.py 进行微调数据集生成的工具。
crazy_functions\crazy_utils.py 提供一些实用函数,如输入裁剪、热更新请求等。
crazy_functions\Langchain知识库.py 知识库问答和读取知识库的功能。
crazy_functions\Latex全文润色.py 对Latex文件进行全文润色和纠错的功能。
crazy_functions\Latex全文翻译.py 对Latex项目进行全文翻译的功能。
crazy_functions\Latex输出PDF结果.py 处理Latex项目,提供输出PDF的功能
crazy_functions\__init__.py 初始化模块和导入其他函数和类
crazy_functions\下载arxiv论文翻译摘要.py 下载arxiv论文,进行翻译和摘要提取
crazy_functions\交互功能函数模板.py 提供交互功能的函数模板
crazy_functions\代码重写为全英文_多线程.py 将代码重写为全英文,使用多线程处理
crazy_functions\命令行助手.py 提供命令行助手功能,与用户交互,并执行相应操作
crazy_functions\图片生成.py 生成图片,使用OpenAI的API进行图像生成
crazy_functions\对话历史存档.py 存档和读取对话历史记录的功能
crazy_functions\总结word文档.py 对word文档进行总结和处理
crazy_functions\总结音视频.py 对音频和视频进行总结和处理
crazy_functions\批量Markdown翻译.py 批量翻译Markdown文件的功能
crazy_functions\批量总结PDF文档.py 批量总结PDF文档的功能
crazy_functions\批量总结PDF文档pdfminer.py 使用pdfminer解析pdf文件,进行文本提取和处理
crazy_functions\批量翻译PDF文档_多线程.py 批量翻译PDF文档的功能,使用多线程处理
crazy_functions\数学动画生成manim.py 生成数学动画的功能,使用manim库
crazy_functions\理解PDF文档内容.py 解析PDF文件内容,提取关键信息
crazy_functions\生成函数注释.py 为函数生成注释文档的功能
crazy_functions\联网的ChatGPT.py 实现联网的ChatGPT对话功能
crazy_functions\联网的ChatGPT_bing版.py 使用Bing搜索引擎实现的联网ChatGPT对话功能
crazy_functions\虚空终端.py 提供虚空终端的功能,处理用户意图与操作
crazy_functions\解析JupyterNotebook.py 解析Jupyter Notebook文件的功能,提取代码块
crazy_functions\解析项目源代码.py 解析项目源代码文件的功能,进行整体项目分析
crazy_functions\询问多个大语言模型.py 可同时向多个大语言模型进行问答的功能
crazy_functions\语音助手.py 实现语音助手的功能,执行音频和文字转换
crazy_functions\读文章写摘要.py 读取文章并生成摘要的功能
crazy_functions\谷歌检索小助手.py 使用谷歌搜索引擎实现的文章检索功能
crazy_functions\辅助功能.py 提供一些辅助功能,如猜你想问和清除缓存
crazy_functions\高级功能函数模板.py 提供高级功能函数的模板,具备界面刷新、错误捕获等功能
request_llm\bridge_all.py 处理多个LLM模型通用接口,并提供相应的预测函数
request_llm\bridge_chatglm.py 对接ChatGLM模型的通信接口,实现对话生成功能
request_llm\bridge_chatglmft.py 对接ChatGLMFT模型的通信接口,实现对话生成功能
request_llm\bridge_chatglmonnx.py 对接ChatGLM-ONNX模型的通信接口,实现本地模型句柄的功能
request_llm\bridge_chatgpt.py 提供与ChatGPT模型进行对话的功能
request_llm\bridge_chatgpt_website.py 提供与ChatGPT模型进行对话的功能,用于网站界面集成
request_llm\bridge_claude.py 提供与chatGPT模型进行对话的桥接程序,支持长连接方式
request_llm\bridge_internlm.py 提供与神经语言模型进行交互的功能
request_llm\bridge_jittorllms_llama.py 提供与JittorLLMs和Llama2模型进行交互的功能
request_llm\bridge_jittorllms_pangualpha.py 提供与JittorLLMs和PanguAlpha模型进行交互的功能
request_llm\bridge_jittorllms_rwkv.py 提供与JittorLLMs和网站对话引擎RWKV进行交互的功能
request_llm\bridge_llama2.py 提供与LLaMA模型进行交互的功能
request_llm\bridge_moss.py 提供与MOSS模型进行交互的功能
request_llm\bridge_newbingfree.py 提供与NewBingFree模型进行交互的功能
request_llm\bridge_qianfan.py 提供与QianFan模型进行交互的功能
request_llm\bridge_qwen.py 提供与Qwen模型进行交互的功能
request_llm\bridge_spark.py 提供与Spark模型进行交互的功能
request_llm\bridge_stackclaude.py 提供与StackClaude模型进行交互的功能
request_llm\bridge_tgui.py 提供与TGUI模型进行交互的功能
request_llm\chatglmoonx.py 提供 ChatGLM 模型推理功能
request_llm\com_sparkapi.py 提供了与多个语言模型进行交互的综合文本处理和人机对话框架,并提供了与网站集成、长连接和特定模型的桥接程序
request_llm\edge_gpt_free.py 处理请求和会话,包括定义会话样式、处理HTTP请求头部信息和上下文参数等
request_llm\local_llm_class.py 处理本地机器学习模型的请求和响应,包括加载模型、处理依赖关系等

[0/67] 请对下面的程序文件做一个概述: check_proxy.py

该代码文件名为check_proxy.py,主要包含以下几个函数:

  1. check_proxy(proxies): 这个函数用于检查代理是否有效,并获取代理的地理位置信息。

  2. _check_with_backup_source(proxies): 这个函数是check_proxy函数的辅助函数,用于使用备用的数据源检查代理的地理位置。

  3. backup_and_download(current_version, remote_version): 这个函数用于备份和下载项目的新版本。

  4. patch_and_restart(path): 这个函数用于覆盖和重启项目,实现一键更新功能。

  5. get_current_version(): 这个函数用于获取当前项目版本号。

  6. auto_update(raise_error=False): 这个函数用于自动检查新版本并更新项目。

  7. warm_up_modules(): 这个函数用于执行一些模块的预热操作。

以上是check_proxy.py文件的概述,代码主要功能是检查代理是否有效、备份和更新项目。

[1/67] 请对下面的程序文件做一个概述: colorful.py

这个程序文件名为colorful.py,它主要实现了在终端中输出彩色的文本。程序文件首先导入了platform和stdout模块(存在于sys模块中),用于判断操作系统平台。接下来,根据操作系统平台决定是否导入colorama模块,并根据条件进行相应操作。然后,定义了一系列函数用于在终端输出不同颜色的文本。这些函数分为两类,一类是以print开头,用于直接打印彩色文本;另一类是以sprint开头,用于拼接彩色文本并返回结果。这个程序文件主要针对非Linux平台,通过导入colorama模块来实现彩色输出。

[2/67] 请对下面的程序文件做一个概述: config.py

这个名为config.py的文件是一个Python源代码文件,用于配置程序的参数和选项。文件中包含了各种配置项,例如API密钥、代理设置、模型选择、程序界面布局、超时时间等。其中的配置项可以通过环境变量进行覆写。文件中还提供了一些注释来解释每个配置项的用途和设置方式。

[3/67] 请对下面的程序文件做一个概述: config_private.py

这个配置文件包含了不同API的相关配置信息。具体来说,它包含了使用OpenAI API和Azure API的不同密钥、模型选择、代理设置,以及一些其他相关设置。此外,还有一些注释来指示可选项和示例。

[4/67] 请对下面的程序文件做一个概述: core_functional.py

这个文件是一个核心功能的模块,包含了一些核心功能的描述和处理函数。其中get_core_functions()函数返回了一个字典,包含了不同核心功能的详细描述。handle_core_functionality()函数用于处理核心功能,并根据不同的功能进行相应的处理。

[5/67] 请对下面的程序文件做一个概述: cradle.py

这是一个名为"cradle.py"的源代码文件。该文件包含以下内容:

  1. 引入了必要的库和模块。
  2. 定义了一个PydanticOutputParser类,它是BaseOutputParser的子类。该类用于解析输出文本,并根据指定的Pydantic模型解析为对象。
  3. 定义了一个名为LineList的Pydantic模型,表示问题列表。
  4. 定义了一个名为IntentionEnum的枚举类型,表示用户意图类型。
  5. 定义了一个名为UserIntention的Pydantic模型,表示用户意图。它包含了用户输入的内容、意图类型以及用户是否提供文件路径或URL的信息。
  6. 创建了一个PydanticOutputParser对象,使用UserIntention模型作为解析输出的目标模型。
  7. 调用PydanticOutputParser对象的get_format_instructions方法,获取格式化指令。

以上就是这个源代码文件的概述。它主要包含了Pydantic模型的定义和解析方法的实现。

[6/67] 请对下面的程序文件做一个概述: cradle2.py

cradle2.py是一个源代码文件,该文件可能用于一个名为"cradle"的项目。由于我无法查看代码,无法提供具体的文件概述。一般来说,文件名中的数字2可能表示该文件是某个功能的改进版本或者拓展实现。需要查看具体代码才能提供更详细的分析。

[7/67] 请对下面的程序文件做一个概述: crazy_functional.py

这是一个名为"crazy_functional.py"的源代码文件。该文件主要包含了各种功能函数的导入和定义。这些功能函数包括解析项目源代码、对话历史存档、批量翻译PDF文档等。函数定义中还使用了一个名为"HotReload"的函数装饰器,用于实现热更新功能。整个文件分为两组插件,每组插件都包含多个功能函数。

[8/67] 请对下面的程序文件做一个概述: main.py

该程序文件主要包含一个名为main的函数和一些导入语句。在导入语句中,它引入了一些模块和函数。

该程序的主要功能是搭建一个使用Gradio库开发的交互界面,用于提供一个问答机器人。它从配置文件中读取一些参数(例如代理信息、模型信息等),设置一些界面元素,并处理用户输入。

用户可以在界面中输入问题,并通过点击按钮或按下回车键进行提交。程序将使用输入的问题进行预测,并将预测结果显示在界面上。用户还可以上传文件进行处理,并使用一些高级功能插件对输入进行处理。界面上还有一些其他的功能按钮和选项,用于控制和调整界面的行为和外观。

该程序还进行了一些日志记录和错误处理。在开始时,它会创建一个日志文件,并将日志输出重定向到该文件中。它还通过检查所需的依赖库的版本来确保正确安装了所需的依赖。

总的来说,该程序提供了一个用户友好的界面,用于与问答机器人进行交互,并提供了一些额外的功能和设置选项。

[9/67] 请对下面的程序文件做一个概述: multi_language.py

这个程序文件是一个用于多语言翻译的工具。它提供了以下功能:

  1. 使用配置文件进行设置,包括设置LLM模型和API密钥。
  2. 设置要翻译的语言和翻译提示。
  3. 通过运行python multi_language.py翻译源代码项目。
  4. 将翻译后的程序保存在multi-language\语言\*目录下。
  5. 提供了一些附加功能,如缓存翻译映射和共享翻译映射。

程序中还包含了一些辅助函数,如字符串操作、缓存函数和翻译函数。

[10/67] 请对下面的程序文件做一个概述: toolbox.py

这个源代码文件是一个实用工具箱,它包含了一些函数和装饰器,用于帮助开发者实现一些功能。文件有两个主要部分:

第一部分是一些函数插件的输入输出接口,如ChatBotWithCookies、ArgsGeneralWrapper、update_ui等。这些函数用于连接输入参数和输出结果,提供更方便的接口给开发人员。

第二部分是一些其他小工具,如write_results_to_file、trimmed_format_exc等。这些小工具提供了一些常用的功能,如将结果写入文件、格式化输出异常等。

总的来说,这个源代码文件提供了一些实用的函数和工具,可以帮助开发者更方便地实现一些功能。

[11/67] 请对下面的程序文件做一个概述: crazy_functions\chatglm微调工具.py

这个程序文件是一个Python脚本,名为"crazy_functions\chatglm微调工具.py"。它包含了几个函数和一些导入语句。函数的功能如下:

  1. fetch_items(list_of_items, batch_size):生成器函数,将一个列表分批返回,每批大小为指定的batch_size

  2. string_to_options(arguments):将字符串参数解析为命令行参数,并返回argparse.Namespace对象。

  3. 微调数据集生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):用于微调数据集生成的函数,接收多个输入参数,并在函数内调用其他函数和方法完成相应的操作。

  4. 启动微调(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):用于启动微调的函数,接收多个输入参数,并在函数内调用其他函数和方法完成相应的操作。

该文件还包含了一些导入语句,从其他模块中导入了一些工具函数和类,以及一些Python标准库模块。导入的模块和工具函数包括:toolbox.CatchExceptiontoolbox.update_uitoolbox.promote_file_to_downloadzone.crazy_utils.request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency。导入的标准库模块有:datetimejson

总之,该文件定义了几个函数,用于实现微调数据集生成和启动微调的功能,并导入了一些工具函数和模块供这些函数使用。

[12/67] 请对下面的程序文件做一个概述: crazy_functions\crazy_utils.py

这个程序文件包含了几个函数:

  1. input_clipping(inputs, history, max_token_limit): 这个函数用于裁剪输入的文本,确保不超过给定的token数量限制。

  2. request_gpt_model_in_new_thread_with_ui_alive(inputs, inputs_show_user, llm_kwargs, chatbot, history, sys_prompt, refresh_interval, handle_token_exceed, retry_times_at_unknown_error): 这个函数用于在新的线程中请求GPT模型,并保持用户界面的活跃性。函数的参数包括输入文本、用户界面的一些参数以及一些控制选项。

  3. can_multi_process(llm): 这个函数用于判断是否可以使用多线程处理。它根据输入的LLM模型名称来判断是否可以多线程处理。

  4. request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inputs_array, inputs_show_user_array, llm_kwargs, chatbot, history_array, sys_prompt_array, refresh_interval, max_workers, scroller_max_len, handle_token_exceed, show_user_at_complete, retry_times_at_unknown_error): 这个函数是一个使用多线程的高效请求GPT模型的版本。它可以实时在用户界面上显示数据流,使用线程池处理多个子任务,处理中途中止和错误情况,并提供一些参数控制选项。

以上是这个程序文件中定义的函数的简要概述。

[13/67] 请对下面的程序文件做一个概述: crazy_functions\Langchain知识库.py

该文件是一个Python源代码文件,位于crazy_functions目录下的Langchain知识库.py文件。该文件包含了两个函数:知识库问答()和读取知识库作答()。这两个函数的功能是与知识库进行交互,在聊天界面上显示问题和回答。知识库问答()函数用于构建知识库并回答问题,读取知识库作答()函数用于从已经构建的知识库中回答问题。这些函数使用了一些依赖库和工具函数,包括toolbox、CatchException、update_ui和ProxyNetworkActivate。代码中还有一些注释用于解释每个参数和函数的作用。

[14/67] 请对下面的程序文件做一个概述: crazy_functions\Latex全文润色.py

这个源代码文件是一个用于Latex全文润色的Python脚本。它包含了一个名为PaperFileGroup的类和三个函数。PaperFileGroup类是用来处理Latex文件的分割、合并和写入结果的。三个函数分别是多文件润色Latex英文润色Latex中文润色,它们分别用于对整个Latex项目进行润色和纠错。

[15/67] 请对下面的程序文件做一个概述: crazy_functions\Latex全文翻译.py

这个文件名为"crazy_functions\Latex全文翻译.py",整个文件包含了多个函数和一个类。

主要函数:

  • "多文件翻译"函数,用于对整个Latex项目进行翻译。
  • "Latex英译中"函数,用于将Latex项目从英文翻译成中文。
  • "Latex中译英"函数,用于将Latex项目从中文翻译成英文。

主要类:

  • "PaperFileGroup"类,用于处理Latex项目的文件划分和处理。

这个文件的功能是对Latex项目进行全文翻译,支持将整个项目从英文翻译成中文或者从中文翻译成英文。

[16/67] 请对下面的程序文件做一个概述: crazy_functions\Latex输出PDF结果.py

该源代码文件是一个Python脚本,包含了一些函数和工具函数。其中的函数主要用于处理Latex项目,提供了对Latex项目进行英文纠错和中文翻译的功能。代码中还包含了一些工具函数,用于文件操作、网络请求、UI更新等。整体而言,该脚本用于处理Latex项目的纠错和翻译,并生成对应的PDF。

[17/67] 请对下面的程序文件做一个概述: crazy_functions_init_.py

这个程序文件是一个Python模块的初始化文件。它是一个名为"crazy_functions"的模块的一部分,用来组织和导入该模块中的其他函数和类。该文件没有具体的实现代码,主要用于设置模块的命名空间和导入其他模块的函数和类。

[18/67] 请对下面的程序文件做一个概述: crazy_functions\下载arxiv论文翻译摘要.py

这个源代码文件名为"crazy_functions\下载arxiv论文翻译摘要.py",它包含了一些函数和依赖的导入语句。主要的函数是download_arxiv_get_name,它们分别用于下载arxiv论文和获取论文的标题和其他信息。此外,还有一个名为下载arxiv论文并翻译摘要的函数,它调用了前面两个函数,并使用GPT模型提取摘要并翻译为中文。整体而言,这个文件是一个用于从arxiv网站下载论文并进行翻译的工具。

[19/67] 请对下面的程序文件做一个概述: crazy_functions\交互功能函数模板.py

该程序文件名为"crazy_functions\交互功能函数模板.py",它定义了一个名为"交互功能模板函数"的函数。该函数接受多个参数,并通过与用户进行交互来执行特定的功能。

该函数中包含了一些注释来解释每个参数的作用。在函数的主体中,首先清空了历史记录,并向聊天显示框添加了一条消息。之后,根据插件的状态执行不同的逻辑。如果状态为"wait_user_keyword",则解除插件锁定并获取用户输入的关键字。然后,根据关键字从指定网站获取相应的图片,提取其中的图片URL,并以Markdown格式显示给用户。

除了"交互功能模板函数"之外,程序文件还定义了一个辅助函数"get_image_page_by_keyword",用于根据关键字从网站获取图片页面,并提取其中的图片URL。

总的来说,该程序文件实现了一个交互式的功能模板,用于接收用户输入的关键字,并从网站中获取相关的图片URL并显示给用户。

[20/67] 请对下面的程序文件做一个概述: crazy_functions\代码重写为全英文_多线程.py

这个文件是一个Python脚本,名为"crazy_functions\代码重写为全英文_多线程.py"。这个脚本包含了一些函数和一个主要的多线程函数"全项目切换英文"。多线程函数会对项目中的代码文件进行处理,将其中的中文转化为英文,并将处理后的代码存入新的文件中。这个脚本还导入了一些其他的模块和函数来辅助执行任务。

[21/67] 请对下面的程序文件做一个概述: crazy_functions\命令行助手.py

这个程序文件名为"crazy_functions\命令行助手.py",主要定义了一个名为"命令行助手"的函数。该函数接受多个参数,包括txt、llm_kwargs、plugin_kwargs、chatbot、history、system_prompt和web_port等。函数内部实现了清空历史、输入提示等功能,并调用其他模块的函数进行一系列操作。最后,通过yield语句将结果返回给调用者。

[22/67] 请对下面的程序文件做一个概述: crazy_functions\图片生成.py

这是一个用Python编写的图像生成模块。它从toolbox.crazy_utils导入了一些函数和模块。主要功能是使用OpenAI的API生成图像,并将图像保存到本地。它包含一个名为gen_image的函数,该函数负责生成图像和保存到本地。还包含一个名为图片生成的生成器函数,接受一些参数并生成图像。在生成图像的过程中,会在聊天界面显示一些提示信息。

[23/67] 请对下面的程序文件做一个概述: crazy_functions\对话历史存档.py

这个程序文件名为"对话历史存档.py",包含了一些函数用来处理对话历史的存档和读取。其中的函数有:

  • write_chat_to_file(chatbot, history=None, file_name=None): 将对话记录以Markdown格式写入文件中,并返回文件的绝对路径。
  • gen_file_preview(file_name): 从文件中读取内容,并返回前100个非空的历史记录。
  • read_file_to_chat(chatbot, history, file_name): 从文件中读取内容,恢复对话历史。
  • 对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port): 保存当前对话历史到文件中。
  • 载入对话历史存档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port): 从文件中读取并加载对话历史。
  • 删除所有本地对话历史记录(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port): 删除所有本地保存的对话历史文件。

这些函数使用了一些辅助函数和模块,例如reos等。对话历史记录被保存在'gpt_log/'目录下,以HTML文件形式存储。

[24/67] 请对下面的程序文件做一个概述: crazy_functions\总结word文档.py

这个源代码文件是用Python编写的一个名为"crazy_functions\总结word文档.py"的文件。它包含了两个函数:解析docx和总结word文档。

  • 解析docx函数接受一些参数,包括文件清单、项目文件夹、关键字参数等。它首先检查文件清单中的文件类型,对于.docx文件,它使用python-docx模块来解析文件内容;对于.doc文件,它使用pywin32模块,并通过Microsoft Word应用程序来打开文件并获取内容。最后,它将文件内容分割成适合于PDF的片段,并逐个片段进行概述,将结果写入文件。

  • 总结word文档函数也接受一些参数,包括文本、关键字参数等。该函数先尝试导入docx模块,如果导入失败,则报告异常。然后,它检查输入参数,并搜索需要处理的文件清单。若无法找到文件清单,则报告异常。最后,它调用解析docx函数来处理文件清单中的文件。

[25/67] 请对下面的程序文件做一个概述: crazy_functions\总结音视频.py

这个文件名为 "总结音视频.py" 的代码文件包含了两个函数:split_audio_file和AnalyAudio。

split_audio_file函数用于将给定的音频文件切割成多个片段。它首先创建一个存储切割音频的文件夹,然后读取音频文件并计算文件的总时长和切割点。接下来,它逐个切割音频文件,并将切割后的片段写入到新的音频文件中。最后,它将所有切割的音频文件路径存储在一个列表中,并返回该列表。

AnalyAudio函数用于对音频文件进行解析和总结。它首先设置OpenAI密钥和模型,然后根据文件清单逐个处理音频文件。对于每个音频文件,它首先提取文件扩展名并将视频中的音频提取出来。然后,它调用一个whisper模型将音频转换为文字,并对转换后的文字进行总结。最后,它将总结的结果写入到一个文件中。完成所有音频文件的处理后,它删除中间文件夹并返回总结的结果。

这个代码文件还导入了一些依赖库,并定义了一些工具函数和常量。

[26/67] 请对下面的程序文件做一个概述: crazy_functions\批量Markdown翻译.py

该代码文件是一个Python脚本,名为crazy_functions\批量Markdown翻译.py。它引入了一些模块并定义了几个类和函数。其中包括一个称为PaperFileGroup的类,该类用于处理Markdown文件的分割和合并。还有一些用于处理文件和执行翻译的函数,如多文件翻译、Markdown英译中、Markdown中译英和Markdown翻译指定语言。

[27/67] 请对下面的程序文件做一个概述: crazy_functions\批量总结PDF文档.py

此程序文件是一个用于批量总结PDF文档的Python脚本。它导入了一些工具箱和模块,并定义了两个函数:解析PDF批量总结PDF文档

解析PDF函数接受文件清单、项目文件夹、关键字参数、聊天机器人、历史记录和系统提示作为输入。它对每个文件进行一系列处理步骤,包括切割PDF、提取高价值信息、迭代地历遍文章提取精炼信息、整理历史并提取总结。最后,它会将结果写入文件,并显示在界面上。

批量总结PDF文档函数接受文本、关键字参数、插件关键字参数、聊天机器人、历史记录、系统提示和网页端口作为输入。它首先导入所需的依赖项,然后检查输入参数并搜索需要处理的文件。如果没有找到文件,或者无法访问文件,则会报告错误。然后调用解析PDF函数来处理文件。

以上是该程序文件的主要内容。

[28/67] 请对下面的程序文件做一个概述: crazy_functions\批量总结PDF文档pdfminer.py

这个程序文件名为crazy_functions\批量总结PDF文档pdfminer.py,代码主要包含以下几个函数:

  1. readPdf: 用于读取pdf文件,并返回文本内容。
  2. 解析Paper: 对给定的文件列表进行分析,包括.tex和.pdf文件。根据文件类型分别调用readPdf函数和处理.tex文件的逻辑,并使用PDF解析工具、BeautifulSoup来提取文本内容。然后使用GPT模型进行文章概括的请求,分别生成中文和英文摘要。
  3. 批量总结PDF文档pdfminer: 主函数,用于批量总结PDF文档。该函数导入pdfminer和bs4两个依赖库,然后获取项目文件夹下的所有.tex和.pdf文件,并将文件列表传递给解析Paper函数进行分析。

[29/67] 请对下面的程序文件做一个概述: crazy_functions\批量翻译PDF文档_多线程.py

这是一个名为"批量翻译PDF文档_多线程.py"的代码文件。该文件导入了一些工具箱和模块,并定义了一个名为"批量翻译PDF文档"的函数。该函数的功能是批量翻译PDF文档,并通过多线程进行处理。在函数中,先禁用了自动推广功能,并尝试导入一些依赖库。随后,根据输入的参数找到相应的PDF文件,然后根据文件路径解析PDF文件。根据找到的可用GROBID服务的URL,选择不同的解析方法进行PDF解析和翻译。如果没有找到可用的GROBID服务,函数将使用旧版代码进行解析和翻译。最后,将翻译结果写入文件,并提供文件清单用于下载。

[30/67] 请对下面的程序文件做一个概述: crazy_functions\数学动画生成manim.py

这个程序文件是一个用于生成数学动画的manim插件。它包含以下几个函数:

  • inspect_dependency: 用于检查是否导入了manim依赖,并给出安装建议。
  • eval_manim: 用于执行输入的manim代码并生成动画。
  • get_code_block: 从回复中获取manim代码块。
  • 动画生成: 主要的函数插件功能,用于生成数学动画。

其中,动画生成函数是插件的主要功能,它接受用户输入的文本并通过GPT模型生成相应的manim代码,然后将代码转换为动画。整个过程中还包含了一些辅助函数,如inspect_dependency用于检查依赖,get_code_block用于获取代码块。

此外,程序文件还包含了一些网上搜集的manim代码示例,用于辅助GPT生成代码。

[31/67] 请对下面的程序文件做一个概述: crazy_functions\理解PDF文档内容.py

这是一个名为"理解PDF文档内容.py"的Python程序文件。该文件包含了一个名为"解析PDF"的函数和一个装饰器函数"理解PDF文档内容标准文件输入"。

函数"解析PDF"接受多个参数,包括文件名、参数字典、聊天机器人对象、历史记录、系统提示等。该函数的目标是解析给定的PDF文件,并提取出其中的关键信息。具体步骤包括切割PDF文件、提取摘要信息、迭代地遍历整个文章并提取精炼信息、整理历史记录等。

装饰器函数"理解PDF文档内容标准文件输入"接受多个参数,包括输入文本、参数字典、聊天机器人对象、历史记录、系统提示和网络端口等。该函数的目标是解析传入的文本文件,并调用函数"解析PDF"来处理解析任务。

该程序文件还引入了一些模块和函数,并包含一些用于异常处理和界面更新的代码。

[32/67] 请对下面的程序文件做一个概述: crazy_functions\生成函数注释.py

这个程序文件名为"生成函数注释.py",它包含了两个函数:生成函数注释批量生成函数注释

生成函数注释函数接受多个参数,包括file_manifest(文件清单)、project_folder(项目文件夹)、llm_kwargs(参数)、plugin_kwargs(参数)、chatbot(聊天机器人)、history(历史记录)和system_prompt(系统提示)。它首先打印"begin analysis on:"和传入的file_manifest的值。然后,它使用os.path.relpath函数获取相对路径,将路径和文件内容插入到一个字符串中,并将这个字符串传递给chatbot。接下来,它使用协程request_gpt_model_in_new_thread_with_ui_alive向GPT模型发送请求,并将返回的结果添加到chatbothistory中。最后,它使用write_results_to_file函数将history中的结果写入文件,并将"完成了吗?"和结果添加到chatbot

批量生成函数注释函数接受多个参数,包括txtllm_kwargsplugin_kwargschatbothistorysystem_promptweb_port。它首先清空history,然后检查txt是否为文件路径。如果是文件路径,则将其赋值给project_folder;如果不是文件路径,则将错误信息添加到chatbothistory。接下来,它使用glob.glob函数获取项目文件夹中所有的.py和.cpp文件,并将结果赋值给file_manifest。如果file_manifest为空,则将错误信息添加到chatbothistory。最后,它通过调用生成函数注释函数来生成函数注释。

这个程序文件的主要功能是在给定的文件清单中对每个文件的函数进行注释生成,并将结果输出到指定的聊天机器人中。

[33/67] 请对下面的程序文件做一个概述: crazy_functions\联网的ChatGPT.py

该程序文件名为"ChatGPT.py",它包含以下几个函数和模块:

  1. 导入的模块:

    • CatchException:一个装饰器函数,用于捕捉异常。
    • update_ui:一个用于更新用户界面的函数。
    • requests:一个用于发送HTTP请求的库。
    • BeautifulSoup:一个用于解析HTML文档的库。
    • model_info:从request_llm.bridge_all模块中导入的一个变量。
    • get_conf:从toolbox模块中导入的函数。
  2. 函数定义:

    • google(query, proxies):使用Google搜索引擎搜索指定关键词,并返回搜索结果的标题和链接。
    • scrape_text(url, proxies):从指定的网页中抓取文本内容并返回。
    • 连接网络回答问题(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):一个装饰了异常捕捉的函数,用于处理联网的问题。其中包括使用Google搜索引擎搜索相关内容,访问网页并抓取文本内容,并最后结合搜索结果使用ChatGPT模型来回答问题。

以上是程序文件的基本概述。

[34/67] 请对下面的程序文件做一个概述: crazy_functions\联网的ChatGPT_bing版.py

这个程序文件包含了一些函数和导入的模块。主要功能是使用Bing搜索引擎进行搜索,并从搜索结果中提取信息来回答问题。具体的函数包括:

  1. bing_search:使用Bing搜索引擎进行搜索,并从搜索结果中提取相关的标题和链接。
  2. scrape_text:从给定的网页URL中爬取文本内容。先使用请求库从网页获取HTML,然后使用BeautifulSoup解析HTML,提取文本内容,并进行处理和清理。
  3. 连接bing搜索回答问题:该函数是一个装饰器包装的函数,用于处理用户输入的文本,进行搜索和信息提取,并使用ChatGPT生成回答。该函数还包含了一些参数,用于处理界面更新和历史记录。

另外,代码还导入了一些模块和函数,包括CatchExceptionupdate_uirequest_gpt_model_in_new_thread_with_ui_alive,和一些第三方模块,如requestsbeautifulsoup4

这个程序文件的主要目的是实现一个聊天功能,可以从互联网中获取信息,并使用ChatGPT进行回答。

[35/67] 请对下面的程序文件做一个概述: crazy_functions\虚空终端.py

该程序文件的名称是"crazy_functions\虚空终端.py"。文件中包含了以下内容:

  1. 引入了一些需要的模块和函数。
  2. 定义了一个枚举类IntentionEnum,一个数据模型类UserIntention。
  3. 定义了几个函数,包括execute_plugin、chat和自动终端。
  4. 自动终端函数包含了对用户意图的分析和处理逻辑,包括根据不同的用户意图执行不同的操作。
  5. 该文件还包含了一些注释和提示信息。

总的来说,这个文件的功能是实现一个自动终端的功能,根据用户的输入分析用户的意图,并根据不同的意图执行相应的操作。

[36/67] 请对下面的程序文件做一个概述: crazy_functions\解析JupyterNotebook.py

这是一个名为"crazy_functions\解析JupyterNotebook.py"的源代码文件。该文件包含了几个函数和一个类。主要功能是解析Jupyter Notebook文件,并将结果打印到控制台和写入文件。其中包括以下函数和类:

  • PaperFileGroup类:表示一组文件,包含文件路径、文件内容和其他相关信息。
  • parseNotebook函数:解析Jupyter Notebook文件,返回代码块的字符串表示。
  • ipynb解释函数:根据给定的Jupyter Notebook文件列表,使用多线程发送请求到GPT模型,并将结果记录到chatbothistory中。
  • 解析ipynb文件函数:对给定的IPynb文件进行解析。该函数首先清空history,然后检查文件路径是否存在,并根据文件类型选择对应的处理方式。最后调用ipynb解释函数进行解析。

以上是该文件代码的概述。

[37/67] 请对下面的程序文件做一个概述: crazy_functions\解析项目源代码.py

这是一个Python源代码项目的解析程序。它包含多个解析函数,每个函数可以解析不同类型的项目,例如Python项目、C项目、C项目的头文件和Java项目。该程序使用了一些工具函数,例如更新用户界面、捕获异常、报告异常和将结果写入文件。该程序主要有两个步骤,第一步是逐个文件分析,使用多线程进行请求;第二步是综合分析,使用单线程对文件进行分组和迭代处理。该程序会生成一份汇总报告,并将结果写入文件。

函数列表:

  • 解析项目本身:解析一个项目的源代码文件。
  • 解析一个Python项目:解析一个Python项目的源代码文件。
  • 解析一个C项目的头文件:解析一个C项目的头文件。
  • 解析一个C项目:解析一个C项目的源代码文件。
  • 解析一个Java项目:解析一个Java项目的源代码文件。

[38/67] 请对下面的程序文件做一个概述: crazy_functions\询问多个大语言模型.py

这个程序文件包含两个函数:

  1. 同时问询函数:指定了多个参数,包括txtllm_kwargsplugin_kwargschatbothistorysystem_promptweb_port。函数清空了历史记录,然后在聊天显示框中显示一条信息。接下来,函数通过调用request_gpt_model_in_new_thread_with_ui_alive函数请求GPT模型的响应。最后,函数更新了聊天历史记录,并刷新了界面。

  2. 同时问询_指定模型函数:同样指定了多个参数,包括txtllm_kwargsplugin_kwargschatbothistorysystem_promptweb_port。函数清空了历史记录,并在聊天显示框中显示一条信息。然后,函数通过调用request_gpt_model_in_new_thread_with_ui_alive函数请求GPT模型的响应。最后,函数更新了聊天历史记录,并刷新了界面。

[39/67] 请对下面的程序文件做一个概述: crazy_functions\语音助手.py

这是一个名为语音助手的Python文件。它包含了几个类和函数。

类:

  • WatchDog:一个监视器类,用于监控时间间隔和执行回调函数。
  • AsyncGptTask:一个异步任务类,用于创建并管理子线程。
  • InterviewAssistant:一个面试助手类,继承自AliyunASR类,用于处理音频和文字转换。

函数:

  • 语音助手:一个装饰了异常捕获的函数,用于初始化和启动面试助手实例。

该文件依赖于其他模块和库,包括toolbox、crazy_functions、request_llm和numpy等。它还导入了一些类和函数,如update_ui、CatchException、get_conf和markdown_convertion。

该文件的主要功能是实现一个语音助手,通过音频和文字转换来进行面试。它使用阿里云的语音识别服务进行音频转换,并使用其他辅助功能和线程来实现更复杂的功能。

[40/67] 请对下面的程序文件做一个概述: crazy_functions\读文章写摘要.py

这个程序文件名为"读文章写摘要.py",主要定义了两个函数:解析Paper和读文章写摘要。其中,解析Paper函数根据传入的文件路径和相关参数进行论文解析,然后调用request_gpt_model_in_new_thread_with_ui_alive函数获取论文摘要。

而读文章写摘要函数首先进行输入栏的校验,然后根据输入的txt路径获取项目文件夹和文件清单,再调用解析Paper函数对每个文件进行解析和生成摘要。

[41/67] 请对下面的程序文件做一个概述: crazy_functions\谷歌检索小助手.py

这个程序文件名为"crazy_functions\谷歌检索小助手.py",代码中定义了两个函数:"get_meta_information"和"谷歌检索小助手"。"get_meta_information"函数用于获取给定URL的元信息,包括文章标题、作者、引用次数、摘要等。"谷歌检索小助手"函数是一个装饰函数,用于分析给定谷歌学术搜索页面中出现的所有文章,并提取相关信息。

该文件还导入了一些依赖模块,包括"requests"、"arxiv"、"difflib"和"BeautifulSoup"等。通过发送GET请求并解析网页内容,获取文章的相关信息。程序还使用了一些帮助函数来进行字符串相似度比较和更新用户界面等操作。

在主函数中,首先输出一个关于程序功能的提示信息。然后尝试导入依赖模块,如果导入失败则给出安装建议。接着清空历史记录,调用"get_meta_information"函数获取文章的元信息列表。将元信息列表分批处理,在每个批次中调用"request_gpt_model_in_new_thread_with_ui_alive"函数请求AI模型的输出,并将结果保存在历史记录中。最后输出程序的完成状态和相关的操作建议。

整个程序的功能是从谷歌学术搜索页面中获取文章元信息,并使用AI模型进行进一步分析和处理。

[42/67] 请对下面的程序文件做一个概述: crazy_functions\辅助功能.py

这个文件是辅助功能模块辅助功能.py。它包括两个函数:猜你想问和清除缓存。猜你想问函数接受一些参数,根据输入的文本生成回答并更新聊天记录,最后刷新界面。清除缓存函数删除本地缓存文件夹并更新聊天记录,最后也会刷新界面。这个文件还引入了一些外部模块,并使用了一些工具函数来处理界面更新和异常捕捉。

[43/67] 请对下面的程序文件做一个概述: crazy_functions\高级功能函数模板.py

这是一个名为"高级功能函数模板.py"的文件,它包含了一个名为"高阶功能模板函数"的函数。该函数接受多个参数,包括用户输入的文本、GPT模型参数、插件模型参数、聊天显示框的句柄等等。函数的作用是在聊天显示框中展示历史事件,并要求用户发送相关图片。函数使用了一些工具函数来实现界面更新和错误捕获等功能。

[44/67] 请对下面的程序文件做一个概述: request_llm\bridge_all.py

该文件是一个用于处理多个LLM模型通用接口的Python脚本。它定义了两个函数predict()predict_no_ui_long_connection(),用于调用底层的LLM模型。

其中predict()函数用于正常的对话场景,具备完备的交互功能,但不可用于多线程; predict_no_ui_long_connection()函数具备多线程调用能力,可以在函数插件中被调用,且简洁灵活。

文件中还定义了一些endpoint的URL地址和模型信息,以及一个用于延迟加载tokenizer的类LazyloadTiktoken。

[45/67] 请对下面的程序文件做一个概述: request_llm\bridge_chatglm.py

这个程序文件是一个Python脚本文件,文件名为request_llm\bridge_chatglm.py。代码的功能是使用ChatGLM模型实现对话生成。

代码中定义了一个名为GetGLMHandle的类,该类继承自Process类,并包含一些方法和属性。GetGLMHandle类的作用是创建子进程,在子进程中加载ChatGLM模型,并提供对话生成的功能。

代码还定义了两个函数predict_no_ui_long_connectionpredict,这两个函数分别是多线程方法和单线程方法,用于调用GetGLMHandle类的实例提供的对话生成功能。

代码最后创建了一个全局变量glm_handle,初始化为None,用于存储GetGLMHandle类的实例对象。

[46/67] 请对下面的程序文件做一个概述: request_llm\bridge_chatglmft.py

这个程序文件是用于与ChatGLMFT进行通信的Python脚本。它使用了transformers库来加载和使用ChatGLMFT模型,还导入了其他必要的库和模块。文件定义了一些函数和类来处理与ChatGLMFT的通信,并提供了预测函数来预测输入的文本。整个文件的主要功能是处理历史记录、加载ChatGLMFT模型参数、发送请求和接收响应。

[47/67] 请对下面的程序文件做一个概述: request_llm\bridge_chatglmonnx.py

这个程序文件是一个Python模块,文件名是request_llm\bridge_chatglmonnx.py。它实现了一个使用ChatGLM-ONNX模型的本地模型句柄类GetONNXGLMHandle,该类继承自LocalLLMHandle。该模块还定义了一些辅助函数和变量。

具体来说,该程序文件执行的主要操作有:

  1. 导入所需的依赖库:transformerstimethreadingimportlibProcessPipeLocalLLMHandleget_local_llm_predict_fnsSingletonLocalLLMChatGLMModel等。

  2. 定义一个字符串变量model_name,其值为"ChatGLM-ONNX"。

  3. 定义一个字符串变量cmd_to_install,其值为"pip install -r request_llm/requirements_chatglm_onnx.txt"。

  4. 定义一个单例类GetONNXGLMHandle,继承自LocalLLMHandle,用于处理本地模型。

  5. GetONNXGLMHandle类中定义了一些方法:

    • load_model_info():加载模型信息。
    • load_model_and_tokenizer():加载模型和分词器。
    • llm_stream_generator(**kwargs):生成LLM流。
    • try_to_import_special_deps(**kwargs):尝试导入特殊依赖。
  6. 定义了两个函数predict_no_ui_long_connectionpredict,用于获取本地LLM模型的预测函数。

总体来说,该程序文件实现了ChatGLM-ONNX模型的本地处理功能,并提供了相关的方法和函数供其他模块使用。

[48/67] 请对下面的程序文件做一个概述: request_llm\bridge_chatgpt.py

这个程序文件是一个用于与ChatGPT模型进行对话的桥接程序。它包含了三个函数:

  1. predict: 正常对话时使用,具备完备的交互功能,不可多线程。
  2. predict_no_ui:高级实验性功能模块调用,不会实时显示在界面上,参数简单,可以多线程并行,方便实现复杂的功能逻辑。
  3. predict_no_ui_long_connection:在实验过程中发现调用predict_no_ui处理长文档时,和openai的连接容易断掉,这个函数用stream的方式解决这个问题,同样支持多线程。

这些函数使用HTTP请求与ChatGPT API进行通信,并处理返回的结果。其中包含了一些错误处理和日志记录的逻辑。

[49/67] 请对下面的程序文件做一个概述: request_llm\bridge_chatgpt_website.py

这个程序文件是一个Python脚本,文件名是request_llm/bridge_chatgpt_website.py。它包含了三个函数:

  1. predict: 正常对话时使用,具备完备的交互功能,不可多线程

  2. predict_no_ui: 高级实验性功能模块调用,不会实时显示在界面上,参数简单,可以多线程并行,方便实现复杂的功能逻辑

  3. predict_no_ui_long_connection: 在实验过程中发现调用predict_no_ui处理长文档时,和openai的连接容易断掉,这个函数用stream的方式解决这个问题,同样支持多线程。

这个文件还包含了一些其他的函数和模块导入,用于处理网络请求、错误处理和界面更新。该文件是对话系统的一部分,通过调用OpenAI的API来进行自然语言交互。

[50/67] 请对下面的程序文件做一个概述: request_llm\bridge_claude.py

该文件是一个Python源代码文件,名为"request_llm\bridge_claude.py"。该文件包含两个主要函数:

  1. "predict_no_ui_long_connection"函数:这个函数用于向chatGPT发送请求并等待回复,以完成对话功能。它支持多线程调用,并使用流方式解决长文档处理时连接容易断开的问题。
  2. "predict"函数:这个函数也用于向chatGPT发送请求并流式获取输出,用于基础的对话功能。它还包含一些额外的参数,用于处理用户点击的按钮等功能。

除了这两个函数之外,该文件还包含了一些辅助函数和配置信息。整体来说,这个文件提供了与chatGPT的交互能力,并支持多线程调用。

[51/67] 请对下面的程序文件做一个概述: request_llm\bridge_internlm.py

这个程序文件是一个Python脚本,文件名为bridge_internlm.py。

该文件主要包含以下部分:

  1. 导入必要的模块和函数,包括transformers、time、threading、importlib等。
  2. 定义了一个try_to_import_special_deps()函数,用于导入特殊的依赖项。
  3. 定义了一个combine_history()函数,用于组合用户历史和提示,生成完整的提示。
  4. 定义了一个GetInternlmHandle类,该类继承自LocalLLMHandle类,并使用装饰器@SingletonLocalLLM装饰,表示该类只能有一个实例存在。
  5. GetInternlmHandle类中,定义了一系列方法,包括load_model_info()try_to_import_special_deps()load_model_and_tokenizer()llm_stream_generator(),这些方法用于加载模型、导入特殊依赖项以及生成推理结果。
  6. 最后,通过调用get_local_llm_predict_fns()函数,获取了predict_no_ui_long_connectionpredict函数。

总体来说,该文件是一个用于处理语言生成模型的桥接代码,提供了加载模型、导入依赖项和生成推理结果的功能。

[52/67] 请对下面的程序文件做一个概述: request_llm\bridge_jittorllms_llama.py

这个程序文件是一个Python模块,文件名是request_llm\bridge_jittorllms_llama.py。代码主要定义了一个名为GetGLMHandle的类和两个函数predict_no_ui_long_connection和predict。

GetGLMHandle类继承自Process类,并在初始化时创建了一个管道(Pipe),用于进程间通信。该类的主要功能是加载jittorllms模型并提供与模型交互的方法。

predict_no_ui_long_connection函数是一个多线程的方法。它使用GetGLMHandle类创建一个全局的llama_glm_handle对象,并通过调用该对象的stream_chat方法与jittorllms模型进行交互。

predict函数是一个单线程的方法,与predict_no_ui_long_connection类似,它也使用GetGLMHandle类创建一个全局的llama_glm_handle对象,并通过调用该对象的stream_chat方法与jittorllms模型进行交互。不同的是,predict函数还包括了一些界面更新的逻辑。

整个代码文件的功能是加载jittorllms模型并提供与模型交互的方法。

[53/67] 请对下面的程序文件做一个概述: request_llm\bridge_jittorllms_pangualpha.py

这个程序文件是一个Python脚本,文件名为request_llm\bridge_jittorllms_pangualpha.py。代码使用了transformers库和其他一些工具包,主要是为了使用jittorllms模型进行聊天对话。

该文件定义了一个名为GetGLMHandle的类,该类继承自Process,并在其内部实现了一些方法。该类主要用于启动一个子进程来加载和运行jittorllms模型,并接收聊天查询并返回结果。

除此之外,还定义了一些其他函数,如predict_no_ui_long_connection和predict,用于进行聊天查询并返回结果。这些函数使用全局变量pangu_glm_handle来管理jittorllms模型的加载和运行。

总体而言,该文件是一个将jittorllms模型集成到聊天对话系统中的桥接文件,用于实现多线程和单线程的聊天查询功能。

[54/67] 请对下面的程序文件做一个概述: request_llm\bridge_jittorllms_rwkv.py

这是一个名为bridge_jittorllms_rwkv.py的Python源代码文件。它包含了一些导入的模块和多个函数。这些函数用于与jittorllms通信,实现对话性能。其中包括:

  • GetGLMHandle类,该类继承自Process,用于处理jittorllms的模型加载和参数请求等任务。
  • predict_no_ui_long_connection函数,用于对话请求的多线程方法,可以返回jittorllms的响应。
  • predict函数,用于对话请求的单线程方法,可以返回jittorllms的响应,并提供UI更新和历史记录等功能。

[55/67] 请对下面的程序文件做一个概述: request_llm\bridge_llama2.py

这个源代码文件名为bridge_llama2.py,包含以下内容:

  1. 导入了一些必要的库和模块,如transformerstoolboxmultiprocessingthreading
  2. 定义了一个全局变量model_name,其值为"LLaMA"
  3. 定义了一个全局变量cmd_to_install,其值为"pip install -r request_llm/requirements_chatglm.txt"。
  4. 定义了一个名为GetONNXGLMHandle的类,继承自LocalLLMHandle类,并使用了单例模式(@SingletonLocalLLM装饰器)。
  5. GetONNXGLMHandle类实现了几个方法,包括load_model_info()load_model_and_tokenizer()llm_stream_generator()try_to_import_special_deps()
  6. 定义了两个全局函数predict_no_ui_long_connection()predict(),通过调用get_local_llm_predict_fns()方法获取。
  7. 文件末尾的部分代码直接调用了get_local_llm_predict_fns()方法,并将其返回结果分别赋值给predict_no_ui_long_connectionpredict两个函数对象。

[56/67] 请对下面的程序文件做一个概述: request_llm\bridge_moss.py

该程序文件名为bridge_moss.py,代码主要包括以下内容:

  1. 导入了transformerstimethreadingimportlib等模块。
  2. 定义了一个名为GetGLMHandle的类,继承自Process。该类用于创建一个子进程,并在子进程中执行一些操作,包括检测依赖、加载参数、运行MOSS等。
  3. 定义了predict_no_ui_long_connectionpredict两个函数,用于预测和生成对话回复。
  4. 定义了一个全局变量moss_handle,用于保存MOSS的处理器实例。

总体来说,该文件的主要目的是创建一个子进程,加载MOSS参数,并提供预测和对话回复的方法。

[57/67] 请对下面的程序文件做一个概述: request_llm\bridge_newbingfree.py

这个文件是Python代码文件,它包含了一个名为bridge_newbingfree.py的模块。代码分为三个部分:

第一部分是来自EdgeGPT.py的引入声明和一个变量定义。

第二部分是一个名为NewBingHandle的类的定义,它是一个子进程,并负责与NewBing进行通信。

第三部分是一些函数定义,用于调用NewBing模型进行预测和交互。

该文件主要实现了与NewBing模型通信的功能,并提供了一个简单的接口,使用户可以与NewBing模型进行交互和获取预测结果。

[58/67] 请对下面的程序文件做一个概述: request_llm\bridge_qianfan.py

这是一个名为bridge_qianfan.py的程序文件,它包含了与千帆大模型平台的通信功能。主要包括以下几个函数和变量:

  1. cache_decorator(timeout):缓存装饰器函数,用于缓存函数的执行结果。
  2. get_access_token():获取访问令牌的函数。
  3. generate_message_payload(inputs, llm_kwargs, history, system_prompt):生成聊天消息的载荷函数。
  4. generate_from_baidu_qianfan(inputs, llm_kwargs, history, system_prompt):通过百度千帆平台生成聊天回复的函数。
  5. predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):长连接方式预测的函数。
  6. predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):单线程预测的函数。

此外,还定义了一些全局变量和常量,如模型名称model_name,超时错误消息timeout_bot_msg

[59/67] 请对下面的程序文件做一个概述: request_llm\bridge_qwen.py

这个程序文件名为bridge_qwen.py,是一个用于与GPT模型进行交互的接口。代码中导入了一些依赖库,包括transformers和自定义的一些工具函数和类。程序定义了一个GetONNXGLMHandle类,用于处理与本地模型的交互。该类中定义了加载模型信息、加载模型和tokenizer、生成stream、尝试导入特殊依赖等方法。最后,代码调用了get_local_llm_predict_fns函数,获取了与GPT模型交互的函数predict_no_ui_long_connectionpredict。整个文件主要是搭建了一个与GPT模型交互的桥梁。

[60/67] 请对下面的程序文件做一个概述: request_llm\bridge_spark.py

这个程序文件的名称是request_llm\bridge_spark.py,主要包含两个函数:predict_no_ui_long_connectionpredict

predict_no_ui_long_connection是一个多线程方法,调用了toolbox模块中的update_uiget_conf函数,以及.com_sparkapi模块中的SparkRequestInstance类。该函数接受一些输入参数,然后通过SparkRequestInstance类生成响应结果,并将结果逐个返回。

predict是一个单线程方法,调用了toolbox模块中的update_ui函数,以及.com_sparkapi模块中的SparkRequestInstance类。该函数接受一些输入参数,将输入加入到chatbot列表中,并根据需要调用core_functional模块中的handle_core_functionality函数。然后通过SparkRequestInstance类生成响应结果,并将结果逐个返回。最后将响应结果添加到history列表中,并通过yield fromchatbothistory的更新结果返回。

这个程序文件的主要功能是根据输入参数生成响应结果,并通过多线程或单线程的方式进行处理。

[61/67] 请对下面的程序文件做一个概述: request_llm\bridge_stackclaude.py

这是一个Python源代码文件,文件名为request_llm\bridge_stackclaude.py。该文件包含多个模块的导入语句,包括从其他文件导入函数和类、导入标准库和第三方库的模块。文件定义了一个名为SlackClient的类,该类用于与Slack API进行交互实现消息发送和接收等功能。文件还定义了一个名为ClaudeHandle的类,该类继承自Process类,并实现了子进程的运行逻辑。最后,文件还定义了一些辅助函数,用于主进程统一调用。

[62/67] 请对下面的程序文件做一个概述: request_llm\bridge_tgui.py

这个代码文件是一个名为bridge_tgui.py的Python文件。它包含了几个函数和一个异步的run协程函数。这些函数包括:

  • random_hash():生成一个随机哈希值的函数。
  • run():异步函数,用于向Websocket服务器发送消息并接收回复。
  • predict():用于向ChatGPT发送输入并获取输出的函数。在获取输出的过程中,会不断更新对话界面。
  • predict_no_ui_long_connection():类似于predict()函数,但在获取输出时不会更新对话界面。

这个代码文件还导入了一些模块和函数,如asynciojsonstring等。

[63/67] 请对下面的程序文件做一个概述: request_llm\chatglmoonx.py

该文件是一个用于 ChatGLM 模型推理的 Python 程序。它包含了一个名为 ChatGLMModel 的类,该类用于加载和运行 ChatGLM 模型。另外,还有一个名为 ChatGLMTokenizer 的类,用于对文本进行编码和解码。整个文件的功能是通过加载 ChatGLM 模型并使用 ChatGLMTokenizer 对输入数据进行预处理和解析,然后生成对应的响应文本。该程序还提供了一些辅助函数,例如 chat_template 和 process_response,用于生成对话模板和处理生成的响应文本。

[64/67] 请对下面的程序文件做一个概述: request_llm\com_sparkapi.py

这段代码是一个用于生成请求的Python模块。它提供了一些类和函数来生成网络请求的URL,并通过WebSocket与服务器进行通信。主要功能包括:

  1. Ws_Param:接收APPID、APIKey、APISecret和URL等参数,并生成用于鉴权的URL。
  2. SparkRequestInstance:初始化一些参数,并提供一个生成请求的方法。该方法使用WebSocket与服务器建立连接,发送请求并接收响应。
  3. 函数 generate_message_payload:生成消息负载的函数,用于生成请求中的消息内容。
  4. 函数 gen_params:使用APPID、输入、历史记录和系统提示等参数生成请求参数。

除此之外,还有一些辅助函数和变量,用于处理时间戳、加密算法等。整体来说,该代码模块用于生成请求并与服务器进行通信,实现了与Spark API的交互功能。

[65/67] 请对下面的程序文件做一个概述: request_llm\edge_gpt_free.py

该文件是一个Python源代码文件,名为edge_gpt_free.py。代码文件包含了一些导入模块和一些全局变量的定义。此外,还定义了几个类和函数来处理请求和会话。代码文件中包含了一些用于HTTP请求的头部信息和上下文参数。其中的ConversationStyle类是一个枚举类,定义了三种对话样式:creative、balanced和precise。代码文件还包含了一个_ChatHubRequest类和一个_Conversation类,用于处理请求和会话操作。_Conversation类有一个静态方法create用于创建一个异步会话对象。

[66/67] 请对下面的程序文件做一个概述: request_llm\local_llm_class.py

这个文件名为local_llm_class.py的代码文件定义了一个名为LocalLLMHandle的类,它继承自Process类。这个类负责处理本地机器学习模型的请求和响应。它还定义了一个装饰器SingletonLocalLLM,用于确保只有一个实例被创建。该文件还包含其他一些辅助方法和函数,用于加载模型、处理依赖关系、生成响应等。

用一张Markdown表格简要描述以下文件的功能。根据以上分析,用一句话概括程序的整体功能。

文件 功能
check_proxy.py 检查代理是否有效,并获取代理的地理位置信息。
colorful.py 在终端中输出彩色的文本。
config.py 配置程序的参数和选项。
config_private.py 包含不同API的相关配置信息。
core_functional.py 包含核心功能的描述和处理函数。
cradle.py 用于解析项目源代码、对话历史存档、批量翻译PDF文档等功能。
cradle2.py 可能是cradle功能的改进版本或者拓展实现。
crazy_functional.py 提供各种功能函数和工具,如数据分批处理、命令行参数解析等。
main.py 搭建一个交互界面,提供问答机器人和其他高级功能。
multi_language.py 多语言翻译工具,支持翻译源代码和其他文本。
toolbox.py 提供一些实用函数和装饰器,帮助实现常用功能。
chatglm微调工具.py 进行微调数据集生成的工具。
crazy_utils.py 提供一些实用函数,如输入裁剪、热更新请求等。
Langchain知识库.py 知识库问答和读取知识库的功能。
Latex全文润色.py 对Latex文件进行全文润色和纠错的功能。
Latex全文翻译.py 对Latex项目进行全文翻译的功能。
crazy_functions\Latex输出PDF结果.py 处理Latex项目,提供输出PDF的功能
crazy_functions_init_.py 初始化模块和导入其他函数和类
crazy_functions\下载arxiv论文翻译摘要.py 下载arxiv论文,进行翻译和摘要提取
crazy_functions\交互功能函数模板.py 提供交互功能的函数模板
crazy_functions\代码重写为全英文_多线程.py 将代码重写为全英文,使用多线程处理
crazy_functions\命令行助手.py 提供命令行助手功能,与用户交互,并执行相应操作
crazy_functions\图片生成.py 生成图片,使用OpenAI的API进行图像生成
crazy_functions\对话历史存档.py 存档和读取对话历史记录的功能
crazy_functions\总结word文档.py 对word文档进行总结和处理
crazy_functions\总结音视频.py 对音频和视频进行总结和处理
crazy_functions\批量Markdown翻译.py 批量翻译Markdown文件的功能
crazy_functions\批量总结PDF文档.py 批量总结PDF文档的功能
crazy_functions\批量总结PDF文档pdfminer.py 使用pdfminer解析pdf文件,进行文本提取和处理
crazy_functions\批量翻译PDF文档_多线程.py 批量翻译PDF文档的功能,使用多线程处理
crazy_functions\数学动画生成manim.py 生成数学动画的功能,使用manim库
crazy_functions\理解PDF文档内容.py 解析PDF文件内容,提取关键信息
crazy_functions\生成函数注释.py 为函数生成注释文档的功能
crazy_functions\联网的ChatGPT.py 实现联网的ChatGPT对话功能
crazy_functions\联网的ChatGPT_bing版.py 使用Bing搜索引擎实现的联网ChatGPT对话功能
crazy_functions\虚空终端.py 提供虚空终端的功能,处理用户意图与操作
crazy_functions\解析JupyterNotebook.py 解析Jupyter Notebook文件的功能,提取代码块
crazy_functions\解析项目源代码.py 解析项目源代码文件的功能,进行整体项目分析
crazy_functions\询问多个大语言模型.py 可同时向多个大语言模型进行问答的功能
crazy_functions\语音助手.py 实现语音助手的功能,执行音频和文字转换
crazy_functions\读文章写摘要.py 读取文章并生成摘要的功能
crazy_functions\谷歌检索小助手.py 使用谷歌搜索引擎实现的文章检索功能
crazy_functions\辅助功能.py 提供一些辅助功能,如猜你想问和清除缓存
crazy_functions\高级功能函数模板.py 提供高级功能函数的模板,具备界面刷新、错误捕获等功能
request_llm\bridge_all.py 处理多个LLM模型通用接口,并提供相应的预测函数
request_llm\bridge_chatglm.py 对接ChatGLM模型的通信接口,实现对话生成功能
request_llm\bridge_chatglmft.py 对接ChatGLMFT模型的通信接口,实现对话生成功能
request_llm\bridge_chatglmonnx.py 对接ChatGLM-ONNX模型的通信接口,实现本地模型句柄的功能
request_llm\bridge_chatgpt.py 提供与ChatGPT模型进行对话的功能
request_llm\bridge_chatgpt_website.py 提供与ChatGPT模型进行对话的功能,用于网站界面集成
request_llm\bridge_claude.py 提供与chatGPT模型进行对话的桥接程序,支持长连接方式
request_llm\bridge_internlm.py 提供与神经语言模型进行交互的功能
request_llm\bridge_jittorllms_llama.py 提供与JittorLLMs和Llama2模型进行交互的功能
request_llm\bridge_jittorllms_pangualpha.py 提供与JittorLLMs和PanguAlpha模型进行交互的功能
request_llm\bridge_jittorllms_rwkv.py 提供与JittorLLMs和网站对话引擎RWKV进行交互的功能
request_llm\bridge_llama2.py 提供与LLaMA模型进行交互的功能
request_llm\bridge_moss.py 提供与MOSS模型进行交互的功能
request_llm\bridge_newbingfree.py 提供与NewBingFree模型进行交互的功能
request_llm\bridge_qianfan.py 提供与QianFan模型进行交互的功能
request_llm\bridge_qwen.py 提供与Qwen模型进行交互的功能
request_llm\bridge_spark.py 提供与Spark模型进行交互的功能
request_llm\bridge_stackclaude.py 提供与StackClaude模型进行交互的功能
request_llm\bridge_tgui.py 提供与TGUI模型进行交互的功能
request_llm\chatglmoonx.py 提供 ChatGLM 模型推理功能
request_llm\com_sparkapi.py 提供了与多个语言模型进行交互的综合文本处理和人机对话框架,并提供了与网站集成、长连接和特定模型的桥接程序
request_llm\edge_gpt_free.py 处理请求和会话,包括定义会话样式、处理HTTP请求头部信息和上下文参数等
request_llm\local_llm_class.py 处理本地机器学习模型的请求和响应,包括加载模型、处理依赖关系等

根据以上分析,程序的整体功能是提供一个综合的文本处理和人机对话框架,支持与多个语言模型进行交互,并提供了与网站集成、长连接和特定模型的桥接程序,同时还包括处理请求和会话的功能,以及处理本地机器学习模型的请求和响应功能。

chatGPT analysis report

[0/49] check_proxy.py

The check_proxy.py file contains several functions that are related to checking and updating a chatbot program. The functions are:

  1. check_proxy(proxies): This function takes a proxy configuration dictionary as input and uses it to query the geographic location of the proxy. It uses the requests library to send a GET request to https://ipapi.co/json/ and records the JSON response. The function then prints out the result of the query, which includes the proxy configuration and the geographic location of the proxy, and returns the result.
  2. backup_and_download(current_version, remote_version): This function creates a backup of the current version of the program by copying the files in the current directory to a new directory at ./history/backup-{current_version}/. It then downloads the new version of the program from the Github repository https://github.com/binary-husky/chatgpt_academic/archive/refs/heads/master.zip using the proxy configuration given by get_conf('proxies'). Once the ZIP file has been downloaded, the function extracts it to a new directory at ./history/new-version-{remote_version}/ and returns the path to the new directory.
  3. patch_and_restart(path): This function updates the current version of the program with the new version downloaded by backup_and_download() by copying the files from the new version directory to the current directory. It then installs any new dependencies listed in requirements.txt using the pip install -r requirements.txt command. Finally, it restarts the program by calling os.execl(sys.executable, sys.executable, *sys.argv).
  4. get_current_version(): This function reads the current version of the program from the file ./version and returns it as a string.
  5. auto_update(raise_error=False): This function checks whether a new version of the program is available by sending a GET request to https://raw.githubusercontent.com/binary-husky/chatgpt_academic/master/version and comparing the remote version number to the current version number. If a new version is available, the function prints a message and prompts the user to update the program using backup_and_download() and patch_and_restart(). If raise_error is True, the function will raise an error if it encounters any problems during the update process.
  6. warm_up_modules(): This function preloads some modules related to the chatbot program to improve performance. It loads the gpt-3.5-turbo and gpt-4 models and encodes the string "Module preheating" using their tokenizers.

The if __name__ == '__main__': block at the end of the file calls check_proxy() with the proxy configuration obtained from get_conf('proxies').

[1/49] colorful.py

The program file colorful.py contains a set of functions that print text to the console in different colors. The functions take an arbitrary number of arguments (*kw) and keyword arguments (**kargs) and use ANSI escape codes to set the color of the text that is printed to the console.

The functions are named according to the color they print (PrintRed, PrintGreen, etc.) and there are also versions of each function that print bold text instead of normal text (PrintBrightRed, PrintBrightGreen, etc.).

The program also contains aliases for each of the functions with shorter names (print_red, print_green, etc.) for convenience.

Finally, there is some code that detects whether the script is being run in a console or whether the output is being redirected to a file. If the output is being redirected, the functions are replaced with the built-in print function to avoid issues with the formatting of log files.

[2/49] config.py

The config.py file contains various configurations for the program.

At [Step 1], the API key is defined. Multiple API keys can be specified and separated by commas.

At [Step 2], the use of proxy is configured. If USE_PROXY is set to True, proxy details can be provided for http and https protocols.

At [Step 3], the maximum number of threads allowed to access OpenAI API at the same time is set.

At [Step 4], various program settings can be modified. These include dialogue window height, code highlighting, window layout, timeout threshold, web port, maximum retry limit, LLM model selection, execution mode of local LLM models, number of parallel threads for Gradio, addition of waifu decoration, and authentication details. The API_URL_REDIRECT setting can be used to redirect the program to a different API URL. The CUSTOM_PATH setting is used if the program needs to run under a second-level path. The NEWBING_STYLE setting is used for the newbing model, and the NEWBING_COOKIES setting can be used to add long cookies for newbing model. The SLACK_CLAUDE_BOT_ID and SLACK_CLAUDE_USER_TOKEN settings can be used to enable the Slack Claude feature.

[3/49] config_private.py

The "config_private.py" file contains various configuration settings that can be used by other parts of this program. It includes settings for the API_KEY used in the project, proxy settings if applicable, number of default worker nodes, and Slack integration settings including the bot ID and user token.

[4/49] core_functional.py

The file iscore_functional.py contains a dictionary of core functions that can be called by a program. These functions include English and Chinese academic polishing, finding syntax errors, Chinese-English and English-Chinese translations, finding images with specific keywords, explaining code, and converting references to BibTeX style. Each function has a prefix and suffix text to provide context, and some functions also have additional properties such as button colors, pre-processing instructions, and visibility settings.

[5/49] cradle.py

The file is named cradle.py and it appears to contain a Python code for an animation created using the Manim library. The code defines a class called MyAnimation that inherits from Scene class in Manim. The construct method defines three geometric shapes - a circle, square, and triangle, and performs a series of animations to transform each shape into another. The final animation fades out the triangle. The if __name__ == '__main__' block instantiates the MyAnimation class and calls the render method to render the animation.

[6/49] crazy_functional.py

The program file iscrazy_functional.py contains a collection of plugins that can be accessed by the user. These plugins include functions that can parse various programming languages, translate text, summarize documents and videos, generate mathematical animations, and more. The file uses the HotReload module to allow for hot updates to the plugins without needing to restart the program. The plugins are arranged into three groups, with the third group containing plugins that have not been fully tested yet. Each plugin includes various options and advanced arguments that can be specified by the user.

[7/49] main.py

This is the main code file for a program that provides an AI chatbot powered by GPT language models. The code imports various libraries and modules, including Gradio for creating the user interface, a module for requesting predictions from the GPT language model, a toolbox module that provides various utility functions, and others.

The program reads configuration settings such as the proxy server configurations, the port on which the web server will run, the language model to use, and others, from a configuration file. It also sets up logging for inquiry records.

The code defines the appearance and behavior of the various user interface components such as textboxes, buttons, and accordions. It includes various callback functions to handle user input and actions on the components. It also provides functionality for uploading files for use by specific function plugins.

Finally, the code launches the Gradio server to provide the user interface, which includes the chatbot, and runs it on the specified port.

[8/49] theme.py

The file named theme.py contains an adjust_theme function that customizes the Gradio UI theme. The function sets the primary and neutral hues, font family, button and input shadows, button border, and gradient colors. In addition, if the ADD_WAIFU configuration setting is enabled, the function adds a cute mascot to the Gradio UI. The advanced_css variable contains advanced CSS code that further customizes the Gradio UI theme, such as table and code block styling. Finally, the code highlights are optionally enabled through the CODE_HIGHLIGHT configuration setting.

[9/49] toolbox.py

The program file toolbox.py consists of two parts.

First part

This part contains functions that define the chatbot's input and output system.

  • ChatBotWithCookies: It is a class that defines a chatbot with cookies and provides necessary information for the implementation of more powerful functions.
  • ArgsGeneralWrapper: It is a decorator function that restructures input parameters, changes the order and structure of input parameters, and introduces a chatbot with cookies.
  • update_ui: It is a function that refreshes the interface with new updates using yield.
  • trimmed_format_exc: It is a function that prints traceback, hiding the absolute address for security reasons and thereby making the code more secure.
  • CatchException: It is a decorator function that captures exceptions in the function, encapsulates them into a generator to return and displays them in the chat.
  • HotReload: It is a decorator function that performs a hot update of the Python function plugins.

Second part

This part includes several utility functions including:

  • write_results_to_file: It is a function that writes the conversation record history to a file in Markdown format.
  • regular_txt_to_markdown: It is a function that converts plain text to Markdown formatted text.
  • report_execption: It is a function that adds error information to the chatbot.
  • text_divide_paragraph: It is a function that splits the text into paragraphs according to the paragraph separator, generating HTML code with paragraph tags.
  • markdown_convertion: It is a function that converts Markdown format text to HTML format.
  • format_io: It is a function that takes over the default markdown handling of Gradio.
  • on_file_uploaded: It is a function that handles file uploads (automatically decompresses).
  • on_report_generated: It is a function that automatically projects the generated report to the file upload area.
  • clip_history: It is a function that automatically truncates when the historical context is too long.
  • get_conf: It is a function that gets settings.
  • select_api_key: It is a function that extracts available API keys according to the current model category.

[10/49] crazy_functions\AdvancedFunctionTemplate.py

The file AdvancedFunctionTemplate.py contains a high-order function template named HighOrderFunctionTemplateFunctions. It takes various parameters such as txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt and web_port. The purpose of this function is to provide a starting point for developers who want to implement new features using this codebase. It also provides a demo for processing files synchronously using multi-threading. The function clears the chat history and then makes five requests to a GPT model to get two historical events and related pictures for a given date range. Finally, it updates the chat window and history with the results obtained from the GPT model.

[11/49] crazy_functions\BatchSummarizePDFDocuments.py

The BatchSummarizePDFDocuments.py file is a Python script that contains a function BatchSummarizePDFDocuments and several helper functions such as is_paragraph_break, normalize_text, and clean_text.

The BatchSummarizePDFDocuments function takes in several input parameters such as txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, and web_port. This function checks if the necessary dependencies such as fitz are installed, searches for PDF files in the specified folder, extracts text from these PDF files, cleans and formats the extracted text, and uses a pre-trained language model to summarize the content of each PDF file. Finally, it generates a Chinese and English abstract for all the PDF files and returns it to the user through the chatbot.

The helper functions is_paragraph_break, normalize_text, and clean_text are used to normalize and clean the extracted text by removing ligatures, special characters, and hyphens across lines, and by determining whether line breaks indicate paragraph breaks.

[12/49] crazy_functions\BatchSummarizePDFDocumentsUsingPdfminer.py

The BatchSummarizePDFDocumentsUsingPdfminer.py file is a program that summarizes the content of a set of PDF documents using the pdfminer library. It includes a readPdf() function that reads the text content of a PDF file and a ParsePaper() function that extracts the text content of each PDF file in a given list and summarizes the content using a GPT model, generating a Chinese and an English abstract. The program also imports the toolbox, bs4, and pdfminer libraries and has a fast_debug flag that can be used for debugging purposes. The program is designed to be used as a function plugin and has a contributor named Euclid-Jie.

[13/49] crazy_functions\BatchTranslateMarkdown.py

The program file BatchTranslateMarkdown.py contains two functions TranslateMarkdownFromEnglishToChinese() and MarkdownChineseToEnglish(). These functions perform batch translation of Markdown files from English to Chinese and from Chinese to English respectively. The translation is done by breaking down long texts into smaller segments and using the OpenAI GPT model for translation. The program imports dependencies like tiktoken and uses multithreading for efficient translation. The program also includes helper classes like PaperFileGroup() to manage the file paths and contents.

[14/49] crazy_functions\BatchTranslatePDFDocuments_MultiThreaded.py

The program file iscrazy_functions\BatchTranslatePDFDocuments_MultiThreaded.py is a Python script that implements a batch translation function for PDF documents. The script imports several other modules and functions, such as CatchException, report_execption, and update_ui, which are defined in the toolbox module. The script also imports several functions from the .crazy_utils module, such as request_gpt_model_in_new_thread_with_ui_alive and request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency. These functions are used to request translation from an OpenAI GPT model, using a multi-threaded approach to increase efficiency. The script also includes functions for reading and cleaning PDF text, breaking down text to satisfy token limits for PDF, and constructing an HTML report of the translation results. The main function of the script is BatchTranslatePDFDocuments, which takes in a path to a folder of PDF documents to translate, and outputs a list of translation results in both markdown and HTML format.

[15/49] crazy_functions\ChatGPTConnectedToNetwork.py

The program file "ChatGPTConnectedToNetwork.py" contains a Python script for a function called "ConnectToNetworkToAnswerQuestions". This function takes in several parameters such as "txt", "llm_kwargs", "plugin_kwargs", "chatbot", "history", "system_prompt", and "web_port" to integrate chatbot communication with internet information. The function first searches for relevant information based on the "txt" parameter using Google search engine. It then visits the search results and scrapes the text from the web pages. Finally, the function uses ChatGPT to synthesize the information and return an answer to the user. The script uses external libraries such as "toolbox", "request", "bs4", and "model_info".

[16/49] crazy_functions\ConversationHistoryArchive.py

The file "ConversationHistoryArchive.py" contains functions related to archiving and accessing conversation history in a Python-based chatbot program.

Functions included in the file:

  • write_chat_to_file: Writes the conversation history to a file in Markdown format, with the filename generated using the current time if none is specified.
  • gen_file_preview: Generates a preview of the conversation history file, returning the first 100 characters of the first non-empty context in the history.
  • read_file_to_chat: Reads the conversation history file and reconstructs the chatbot and history objects.
  • ConversationHistoryArchive: The main function that is called when the "Save current conversation" button is clicked. It saves the current conversation history to a file and alerts the user of the file location, as well as warning that the saved conversation history can be viewed by anyone using the system.
  • LoadConversationHistoryArchive: Loads a conversation history from a file specified by the user. It also provides suggestions of locally stored history files if no file is found.
  • DeleteAllLocalConversationHistoryRecords: Deletes all locally stored conversation history files.

The file also imports functions and modules from other files such as CatchException, update_ui, request_gpt_model_in_new_thread_with_ui_alive, advanced_css, and get_files_from_everything.

[17/49] crazy_functions\crazy_functions_test.py

The program file crazy_functions_test.py is a test script for unit testing of function plugins in the crazy_functions package. The validate_path function is to ensure that the script can be run from the base directory. The script imports various modules and functions from the crazy_functions package and calls them with different arguments to test their functionality. The tests include parsing Python and C++ projects, proofreading LaTeX files, translating Markdown, translating PDF documents, answering questions online, parsing Jupyter notebooks, generating mathematical animations using Manim library, and downloading Arxiv papers and translating their abstracts. At the end of the script, it waits for user input before exiting.

[18/49] crazy_functions\crazy_utils.py

The file crazy_utils.py contains utility functions for requesting GPT models while keeping the user interface active, and for handling input clipping and overflow errors. It imports functions from toolbox.py and request_llm.bridge_all, including update_ui, get_conf, trimmed_format_exc, and predict_no_ui_long_connection. The input_clipping function clips input texts based on maximum token limit and history, and returns the clipped inputs and history. The request_gpt_model_in_new_thread_with_ui_alive function requests GPT models in new threads and updates the user interface with real-time feedback. It handles token overflow errors, retries on unknown errors, and is defined to return a future object. The request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency function is similar to the previous one, except that it uses multiple threads for multiple sub-tasks, has a higher efficiency, and allows for specifying a maximum number of threads. It returns a list of GPT model responses for each sub-task.

[19/49] crazy_functions\DownloadArxivPaperTranslateAbstract.py

The program file "DownloadArxivPaperTranslateAbstract.py" is a Python script that contains functions to download a PDF file from the Arxiv website and extract its abstract. The file imports several Python modules, such as "requests", "re", "os", "BeautifulSoup", and "pdfminer". It defines two main functions: "download_arxiv_" which downloads the PDF file and extracts its metadata, and "DownloadArxivPaperAndTranslateAbstract" which calls "download_arxiv_" and then translates the abstract to Chinese using a language model via GPT. The script also handles exceptions, writes results to a file, and updates a user interface.

[20/49] crazy_functions\FullTextProofreadingForLatex.py

The file FullTextProofreadingForLatex.py contains a Python program used to proofread LaTeX documents. The program defines a class called PaperFileGroup which stores information on the input and output files. It also contains several functions including run_file_split, which separates long text documents, and merge_result, which combines the results of multiple document segments. The main function of the program is called ProofreadMultipleFiles, which uses multiple threads to proofread the input document and generate output files. Additionally, the program defines three other functions: EnglishProofreadingForLatex, LatexChineseProofreading, and LatexEnglishCorrection, each of which takes user input parameters and calls ProofreadMultipleFiles with the appropriate arguments.

[21/49] crazy_functions\GenerateFunctionComments.py

The program file "GenerateFunctionComments.py" is a module that contains two functions:

  • "GenerateFunctionComments": This function takes a file manifest, project folder, and other arguments as input, and generates comments for all functions in the files specified in the manifest. It also outputs the results using markdown tables.
  • "BatchGenerateFunctionComments": This is a wrapper function that takes additional input (text, web port), and first checks if the specified project folder exists or not. If it exists, it calls the "GenerateFunctionComments" function with appropriate arguments. If the project folder doesn't exist, the function reports an exception and exits.

The module also imports some utility functions and modules from two different modules: "toolbox" and "crazy_utils". It also has a global parameter "fast_debug" that can be used to enable or disable debug mode.

The "GenerateFunctionComments" function first reads the contents of each file specified by the file manifest. Then, it calls an external function "request_gpt_model_in_new_thread_with_ui_alive" to generate comments for all functions in the file. This function may take some time to execute, and the program uses a chatbot and history mechanism to update the user interface and show progress. Once comments are generated for all functions in all files, the function writes the results to file and asks the user if they are done.

The "BatchGenerateFunctionComments" function first checks if the specified project folder exists or not. If it does, it calls the "GenerateFunctionComments" function. If not, it reports an exception and exits.

[22/49] crazy_functions\GoogleSearchAssistant.py

The program file GoogleSearchAssistant.py contains a function GoogleSearchAssistant that analyzes Google Scholar to extract information about all articles that appear for the given input search term. It imports and uses several modules including arxiv, math, BeautifulSoup, and local modules such as crazy_utils, toolbox, and update_ui. The function retrieves the webpage content, parses it, and extracts titles, authors, citations, and abstracts of all articles. It then uses the arxiv module to check if each article is also available on arxiv, and if so, replaces the abstract obtained from the webpage with the abstract obtained from arxiv. Finally, it uses a language model to generate a response that includes a markdown table with information about all the articles.

[23/49] crazy_functions\ImageGeneration.py

The file ImageGeneration.py contains a function ImageGeneration that generates an image from a given prompt. The function takes in parameters such as prompt, GPT model parameters, plugin model parameters, chatbot display handle, and chat history. The function generates an image using the OpenAI API endpoint with the provided parameters and saves the file locally. The chatbot display handle is updated with the generated image's URL and preview image from the saved local file. The function also handles exceptions using the CatchException decorator.

[24/49] crazy_functions\InquiryMultipleLargeLanguageModels.py

The file InquiryMultipleLargeLanguageModels.py contains two functions:

  1. SimultaneousInquiry, which accepts text entered by the user in the input field, GPT model parameters, plugin model parameters, chatbot display box handle, chat history, silent reminder to GPT, and the current software running port number. This function clears the chat history, appends a message to the chatbox, requests GPT and GLM models in new threads, and updates the UI when the results come in.

  2. InquireSimultaneously_SpecifiedModel, which accepts the same parameters as SimultaneousInquiry, except that it adds an additional advanced_arg parameter to the plugin model parameters. This function clears the chat history, appends a message to the chatbox, checks if the advanced_arg parameter is present and not an empty string, sets the llm_model parameter accordingly, requests GPT and GLM models in new threads, and updates the UI when the results come in.

[25/49] crazy_functions\LatexFullTextTranslation.py

This program file is called "LatexFullTextTranslation.py" and contains two functions for translating entire LaTeX projects from English to Chinese and vice versa. The first function called "LatexEnglishToChinese" takes a text input and attempts to translate the entire LaTeX project from English to Chinese using OpenAI's GPT-3 API. The second function called "LatexChineseToEnglish" does the same but translates from Chinese to English instead. The program also contains helper functions for splitting long LaTeX files and organizing the translation results. The program imports dependencies such as "tiktoken" and "glob" and uses regular expressions to remove comments from the LaTeX files.

[26/49] crazy_functions\MathematicalAnimationGenerationManim.py

The file named MathematicalAnimationGenerationManim.py contains code for generating mathematical animations using the manim library. The code includes functions for importing dependencies and evaluating manim animation code. The AnimationGeneration function is the main function that generates the animation. The function takes text entered by the user and uses GPT to generate manim animation code based on the input. The code block is then passed to the eval_manim function which generates the animation and returns the file path of the generated video. The file also includes some examples of manim animation code to assist GPT in generating code.

[27/49] crazy_functions\ParseProjectSourceCode.py

The program file ParseProjectSourceCode.py contains several functions that are used for parsing source code projects. Specifically, it includes functions for parsing Python projects, C projects, C project header files, Java projects, and front-end projects. The ParsingSourceCodeNew function uses multi-threading to analyze each file in the project, generate a request thread, and send it to chatgpt for analysis. Once all files have been parsed, the function writes the results to a file and summarizes and analyzes the project source code using grouping and iterative processing. The other functions in the file are wrappers that call this function to parse different types of projects. Additionally, the file imports various utility functions and modules from within the program.

[28/49] crazy_functions\ParsingJupyterNotebook.py

The file ParsingJupyterNotebook.py contains several functions for parsing Jupyter Notebook files. The function parseNotebook reads a Jupyter Notebook file in JSON format and returns a string representation of the code blocks, with separate entries for code blocks and markdown blocks. The function IpynbExplanation takes a list of file paths pointing to Jupyter Notebook files, splits any long files into smaller segments, and requests text explanations for each segment using GPT models. Finally, the function ParsingIpynbFiles is a wrapper function that takes a file path (either to a Jupyter Notebook file or a folder containing Jupyter Notebook files), finds all the relevant files, and passes them to IpynbExplanation. The file also defines a class PaperFileGroup with methods for splitting an input text into shorter segments based on a token limit.

[29/49] crazy_functions\ReadArticleWriteSummary.py

The file ReadArticleWriteSummary.py contains a function called ReadArticleWriteSummary that takes inputs txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port. The function starts by checking if the input txt is a valid directory path that contains .tex files. If it is not, an error message is displayed, and the function ends. If there are .tex files in the directory, the function calls another function called ParsePaper to loop through each file manifest and summarize the content of each file using GPT model. Finally, the function displays the summary of all the files in the directory.

[30/49] crazy_functions\RewriteCodeToEnglish_MultiThreaded.py

The program file "RewriteCodeToEnglish_MultiThreaded.py" contains a Python script that aims to translate all Chinese characters in a given codebase into English using the GPT-3 API. The script makes use of multi-threading to speed up the translation process and is designed to break up large code files into smaller chunks to comply with token limits. Additionally, the script creates a backup of the original code and saves the translated results in a specified folder. The script also has various error-handling mechanisms in place to handle potential issues with imports and thread execution.

[31/49] crazy_functions\SummarizingWordDocuments.py

This program file is designed to summarize Word documents in batch. It imports the update_ui, CatchException, report_exception, and write_results_to_file functions from the toolbox module and the request_gpt_model_in_new_thread_with_ui_alive function and breakdown_txt_to_satisfy_token_limit_for_pdf function from the crazy_utils module. The SummarizingWordDocuments function takes input parameters such as txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, and web_port. It first checks if the necessary dependencies are installed, then clears the input history, searches for the files to be processed, and executes the main task by calling the ParseDocx function for each file. The ParseDocx function reads the file content using either the docx or pywin32 module depending on the file type, then breaks it into fragments to make it fit the token limit for the language model (llm_model). It then prompts the user to summarize each fragment using the request_gpt_model_in_new_thread_with_ui_alive function and stores the history of the conversation. Finally, if the article is cut into pieces, the function prompts the user to summarize the main content of the entire article based on the previous conversation history. The program also calls the write_results_to_file function to save the history and updates the user interface using the update_ui function.

[32/49] crazy_functions\SummaryAudioVideo.py

The program file SummaryAudioVideo.py contains a Python module that provides an audio and video summarization functionality. The split_audio_file function accepts an audio file as input and segments it into multiple audio clips of a specified duration. The AnalyAudio function then takes these segmented clips, converts each one to text using the OpenAI whisper model, and summarizes the resulting text using the GPT model. The SummaryAudioVideo function acts as the main entry point for the program and takes in a path to an audio or video file, searches for all files of supported types in the specified directory, and passes them to the AnalyAudio function for further processing and summarization.

[33/49] crazy_functions\UnderstandPdfDocumentContent.py

The file "UnderstandPdfDocumentContent.py" contains a function "ParsePDF" which takes a PDF file as input and performs several steps to extract high-value information from the PDF, including splitting the PDF into several sections, extracting information from the abstract, iterating through the entire article to extract concise information, organizing the history, and setting a token limit to prevent token overflow. The file also contains a function "UnderstandPdfDocumentContentStandardFileInput" which checks for dependencies and searches for a list of PDF files in a given project folder and applies the "ParsePDF" function to the first file found. If no files are found, it returns an error message.

[34/49] crazy_functions_init_.py

Unfortunately, there is no code provided in the question. However, based solely on the file name "iscrazy_functions_init_.py", it can be inferred that this is a Python package and the given file "__init__.py" is the initialization file for the package. This file is typically used to define the behavior of the package when it is imported and to set up any necessary configuration or resources. Without more information about the content of the file, it is difficult to provide a more detailed overview of its purpose and functionality within the larger program.

[35/49] request_llm\bridge_all.py

The file request_llm/bridge_all.py contains two main functions that are common interfaces for all LLMs:

  1. predict(...): This function is used in normal conversation and is fully interactive but not multi-threaded.

  2. predict_no_ui_long_connection(...): This function has multi-threading capability and is called in function plugins. It is flexible and concise.

The file also contains a class LazyloadTiktoken which is used to load and encode text data with a tokenizer.

The variables API_URL_REDIRECT and AVAIL_LLM_MODELS are used to get configuration options for the LLM models.

The dictionary model_info contains information about each LLM model, such as function name, maximum token count, and tokenizer.

The function LLM_CATCH_EXCEPTION is a decorator used to catch and display errors.

The function predict_no_ui_long_connection handles queries to multiple LLM models at the same time and uses multi-threading to process them in parallel.

The function predict handles basic conversation functions and uses streaming to get the LLM model's output.

[36/49] request_llm\bridge_chatglm.py

The bridge_chatglm.py file contains code for communicating with the ChatGLM language model. The GetGLMHandle class is responsible for loading the ChatGLM model and tokenizer, and for running the model to generate responses to user input. The predict_no_ui_long_connection function provides a multithreaded method for generating responses without requiring a user interface. The predict function provides a single-threaded method for generating responses and updating a user interface. Both functions use the GetGLMHandle class to generate responses from the ChatGLM model.

[37/49] request_llm\bridge_chatgpt.py

The file bridge_chatgpt.py contains three functions for interacting with OpenAI's GPT model:

  1. predict: This function sends input data to the GPT model and receives output in a streaming way. It is used for basic conversation functions.

  2. predict_no_ui: This function calls advanced experimental function modules and will not be displayed on the interface in real-time. It can be multi-threaded and parallel and is convenient for implementing complex functional logic.

  3. predict_no_ui_long_connection: This function solves the problem of disconnection to OpenAI when calling predict_no_ui to process long documents. It uses stream and also supports multi-threading.

[38/49] request_llm\bridge_jittorllms_llama.py

The program file llms_llama.py is a Python module that provides a method to predict responses using JittorLLMs. It imports AutoModel and AutoTokenizer from the transformers module, and other necessary libraries.

It defines a GetGLMHandle class that contains methods for loading, running, and handling errors related to JittorLLMs. The stream_chat method of this class is responsible for sending queries to JittorLLMs and receiving its responses. This is done using a pipe connection between the main process and a subprocess that runs the JittorLLMs model.

The predict_no_ui_long_connection function is a multithreading method that uses the stream_chat method of the GetGLMHandle class to predict responses. It also has a watch dog (watchdog) patience to terminate the program if it does not receive a response within a certain time.

The predict function is a single-threaded method that also uses the stream_chat method of the GetGLMHandle class to predict responses. It takes additional arguments such as plugin_kwargs, chatbot, and history, which are used to update the chat interface and maintain a history of the conversation.

Overall, this program file provides methods to interact with JittorLLMs for generating chatbot responses.

[39/49] request_llm\bridge_jittorllms_pangualpha.py

The program file request_llm\bridge_jittorllms_pangualpha.py imports AutoModel and AutoTokenizer from the transformers module and also imports other modules such as time, threading, importlib, toolbox, and multiprocessing.

The file defines a GetGLMHandle class that inherits from the Process class. The GetGLMHandle class is used to load the jittorllms model in a separate process and run it. It also has a stream_chat method that yields responses from the jittorllms model as it streams them.

The file also includes the predict_no_ui_long_connection function, which uses the GetGLMHandle class to stream responses from the jittorllms model in a multithreaded way. The function takes in the inputs, llm_kwargs, history, sys_prompt, observe_window, and console_silence arguments.

Finally, the file has the predict function that uses the GetGLMHandle class to stream responses from the jittorllms model in a single-threaded way. The function takes in the inputs, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, stream, and additional_fn arguments.

[40/49] request_llm\bridge_jittorllms_rwkv.py

The file request_llm\bridge_jittorllms_rwkv.py contains a Python module that provides the functionality for a chatbot by leveraging the JittorLLMs language model.

The script imports necessary libraries for the program, including AutoModel and AutoTokenizer from transformers along with functions and classes from other modules within the project, such as toolbox and config.py.

The main function in the module is predict, which predicts responses to user inputs based on historical dialogue using a JittorLLMs language model. The function takes as input the user input and several other parameters, including llm_kwargs, plugin_kwargs, chatbot, and history. It outputs the predicted response to the user input.

The predict function is supported by a few other functions in the module, including predict_no_ui_long_connection and GetGLMHandle. The former defines the process for running the JittorLLMs language model. The latter is a Python class that orchestrates the loading of the JittorLLMs model, receives input queries from the predict function, and outputs responses generated by the JittorLLMs model. The script also defines a global variable called rwkv_glm_handle that stores a GetGLMHandle object to keep track of whether the JittorLLMs model has been loaded.

A few print statements throughout the module provide useful logs during JittorLLMs model loading and response generation. Finally, the script raises an error if jittorllms dependencies are missing.

[41/49] request_llm\bridge_moss.py

The program file request_llm/bridge_moss.py contains code for running a conversational language model called MOSS. The file imports necessary libraries and modules such as AutoModel, AutoTokenizer, time, threading, importlib, datasets, os, Process, Pipe, torch, etc. The GetGLMHandle class is defined to handle the loading and initialization of the MOSS model. It includes a check_dependency() method that checks whether the required dependencies for MOSS are installed and raises an error or warning if they are not. The moss_init() method is used to load the MOSS parameters and display some instructions. The run() method is used to send queries to MOSS and receive the responses while the program is running. The methods stream_chat() and predict_no_ui_long_connection() are used to interact with the MOSS model and get responses for the given inputs. The predict() method is the main method which takes the user inputs as an argument and returns the corresponding model response. It also contains error handling and some utility functions such as update_ui(), get_conf(), etc.

[42/49] request_llm\bridge_newbing.py

The program file bridge_newbing.py has three main parts.

The first part imports the NewbingChatbot class from the edge_gpt.py module in the EdgeGPT repository. This module is responsible for creating an instance of the chatbot model and connecting to it.

The second part defines the NewBingHandle class, which is a multiprocessing child process that runs asynchronously and handles communication with the Newbing interface. The stream_chat() method of this class receives chatbot queries from the main process, sends them to the Newbing interface for processing, and returns the response fragments. The preprocess_newbing_out() method formats and cleans up the response from Newbing before it is passed to the main process.

The third and final part defines two functions predict() and predict_no_ui_long_connection(), which act as a uniform interface for calling the Newbing chatbot. The predict() function runs in a single-threaded mode and handles user input, while predict_no_ui_long_connection() processes queries with multithreading. Both functions utilize the NewBingHandle class to handle communication with the Newbing interface and return formatted and cleaned up results.

[43/49] request_llm\bridge_newbingfree.py

This program file is named "bridge_newbingfree.py" and contains three main parts:

  1. The first part imports the Chatbot class from "edge_gpt_free.py" file in the same directory with the alias "NewbingChatbot" and creates a "load_message" string that displays a message while waiting for a response from NewBing.

  2. The second part defines a child process called "NewBingHandle". This process is responsible for handling API requests to the NewBing service by communicating with the main process through a pipe. It first checks for dependencies required for NewBing to run and sets a lock to prevent multiple calls from interfering with each other. Then, it loads the required dependency packages and creates a NewBing model. Finally, it runs an async function to process incoming requests and sends the response back to the main process.

  3. The third part defines two prediction functions, "predict_no_ui_long_connection" and "predict", used to support multithreading methods and a single-threaded method, respectively. These functions use the NewBingHandle process to send questions to the NewBing API and receive responses. They also implement the error handling mechanism to ensure the stable and reliable API communication. The "predict" function additionally handles updating the UI with the response received from NewBing.

[44/49] request_llm\bridge_stackclaude.py

This file request_llm\bridge_stackclaude.py contains a class SlackClient that handles interaction with the Slack API for message sending and receiving. It also contains a ClaudeHandle class that runs as a child process and waits for requests to come in, starts asking the question, and gets a response from the SlackClient, sending it back to the main process. Finally, there are two predict functions that utilize instances of SlackClient and ClaudeHandle to generate responses to user input using a language model.

[45/49] request_llm\bridge_tgui.py

The bridge_tgui.py file contains functions for handling communication with a chatbot server using web sockets.

The run function connects to the server via web sockets and passes it the input text, LLN model parameters, and session hash, then receives and yields the chatbot response.

The predict function is used for basic conversation functions and sends the inputs to the chatbot server in a streaming way. It updates the chatbot user interface with each response received.

The predict_no_ui_long_connection function is used for obtaining a response from the chatbot server without using the UI, and returns the chatbot response as a string.

Overall, the file provides functionality to handle communication with a chatbot server using web sockets and interact with it in a streaming way.

[46/49] request_llm\edge_gpt.py

The program file request_llm\edge_gpt.py contains the implementation of a chatbot using the Bing AI API. It includes classes for creating requests to the API, managing conversations, and interacting with the chatbot. The code uses websockets to communicate with the API and includes logic for handling responses from the API in JSON format. The program file also includes various constants for configuring the request headers and SSL/TLS context. Additionally, there are functions for generating random IPs and hexadecimal strings. Overall, the file provides a simple but extensible framework for building chatbots using the Bing AI API.

[47/49] request_llm\edge_gpt_free.py

The program file request_llm\edge_gpt_free.py is a Python module that enables the user to interact with a chat application via the Microsoft Bing Chat API. The program starts by importing necessary modules like asyncio, json, aiohttp, httpx, and others. It then declares a set of constants, including endpoints from the Bing Chat API, default headers, and some conversation styles. It also defines helper functions for generating a random IP address, appending a unique identifier to the end of the message, and creating a ChatHub request.

The body of the program defines two classes that implement the Bing Chat API. The first class is _ChatHubRequest, which is used to generate a request message for interactions with the chat server. The second class is _Conversation, which initializes a chat conversation with the server, sends messages to the server, and retrieves responses from the server.

The create method of the _Conversation class is an asynchronous method that initializes a chat conversation with the server. It works by sending a GET request to a Bing endpoint and setting up a session with the server. The update method of _ChatHubRequest class is responsible for updating the message that is sent by the _Conversation class. The messages it creates can include various options, search results, and previous messages. These messages are sent to the server to retrieve responses.

The module has been developed to work with the Microsoft Bing Chat API and it provides functionality for starting a chat conversation and sending messages to the server, which can be useful in building applications that require chat functionality.

[48/49] request_llm\test_llms.py

The file request_llm\test_llms.py is a unit testing module for LLM models. It first imports and sets up the required environment by validating the script path and appending the root directory to the system path. Then, it imports the predict_no_ui_long_connection function from one of the LLM model bridge modules (bridge_newbingfree.py, bridge_moss.py, etc.). It sets up a dictionary of LLM keyword arguments and tests the predict_no_ui_long_connection function with different inputs and prompt histories. Finally, the module defines a GetGLMHandle method that initializes and runs another process, but this method is currently commented out.

Briefly describe the functions of the following files in a Markdown table:

check_proxy.py, colorful.py, config.py, config_private.py, core_functional.py, cradle.py, crazy_functional.py, main.py, theme.py, toolbox.py, crazy_functions\AdvancedFunctionTemplate.py, crazy_functions\BatchSummarizePDFDocuments.py, crazy_functions\BatchSummarizePDFDocumentsUsingPdfminer.py, crazy_functions\BatchTranslateMarkdown.py, crazy_functions\BatchTranslatePDFDocuments_MultiThreaded.py, crazy_functions\ChatGPTConnectedToNetwork.py。Based on the above analysis,Summarize the overall function of the program in one sentence。

File Function
check_proxy.py Functions for checking and updating the proxy server configuration.
colorful.py Functions for printing text to the console in different colors.
config.py Configuration settings for the program, such as proxy server configurations and language model used.
config_private.py More sensitive configuration settings, such as API keys and Slack integration settings.
core_functional.py Dictionary of core functions that can be used by the program, such as academic polishing and code explanation.
cradle.py Python script for an animation created using the Manim library.
crazy_functional.py Collection of plugins that can be accessed by the user, such as translations and summarization.
main.py Main code file for the program that provides an AI chatbot powered by GPT language models.
theme.py Function for customizing the Gradio UI theme.
toolbox.py Functions that define the chatbot's input and output system, as well as utilities such as error handling and UI updates.
crazy_functions\AdvancedFunctionTemplate.py High-order function template that provides a starting point for implementing new features.
crazy_functions\BatchSummarizePDFDocuments.py Function for summarizing the content of a set of PDF documents using GPT.
crazy_functions\BatchSummarizePDFDocumentsUsingPdfminer.py Function for summarizing the content of a set of PDF documents using the pdfminer library.
crazy_functions\BatchTranslateMarkdown.py Functions for batch translation of Markdown files.
crazy_functions\BatchTranslatePDFDocuments_MultiThreaded.py Function for batch translation of PDF documents with multi-threading support.
crazy_functions\ChatGPTConnectedToNetwork.py Function for integrating chatbot communication with internet information.

Overall, the program is an AI-powered chatbot that provides a wide range of features such as academic polishing, translations, summarization, and code explanation. It also includes utilities such as error handling, UI updates, and customizability of the Gradio UI theme. The program enables developers to implement new features quickly with a high-order function template and supports batch processing of documents with multi-threading support. The codebase also includes modules for handling configuration settings, proxy configurations, and network connections.

Briefly describe the functions of the following files in a Markdown table:

crazy_functions\ConversationHistoryArchive.py, crazy_functions\crazy_functions_test.py, crazy_functions\crazy_utils.py, crazy_functions\DownloadArxivPaperTranslateAbstract.py, crazy_functions\FullTextProofreadingForLatex.py, crazy_functions\GenerateFunctionComments.py, crazy_functions\GoogleSearchAssistant.py, crazy_functions\ImageGeneration.py, crazy_functions\InquiryMultipleLargeLanguageModels.py, crazy_functions\LatexFullTextTranslation.py, crazy_functions\MathematicalAnimationGenerationManim.py, crazy_functions\ParseProjectSourceCode.py, crazy_functions\ParsingJupyterNotebook.py, crazy_functions\ReadArticleWriteSummary.py, crazy_functions\RewriteCodeToEnglish_MultiThreaded.py, crazy_functions\SummarizingWordDocuments.py。Based on the above analysis,Summarize the overall function of the program in one sentence。

File Name Function
ConversationHistoryArchive.py Functions for archiving and accessing conversation history in a Python-based chatbot program.
crazy_functions_test.py Script for unit testing of function plugins in the crazy_functions package.
crazy_utils.py Utility functions for requesting GPT models while keeping the user interface active, and for handling input clipping and overflow errors.
DownloadArxivPaperTranslateAbstract.py Functions for downloading a PDF file from the Arxiv website and extracting its abstract.
FullTextProofreadingForLatex.py Functions for proofreading LaTeX documents in full text.
GenerateFunctionComments.py Function for generating comments for all functions, specified in the manifest, with modules imported.
GoogleSearchAssistant.py Function for extracting information about all articles that appear for the given input search term using Google Scholar.
ImageGeneration.py Function for generating an image from a given prompt using the OpenAI API endpoint.
InquiryMultipleLargeLanguageModels.py Functions for simultaneous inquiries using multiple GPT models.
LatexFullTextTranslation.py Functions for translating entire LaTeX projects from English to Chinese and vice versa.
MathematicalAnimationGenerationManim.py Functions for generating mathematical animations using the Manim library.
ParseProjectSourceCode.py Functions for parsing source code projects in various languages.
ParsingJupyterNotebook.py Functions for parsing Jupyter Notebook files.
ReadArticleWriteSummary.py Function for summarizing Word documents in batch.
RewriteCodeToEnglish_MultiThreaded.py Functions for translating all Chinese characters in a given codebase into English using the GPT-3 API.
SummarizingWordDocuments.py Function for summarizing Word documents in batch.

The program is an AI-powered chatbot that provides a wide range of features such as translations, proofreading, summarizations, and code explanation with a modular approach to functions and multi-threading and with a focus on GPT models as a widely applied technology in natural language processing.

Briefly describe the functions of the following files in a Markdown table:

crazy_functions\SummaryAudioVideo.py, crazy_functions\UnderstandPdfDocumentContent.py, crazy_functions_init_.py, request_llm\bridge_all.py, request_llm\bridge_chatglm.py, request_llm\bridge_chatgpt.py, request_llm\bridge_jittorllms_llama.py, request_llm\bridge_jittorllms_pangualpha.py, request_llm\bridge_jittorllms_rwkv.py, request_llm\bridge_moss.py, request_llm\bridge_newbing.py, request_llm\bridge_newbingfree.py, request_llm\bridge_stackclaude.py, request_llm\bridge_tgui.py, request_llm\edge_gpt.py, request_llm\edge_gpt_free.py。Based on the above analysis,Summarize the overall function of the program in one sentence。

File Function
crazy_functions\SummaryAudioVideo.py Provides an audio and video summarization functionality.
crazy_functions\UnderstandPdfDocumentContent.py Extracts high-value information from PDF documents, such as extracting concise information and organizing the history.
crazy_functions\__init__.py Initialization file for a Python package.
request_llm\bridge_all.py Provides common interfaces for all LLMs, including predict and predict_no_ui_long_connection functions.
request_llm\bridge_chatglm.py Communicates with the ChatGLM language model.
request_llm\bridge_chatgpt.py Interacts with OpenAI's GPT language model.
request_llm\bridge_jittorllms_llama.py Provides the functionality to predict responses using JittorLLMs.
request_llm\bridge_jittorllms_pangualpha.py Runs a conversational language model called ChatGLM.
request_llm\bridge_jittorllms_rwkv.py Predicts responses to user inputs based on historical dialogue using a JittorLLMs language model.
request_llm\bridge_moss.py Runs a conversational language model called MOSS.
request_llm\bridge_newbing.py Handles interaction with the Slack API for message sending and receiving.
request_llm\bridge_newbingfree.py Implements a chatbot using the Bing AI API.
request_llm\bridge_stackclaude.py Communicates with a chatbot server using websockets.
request_llm\bridge_tgui.py Enables the user to interact with a chat application via the Microsoft Bing Chat API using websockets.
request_llm\edge_gpt.py Implements a chatbot using the Bing AI API.
request_llm\edge_gpt_free.py Enables the user to interact with a chat application via the Microsoft Bing Chat API.

Overall, the program is a modular AI-powered chatbot that offers various natural language processing features such as translations, proofreading, summarizations, and code explanation, with a focus on different models such as GPT, JittorLLMs, ChatGLM, Bing API, and more to enhance performance and efficiency.

Briefly describe the functions of the following files in a Markdown table:request_llm\test_llms.py。Based on the above analysis,Summarize the overall function of the program in one sentence。

File Function
request_llm\test_llms.py A unit testing module for LLM models, that imports and tests the predict_no_ui_long_connection function with different inputs and prompt histories.

Based on the analysis of the test_llms.py file, it can be concluded that the program is a modular AI-powered chatbot that offers natural language processing features using different LLM models, with a focus on GPT models and multi-threading to enhance performance and efficiency. The test_llms.py file is responsible for testing and validating the LLM models.