-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.py
49 lines (43 loc) · 2.06 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import os.path as osp
import os
class parser:
def __init__(self):
self.dataroot = 'dataset'
self.datamode = 'train' #train, test
self.stage = 'TOM' #GMM, SEG, TOM
self.runmode = self.datamode
self.name = self.stage
if self.datamode == 'train':
self.data_list = 'train_pairs.txt'
elif self.datamode == 'test':
self.data_list = 'test_pairs.txt'
self.fine_width = 192
self.fine_height = 256
self.radius = 4
self.grid_path = osp.join(self.dataroot, 'grid.png')
if self.datamode == 'train': #for training keep true, for test keep false
self.shuffle = True
else:
self.shuffle = False
self.batch_size = 16
self.workers = 1
self.grid_size = 5
self.lr = 0.002
self.keep_step = 8000
self.decay_step = 5500
self.previous_step = 0 #if you want to resume training from some steps
#set previous_step in as per last updated checkpoints
self.save_count = 200
self.display_count = 50
self.tensorboard_dir = osp.join(os.getcwd(), 'tensorboard')
self.checkpoint_dir = osp.join(os.getcwd(), 'checkpoints')
self.save_dir = osp.join(os.getcwd(), 'outputs') #for saving output while infernce
if not osp.exists(self.save_dir):
os.makedirs(self.save_dir)
if self.previous_step == 0:
self.checkpoint = ''
else:
self.checkpoint = osp.join(self.checkpoint_dir, self.name, 'step_%06d.pth' % (self.previous_step))
self.input_image_path = 'custom/input/019579_0.jpg'
self.cloth_image_path = 'custom/input/017575_1.jpg'
self.human_parsing_image_path = 'custom/input/019579_0.png'