怎么使用Qwen-14B的本地模型 #1210
Unanswered
BlueDarkUP
asked this question in
Q&A
Replies: 1 comment
-
有没有好心人帮个忙,实在感谢 |
Beta Was this translation helpful? Give feedback.
0 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
-
我尝试把bridge_qwen的model_id = 'Qwen-14B-Chat-Int4',但出现报错
2023-10-29 18:18:18,083 - modelscope - INFO - Loading ast index from C:\Users\.cache\modelscope\ast_indexer
2023-10-29 18:18:18,170 - modelscope - INFO - Loading done! Current index file version is 1.9.4, with md5 5cb916cfe3a86d42811e30e6e5bb84fe and a total number of 945 components indexed
Traceback (most recent call last):
File "D:\gpt_academic-master\venv\lib\site-packages\gradio\routes.py", line 422, in run_predict
output = await app.get_blocks().process_api(
File "D:\gpt_academic-master\venv\lib\site-packages\gradio\blocks.py", line 1323, in process_api
result = await self.call_function(
File "D:\gpt_academic-master\venv\lib\site-packages\gradio\blocks.py", line 1067, in call_function
prediction = await utils.async_iteration(iterator)
File "D:\gpt_academic-master\venv\lib\site-packages\gradio\utils.py", line 336, in async_iteration
return await iterator.anext()
File "D:\gpt_academic-master\venv\lib\site-packages\gradio\utils.py", line 329, in anext
return await anyio.to_thread.run_sync(
File "D:\gpt_academic-master\venv\lib\site-packages\anyio\to_thread.py", line 33, in run_sync
return await get_asynclib().run_sync_in_worker_thread(
File "D:\gpt_academic-master\venv\lib\site-packages\anyio_backends_asyncio.py", line 877, in run_sync_in_worker_thread
return await future
File "D:\gpt_academic-master\venv\lib\site-packages\anyio_backends_asyncio.py", line 807, in run
result = context.run(func, *args)
File "D:\gpt_academic-master\venv\lib\site-packages\gradio\utils.py", line 312, in run_sync_iterator_async
return next(iterator)
File "D:\gpt_academic-master\toolbox.py", line 88, in decorated
yield from f(txt_passon, llm_kwargs, plugin_kwargs, chatbot_with_cookie, history, system_prompt, *args)
File "D:\gpt_academic-master\request_llm\bridge_all.py", line 584, in predict
yield from method(inputs, llm_kwargs, *args, **kwargs)
File "D:\gpt_academic-master\request_llm\local_llm_class.py", line 153, in predict
_llm_handle = LLMSingletonClass()
File "D:\gpt_academic-master\request_llm\local_llm_class.py", line 15, in _singleton
_instance[cls] = cls(*args, **kargs)
File "D:\gpt_academic-master\request_llm\local_llm_class.py", line 36, in init
self.start()
File "C:\Program Files\Python39\lib\multiprocessing\process.py", line 121, in start
self._popen = self._Popen(self)
File "C:\Program Files\Python39\lib\multiprocessing\context.py", line 224, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
File "C:\Program Files\Python39\lib\multiprocessing\context.py", line 327, in _Popen
return Popen(process_obj)
File "C:\Program Files\Python39\lib\multiprocessing\popen_spawn_win32.py", line 93, in init
reduction.dump(process_obj, to_child)
File "C:\Program Files\Python39\lib\multiprocessing\reduction.py", line 60, in dump
ForkingPickler(file, protocol).dump(obj)
_pickle.PicklingError: Can't pickle <class 'request_llm.bridge_qwen.GetONNXGLMHandle'>: it's not the same object as request_llm.bridge_qwen.GetONNXGLMHandle
Traceback (most recent call last):
File "", line 1, in
File "C:\Program Files\Python39\lib\multiprocessing\spawn.py", line 116, in spawn_main
exitcode = _main(fd, parent_sentinel)
File "C:\Program Files\Python39\lib\multiprocessing\spawn.py", line 126, in _main
self = reduction.pickle.load(from_parent)
EOFError: Ran out of input
我想知道怎么部署通义千问啊,找遍了啥也没找到
Beta Was this translation helpful? Give feedback.
All reactions