-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
167 lines (122 loc) · 5.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import torch
import torch.nn as nn
from torchvision import models
from torch.nn.utils.rnn import pack_padded_sequence
from models import Encoder, Decoder
from utils import collate_fn
from vocab import build_vocab
import pickle
import argparse
import os
from torchvision import transforms
from dataset import cocoDataset
import numpy as np
def main(args):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Training on {device}")
if not os.path.exists(args.models_dir):
os.makedirs(args.models_dir)
if args.build_vocab:
print(f"Building vocabulary from captions at {args.captions_json} and with count threshold={args.threshold}")
vocab_object = build_vocab(args.captions_json, args.threshold)
with open(args.vocab_path, "wb") as vocab_f:
pickle.dump(vocab_object, vocab_f)
print(f"Saved the vocabulary object to {args.vocab_path}, total size={len(vocab_object)}")
else:
with open(args.vocab_path, 'rb') as f:
vocab_object = pickle.load(f)
print(f"Loaded the vocabulary object from {args.vocab_path}, total size={len(vocab_object)}")
if args.glove_embed_path is not None:
with open(args.glove_embed_path, 'rb') as f:
glove_embeddings = pickle.load(f)
print(f"Loaded the glove embeddings from {args.glove_embed_path}, total size={len(glove_embeddings)}")
# We are using 300d glove embeddings
args.embed_size = 300
weights_matrix = np.zeros((len(vocab_object), args.embed_size))
for word, index in vocab_object.word2index.items():
if word in glove_embeddings:
weights_matrix[index] = glove_embeddings[word]
else:
weights_matrix[index] = np.random.normal(scale=0.6, size=(args.embed_size, ))
weights_matrix = torch.from_numpy(weights_matrix).float().to(device)
else:
weights_matrix = None
img_transforms = transforms.Compose([
transforms.Resize((256, 256)),
transforms.RandomCrop((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])
train_dataset = cocoDataset(args.image_root, args.captions_json, vocab_object, img_transforms)
train_dataloader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
collate_fn=collate_fn)
encoder = Encoder(args.resnet_size, (3, 224, 224), args.embed_size).to(device)
decoder = Decoder(args.rnn_type, weights_matrix, len(vocab_object), args.embed_size, args.hidden_size).to(device)
encoder_learnable = list(encoder.linear.parameters())
decoder_learnable = list(decoder.rnn.parameters()) + list(decoder.linear.parameters())
if args.glove_embed_path is None:
decoder_learnable = decoder_learnable + list(decoder.embedding.parameters())
criterion = nn.CrossEntropyLoss()
params = encoder_learnable + decoder_learnable
optimizer = torch.optim.Adam(params, lr=args.learning_rate)
start_epoch = 0
if args.ckpt_path is not None:
model_ckpt = torch.load(args.ckpt_path)
start_epoch = model_ckpt['epoch'] + 1
prev_loss = model_ckpt['loss']
encoder.load_state_dict(model_ckpt['encoder'])
decoder.load_state_dict(model_ckpt['decoder'])
optimizer.load_state_dict(model_ckpt['optimizer'])
print(f"Loaded model and optimizer state from {args.ckpt_path}; start epoch at {start_epoch}; prev loss={prev_loss}")
total_examples = len(train_dataloader)
for epoch in range(start_epoch, args.num_epochs):
for i, (images, captions, lengths) in enumerate(train_dataloader):
images = images.to(device)
captions = captions.to(device)
targets = pack_padded_sequence(captions, lengths, batch_first=True).data
image_embeddings = encoder(images)
outputs = decoder(image_embeddings, captions, lengths)
loss = criterion(outputs, targets)
decoder.zero_grad()
encoder.zero_grad()
loss.backward()
optimizer.step()
if i % args.log_interval == 0:
loss_val = "{:.4f}".format(loss.item())
perplexity_val = "{:5.4f}".format(np.exp(loss.item()))
print(f"epoch=[{epoch}/{args.num_epochs}], iteration=[{i}/{total_examples}], loss={loss_val}, perplexity={perplexity_val}")
torch.save({
'epoch': epoch,
'encoder': encoder.state_dict(),
'decoder': decoder.state_dict(),
'optimizer': optimizer.state_dict(),
'loss': loss
}, os.path.join(args.models_dir, 'model-after-epoch-{}.ckpt'.format(epoch)))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Name models_dir appropriately across experiments lest models will get overwritten
parser.add_argument('--models_dir', type=str, required=True)
parser.add_argument('--build_vocab', default=False, action="store_true")
parser.add_argument('--vocab_path', type=str, help='vocabulary pickle path', required=True)
parser.add_argument('--image_root', type=str, default='train2014')
parser.add_argument('--captions_json', type=str, default="annotations/captions_train2014.json")
parser.add_argument('--threshold', type=int, default=5)
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--num_workers', type=int, default=8)
parser.add_argument('--ckpt_path', type=str, default=None)
parser.add_argument('--embed_size', type=int, default=512)
parser.add_argument('--hidden_size', type=int, default=512)
parser.add_argument('--num_epochs', type=int, default=30)
parser.add_argument('--log_interval', type=int, default=500)
parser.add_argument('--learning_rate', type=float, default=5e-4)
parser.add_argument('--rnn_type', type=str, default='lstm')
parser.add_argument('--resnet_size', type=int, choices=[18, 34, 50, 101, 152], default=50)
# parser.add_argument('--use_glove', default=False, action="store_true")
parser.add_argument('--glove_embed_path', type=str, default=None)
args = parser.parse_args()
print(args)
main(args)