-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathg4laudio.py
342 lines (293 loc) · 11.9 KB
/
g4laudio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import torchaudio
import torch
import numpy as np
from audiocraft.models import MusicGen
import base64
import io
import uuid
import torchaudio.transforms as T
import gc
from typing import Optional, Callable
from dataclasses import dataclass
from contextlib import contextmanager
class AudioProcessingError(Exception):
"""Custom exception for audio processing errors with detailed messages."""
pass
@dataclass
class AudioConfig:
"""Configuration for audio processing parameters."""
prompt_duration: float = 6.0
top_k: int = 250
temperature: float = 1.0
cfg_coef: float = 3.0
target_sr: int = 32000
output_duration: float = 30.0
@contextmanager
def resource_cleanup():
"""Context manager to ensure proper cleanup of GPU resources."""
try:
yield
finally:
torch.cuda.empty_cache()
gc.collect()
# Add this helper at the top of the file
def get_device():
"""Get the most appropriate device available."""
if torch.cuda.is_available():
return 'cuda'
elif torch.backends.mps.is_available():
return 'mps'
return 'cpu'
def generate_session_id():
"""Generate a unique session ID."""
return str(uuid.uuid4())
# Audio preprocessing utility functions
def peak_normalize(y, target_peak=0.9):
"""Normalize audio to a target peak amplitude."""
return target_peak * (y / np.max(np.abs(y)))
def rms_normalize(y, target_rms=0.05):
"""Normalize audio to a target RMS value."""
current_rms = np.sqrt(np.mean(y**2))
return y * (target_rms / current_rms)
def preprocess_audio(waveform):
"""Preprocess audio waveform."""
device = get_device()
waveform_np = waveform.cpu().squeeze().numpy()
processed_waveform_np = waveform_np
return torch.from_numpy(processed_waveform_np).unsqueeze(0).to(device)
def wrap_audio_if_needed(waveform, sr, desired_duration):
"""Wrap audio if needed to match desired duration."""
current_duration = waveform.shape[-1] / sr
# If the current duration is already longer than or equal to the desired duration, return as is
if current_duration >= desired_duration:
return waveform
# Calculate how much silence is needed (in samples)
padding_duration = desired_duration - current_duration
padding_samples = int(padding_duration * sr)
# Create a tensor of zeros (silence) with the necessary number of samples
silence = torch.zeros(1, padding_samples).to(waveform.device) # Ensure it matches the device (GPU/CPU)
# Append the silence to the original waveform
padded_waveform = torch.cat([waveform, silence], dim=-1)
return padded_waveform
def load_and_validate_audio(input_data_base64: str) -> tuple[torch.Tensor, int]:
"""Load and validate input audio from base64 string."""
device = get_device()
input_audio = None
try:
input_data = base64.b64decode(input_data_base64)
input_audio = io.BytesIO(input_data)
song, sr = torchaudio.load(input_audio)
if song.size(0) == 0 or song.size(1) == 0:
raise AudioProcessingError("Input audio is empty")
return song.to(device), sr
except Exception as e:
raise AudioProcessingError(f"Failed to load audio: {str(e)}")
finally:
if input_audio is not None:
input_audio.close()
def save_audio_to_base64(waveform: torch.Tensor, sample_rate: int) -> str:
"""Save audio tensor to base64 string with proper resource cleanup."""
output_audio = None
try:
output_audio = io.BytesIO()
torchaudio.save(output_audio, format='wav',
src=waveform.cpu(),
sample_rate=sample_rate)
output_audio.seek(0)
return base64.b64encode(output_audio.read()).decode('utf-8')
finally:
if output_audio is not None:
output_audio.close()
def resample_for_model(audio: torch.Tensor, orig_sr: int, model_sr: int = 32000) -> torch.Tensor:
"""Resample audio to model's sample rate if needed."""
if orig_sr == model_sr:
return audio
device = get_device()
with resource_cleanup():
resampler = T.Resample(orig_freq=orig_sr, new_freq=model_sr).to(device)
resampled = resampler(audio)
return resampled
def get_model_description(model_name: str, custom_description: Optional[str] = None) -> Optional[str]:
"""Get appropriate description based on model name or custom input."""
if custom_description:
return custom_description
model_descriptions = {
'thepatch/gary_orchestra': "violin, epic, film, piano, strings, orchestra",
'thepatch/gary_orchestra_2': "violin, epic, film, piano, strings, orchestra"
}
return model_descriptions.get(model_name)
def _process_audio_impl(
input_data_base64: str,
model_name: str,
config: AudioConfig,
progress_callback: Optional[Callable] = None,
description: Optional[str] = None
) -> str:
model = None
try:
# Load and validate input
song, sr = load_and_validate_audio(input_data_base64)
# Resample input to model's sample rate if needed
song_resampled = resample_for_model(song, sr)
# Preprocess and wrap audio
processed_waveform = preprocess_audio(song_resampled)
wrapped_waveform = wrap_audio_if_needed(
processed_waveform,
config.target_sr, # Use model's sample rate for wrapping
config.prompt_duration + config.output_duration
)
prompt_waveform = wrapped_waveform[..., :int(config.prompt_duration * config.target_sr)]
# Initialize model
with resource_cleanup():
model = MusicGen.get_pretrained(model_name)
if progress_callback:
model.set_custom_progress_callback(progress_callback)
model.set_generation_params(
use_sampling=True,
top_k=config.top_k,
top_p=0.0,
temperature=config.temperature,
duration=config.output_duration,
cfg_coef=config.cfg_coef
)
# Get description
final_description = get_model_description(model_name, description)
# Generate audio - IMPORTANT: Use config.target_sr here instead of sr
print(f"Generating continuation with description: {final_description}")
output = model.generate_continuation(
prompt_waveform,
prompt_sample_rate=config.target_sr, # Use model's sample rate here
descriptions=[final_description] if final_description else None,
progress=True
)
if output is None or output.size(0) == 0:
raise AudioProcessingError("Generated output is empty")
# If original sample rate was different, resample back
if sr != config.target_sr:
output = resample_for_model(output, config.target_sr, sr)
# Save output with original sample rate
return save_audio_to_base64(output.squeeze(0), sr)
except Exception as e:
error_msg = f"Audio processing failed: {str(e)}"
print(error_msg)
raise AudioProcessingError(error_msg) from e
finally:
if model is not None:
del model
with resource_cleanup():
pass
def _continue_music_impl(
input_data_base64: str,
model_name: str,
config: AudioConfig,
progress_callback: Optional[Callable] = None,
description: Optional[str] = None
) -> str:
model = None
try:
# Load and validate input
song, sr = load_and_validate_audio(input_data_base64)
# Ensure stereo
if song.size(0) == 1:
song = song.repeat(2, 1)
# Resample for model if needed
song_resampled = resample_for_model(song, sr)
# Use the resampled audio for the model, with correct sample rate for duration calculation
prompt_waveform = song_resampled[..., -int(config.prompt_duration * config.target_sr):]
with resource_cleanup():
# Initialize model
model = MusicGen.get_pretrained(model_name)
if progress_callback:
model.set_custom_progress_callback(progress_callback)
model.set_generation_params(
use_sampling=True,
top_k=config.top_k,
top_p=0.0,
temperature=config.temperature,
duration=config.output_duration,
cfg_coef=config.cfg_coef
)
# Get description
final_description = get_model_description(model_name, description)
print(f"Generating continuation with description: {final_description}")
output = model.generate_continuation(
prompt_waveform,
prompt_sample_rate=config.target_sr, # Use model's sample rate here
descriptions=[final_description] if final_description else None,
progress=True
)
# Process output
output = output.squeeze(0) if output.dim() == 3 else output
# If original sample rate was different, resample output back
if sr != config.target_sr:
output = resample_for_model(output, config.target_sr, sr)
# Match channels with original audio
original_minus_prompt = song[..., :-int(config.prompt_duration * sr)]
if original_minus_prompt.size(0) != output.size(0):
output = output.repeat(original_minus_prompt.size(0), 1)
# Combine audio using original sample rate
combined_waveform = torch.cat([original_minus_prompt, output], dim=1).to(get_device())
# Save output with original sample rate
return save_audio_to_base64(combined_waveform, sr)
except Exception as e:
error_msg = f"Music continuation failed: {str(e)}"
print(error_msg)
raise AudioProcessingError(error_msg) from e
finally:
if model is not None:
del model
with resource_cleanup():
pass
# Backwards compatibility wrappers
def process_audio(
input_data_base64: str,
model_name: str,
progress_callback: Optional[Callable] = None,
prompt_duration: int = 6,
top_k: int = 250,
temperature: float = 1.0,
cfg_coef: float = 3.0,
description: Optional[str] = None
) -> str:
"""
Backwards-compatible wrapper for audio processing.
"""
config = AudioConfig(
prompt_duration=prompt_duration,
top_k=top_k,
temperature=temperature,
cfg_coef=cfg_coef
)
return _process_audio_impl(
input_data_base64,
model_name,
config,
progress_callback,
description
)
def continue_music(
input_data_base64: str,
model_name: str,
progress_callback: Optional[Callable] = None,
prompt_duration: int = 6,
top_k: int = 250,
temperature: float = 1.0,
cfg_coef: float = 3.0,
description: Optional[str] = None
) -> str:
"""
Backwards-compatible wrapper for music continuation.
"""
config = AudioConfig(
prompt_duration=prompt_duration,
top_k=top_k,
temperature=temperature,
cfg_coef=cfg_coef
)
return _continue_music_impl(
input_data_base64,
model_name,
config,
progress_callback,
description
)