forked from roxanneluo/Federated-Learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasource.py
130 lines (109 loc) · 5.51 KB
/
datasource.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import numpy as np
import keras
import random
from keras.datasets import mnist
from keras import backend as K
class DataSource(object):
def __init__(self):
raise NotImplementedError()
def partitioned_by_rows(self, num_workers, test_reserve=.3):
raise NotImplementedError()
def sample_single_non_iid(self, weight=None):
raise NotImplementedError()
class Mnist(DataSource):
IID = False
MAX_NUM_CLASSES_PER_CLIENT = 5
def __init__(self):
mnistdata = np.load('./mnist.npz')
x_train = mnistdata['x_train']
y_train = mnistdata['y_train']
x_test = mnistdata['x_test']
y_test = mnistdata['y_test']
#(x_train, y_train), (x_test, y_test) = mnist.load_data()
self.x = np.concatenate([x_train, x_test]).astype('float')
self.y = np.concatenate([y_train, y_test])
n = self.x.shape[0]
idx = np.arange(n)
np.random.shuffle(idx)
self.x = self.x[idx] # n * 28 * 28
self.y = self.y[idx] # n * 1
data_split = (0.6, 0.3, 0.1)
num_train = int(n * data_split[0])
num_test = int(n * data_split[1])
self.x_train = self.x[0:num_train]
self.x_test = self.x[num_train:num_train + num_test]
self.x_valid = self.x[num_train + num_test:]
self.y_train = self.y[0:num_train]
self.y_test = self.y[num_train:num_train + num_test]
self.y_valid = self.y[num_train + num_test:]
self.classes = np.unique(self.y)
def gen_dummy_non_iid_weights(self):
self.classes = np.array(range(10))
num_classes_this_client = random.randint(1, Mnist.MAX_NUM_CLASSES_PER_CLIENT + 1)
classes_this_client = random.sample(self.classes.tolist(), num_classes_this_client)
w = np.array([random.random() for _ in range(num_classes_this_client)])
weights = np.array([0.] * self.classes.shape[0])
for i in range(len(classes_this_client)):
weights[classes_this_client[i]] = w[i]
weights /= np.sum(weights)
return weights.tolist()
# assuming client server already agreed on data format
def post_process(self, xi, yi):
if K.image_data_format() == 'channels_first':
xi = xi.reshape(1, xi.shape[0], xi.shape[1])
else:
xi = xi.reshape(xi.shape[0], xi.shape[1], 1)
y_vec = keras.utils.to_categorical(yi, self.classes.shape[0])
return xi / 255., y_vec
# split evenly into exact num_workers chunks, with test_reserve globally
def partitioned_by_rows(self, num_workers, test_reserve=.3):
n_test = int(self.x.shape[0] * test_reserve)
n_train = self.x.shape[0] - n_test
nums = [n_train // num_workers] * num_workers
nums[-1] += n_train % num_workers
idxs = np.array([np.random.choice(np.arange(n_train), num, replace=False) for num in nums])
return {
# (size_partition * 28 * 28, size_partition * 1) * num_partitions
"train": [post_process(self.x[idx], self.y[idx]) for idx in idxs],
# (n_test * 28 * 28, n_test * 1)
"test": post_process(self.x[np.arange(n_train, n_train + n_test)], self.y[np.arange(n_train, n_train + n_test)])
}
# Generate one sample from all available data, *with replacement*.
# This is to simulate date generation on a client.
# weight: [probablity of classes]
# returns: 28 * 28, 1
def sample_single_non_iid(self, x, y, weight=None):
# first pick class, then pick a datapoint at random
chosen_class = np.random.choice(self.classes, p=weight)
candidates_idx = np.array([i for i in range(y.shape[0]) if y[i] == chosen_class])
idx = np.random.choice(candidates_idx)
return self.post_process(x[idx], y[idx])
# generate t, t, v dataset given distribution and split
def fake_non_iid_data(self, min_train=100, max_train=1000, data_split=(.6,.3,.1)):
# my_class_distr = np.array([np.random.random() for _ in range(self.classes.shape[0])])
# my_class_distr /= np.sum(my_class_distr)
my_class_distr = [1. / self.classes.shape[0] * self.classes.shape[0]] if Mnist.IID \
else self.gen_dummy_non_iid_weights()
train_size = random.randint(min_train, max_train)
test_size = int(train_size / data_split[0] * data_split[1])
valid_size = int(train_size / data_split[0] * data_split[2])
train_set = [self.sample_single_non_iid(self.x_train, self.y_train, my_class_distr) for _ in range(train_size)]
test_set = [self.sample_single_non_iid(self.x_test, self.y_test, my_class_distr) for _ in range(test_size)]
valid_set = [self.sample_single_non_iid(self.x_valid, self.y_valid, my_class_distr) for _ in range(valid_size)]
print("done generating fake data")
return ((train_set, test_set, valid_set), my_class_distr)
if __name__ == "__main__":
# m = Mnist()
# # res = m.partitioned_by_rows(9)
# # print(res["test"][1].shape)
# for _ in range(10):
# print(m.gen_dummy_non_iid_weights())
fake_data, my_class_distr = Mnist().fake_non_iid_data(min_train=100,max_train=100,data_split=(0.6, 0.3, 0.1))
train_set, test_set, valid_set = fake_data
x_train = np.array([tup[0] for tup in train_set])
y_train = np.array([tup[1] for tup in train_set])
x_test = np.array([tup[0] for tup in test_set])
y_test = np.array([tup[1] for tup in test_set])
x_valid = np.array([tup[0] for tup in valid_set])
y_valid = np.array([tup[1] for tup in valid_set])
print(y_valid)