-
Notifications
You must be signed in to change notification settings - Fork 9
/
tensor2.hh
777 lines (696 loc) · 21.9 KB
/
tensor2.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
#pragma once
#include <vector>
#include <assert.h>
#include <cstddef>
#include <cstdint>
#include <fstream>
#include <memory>
#include <iostream>
#include <unordered_set>
#include <Eigen/Dense>
// goal, a tensor that does its own gradients
enum class TMode : uint8_t
{
Unassigned = 0, Parameter=1, Addition=2, Mult=3, Div=4, Func=5, Max=6, Sum=7, Slice=8, Flatten = 9, DotProd= 10,
LogSoftMax=11, Neg=12, Convo=13, Max2D=14, Dropout=15
};
struct ReluFunc
{
static float func(float f)
{
return std::max(0.0F, f);
}
static float deriv(float f)
{
return f < 0.0F ? 0.0F : 1.0F;
}
};
// this is the 'slow' version, https://alaaalatif.github.io/2019-04-11-gelu/ has some partially confusing words
struct GeluFunc
{
static constexpr float invsqrt2 = .70710678118654752440; // 1/sqrt(2)
static float func(float f)
{
return 0.5*f*(1+erff(f*invsqrt2));
}
static float deriv(float f)
{
constexpr float invsqrt2pi = 0.3989422804014327; // 1/sqrt(2*3.1415)
return (1+erff(f*invsqrt2))/2 + f * expf(-0.5*f*f) * invsqrt2pi;
}
};
struct SquareFunc
{
static float func(float f)
{
return f*f;
}
static float deriv(float f)
{
return 2*f;
}
};
struct TanhFunc
{
static float func(float f)
{
return tanhf(f);
}
static float deriv(float f)
{
float t = tanhf(f);
return 1-t*t;
}
};
struct SigmoidFunc
{
static float func(float in)
{
return 1.0F / (1.0F + expf(-in));
}
static float deriv(float in)
{
float sigma = 1.0F / (1.0F + expf(-in));
return sigma * (1.0F - sigma);
}
};
template<typename T=float>
struct TensorImp
{
using EigenMatrix = Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>;
typedef TensorImp<T> us_t;
TensorImp() : d_mode(TMode::Unassigned)
{}
//! Create a new parameter (value) tensor. Inits everything to zero.
TensorImp(unsigned int rows, unsigned int cols) : d_mode(TMode::Parameter)
{
d_val = EigenMatrix(rows, cols);
d_grads = EigenMatrix(rows, cols);
d_accumgrads = EigenMatrix(rows, cols);
d_grads.setZero();
d_val.setZero();
d_accumgrads.setZero();
d_haveval = true;
}
TensorImp(std::shared_ptr<us_t> lhs, std::shared_ptr<us_t> rhs, TMode m) : d_lhs(lhs), d_rhs(rhs), d_mode(m)
{
}
// we can have an embedded value, or one we have to calculate
void assureValue() const
{
if(d_haveval || d_mode == TMode::Parameter)
return;
if(d_mode == TMode::Sum) {
d_lhs->assureValue();
Eigen::Matrix<float, 1, 1> v;
v(0,0)= d_lhs->d_val.sum();
d_val = v;
}
else if(d_mode == TMode::Addition) {
d_lhs->assureValue();
d_rhs->assureValue();
d_val.noalias() = d_lhs->d_val + d_rhs->d_val;
}
else if(d_mode == TMode::Mult) {
d_lhs->assureValue();
d_rhs->assureValue();
d_val.noalias() = d_lhs->d_val * d_rhs->d_val;
}
else if(d_mode == TMode::Neg) {
d_lhs->assureValue();
d_val = -d_lhs->d_val;
}
else if(d_mode == TMode::Div) {
d_lhs->assureValue();
d_rhs->assureValue();
// so matrix division is "not really a thing"
// we do support the special case where the RHS is a single number
assert(d_rhs->d_val.cols() == 1 && d_rhs->d_val.rows()== 1);
d_val = d_lhs->d_val.array() / d_rhs->d_val(0,0);
}
else if(d_mode == TMode::DotProd) {
d_lhs->assureValue();
d_rhs->assureValue();
d_val = d_lhs->d_val.cwiseProduct(d_rhs->d_val);
}
else if(d_mode == TMode::Dropout) { // this does PyTorch-style scaling
d_lhs->assureValue();
d_rhs->d_val = EigenMatrix(d_lhs->d_val.rows(), d_lhs->d_val.cols());
float rate = d_randomp.rate;
// rate = 0.9 means "drop most things"
d_rhs->d_val = d_rhs->d_val.unaryExpr(
[&rate](float) -> float
{
if(random() > rate * RAND_MAX) // "keep"
return 1.0/(1 - rate);
else return 0.0;
});
d_val = d_lhs->d_val.cwiseProduct(d_rhs->d_val);
}
else if(d_mode == TMode::Slice) {
d_lhs->assureValue();
d_val = d_lhs->d_val.block(d_slicep.r, d_slicep.c, d_slicep.h, d_slicep.w);
}
else if(d_mode == TMode::Flatten) {
size_t siz=0;
for(auto& m : d_flattenp.members) {
m->assureValue();
siz += m->d_val.rows() * m->d_val.cols();
}
d_val = EigenMatrix(siz, 1);
int pos=0;
for(auto& m : d_flattenp.members) {
for(int c=0; c < m->d_val.cols(); ++c)
for(int r=0; r < m->d_val.rows(); ++r)
d_val(pos++, 0) = m->d_val(r, c);
}
}
else if(d_mode == TMode::Func) {
d_lhs->assureValue();
d_val = d_lhs->d_val.unaryExpr(d_func);
}
else if(d_mode == TMode::LogSoftMax) {
d_lhs->assureValue();
auto lemax = d_lhs->d_val.maxCoeff();
float sum = (d_lhs->d_val.array() - lemax).exp().sum();
d_val.array() = d_lhs->d_val.array() - lemax - log(sum);
}
else if(d_mode == TMode::Convo) {
d_lhs->assureValue();
d_rhs->assureValue(); // the weights
d_val = EigenMatrix(1 + d_lhs->d_val.rows() - d_convop.kernel, 1 + d_lhs->d_val.cols() - d_convop.kernel);
for(int r = 0 ; r < d_val.rows(); ++r)
for(int c = 0 ; c < d_val.cols(); ++c)
d_val(r,c) = d_lhs->d_val.block(r, c, d_convop.kernel, d_convop.kernel).cwiseProduct(d_rhs->d_val).sum()
+ d_convop.bias->d_val(0,0);
}
else if(d_mode == TMode::Max2D) {
d_lhs->assureValue();
// round up in case of padding
d_val = EigenMatrix((d_lhs->d_val.rows()+d_max2dp.kernel-1)/d_max2dp.kernel,
(d_lhs->d_val.cols()+d_max2dp.kernel-1)/d_max2dp.kernel);
for(int r = 0 ; r < d_lhs->d_val.rows(); r += d_max2dp.kernel)
for(int c = 0 ; c < d_lhs->d_val.cols(); c += d_max2dp.kernel) {
// padding
int effheight = std::min(r+ d_max2dp.kernel, (int)d_lhs->d_val.rows()) - r;
int effwidth = std::min(c+ d_max2dp.kernel, (int)d_lhs->d_val.cols()) - c;
d_val(r/d_max2dp.kernel,c/d_max2dp.kernel) = d_lhs->d_val.block(r, c, effheight, effwidth).maxCoeff();
}
}
else {
std::cerr<<"Unknown mode "<<(int)d_mode<< std::endl;
abort();
}
d_grads = d_val; // silly way to get the dimensions right
d_accumgrads = d_grads; // XXX must be a smarter way of doing this
d_grads.setZero();
d_accumgrads.setZero();
d_haveval = true;
}
T& operator()(int row, int col)
{
assureValue();
return d_val(row, col);
}
const T& operator()(int row, int col) const
{
assureValue();
return d_val(row, col);
}
// this function is absolutely key to the magic
void build_topo(std::unordered_set<TensorImp<T>*>& visited, std::vector<TensorImp<T>*>& topo)
{ // https://en.wikipedia.org/wiki/Topological_sorting
if(visited.count(this))
return;
visited.insert(this);
if(d_lhs) {
d_lhs->build_topo(visited, topo);
}
if(d_rhs) {
d_rhs->build_topo(visited, topo);
}
if(d_mode == TMode::Flatten)
for(auto& m : d_flattenp.members)
m->build_topo(visited, topo);
else if(d_mode == TMode::Convo)
d_convop.bias->build_topo(visited, topo);
topo.push_back(this);
}
void doGrad()
{
if(d_mode == TMode::Parameter) {
return;
}
else if(d_mode == TMode::Flatten) {
int gradpos=0;
for(auto& m : d_flattenp.members)
for(int c=0; c < m->d_grads.cols(); ++c)
for(int r=0; r < m->d_grads.rows(); ++r)
m->d_grads(r, c) += d_grads(gradpos++, 0);
}
else if(d_mode == TMode::Addition) {
d_lhs->d_grads += d_grads;
d_rhs->d_grads += d_grads;
}
else if(d_mode == TMode::Neg) {
d_lhs->d_grads -= d_grads;
}
else if(d_mode == TMode::Mult) {
// noalias might offer a bit of a speedup
d_lhs->d_grads.noalias() += (d_grads * d_rhs->d_val.transpose());
d_rhs->d_grads.noalias() += (d_lhs->d_val.transpose() * d_grads);
}
else if(d_mode == TMode::Div) { // so matrix division is "not really a thing"
d_lhs->d_grads.array() += (d_grads.array() / d_rhs->d_val(0,0));
/// XXX super wrong I bet
//d_rhs->d_grads +=(-d_grads * d_rhs->d_val / (d_rhs->d_val * d_rhs->d_val));
}
else if(d_mode == TMode::DotProd) {
d_lhs->d_grads.array() += d_grads.array() * d_rhs->d_val.array();
d_rhs->d_grads.array() += d_grads.array() * d_lhs->d_val.array();
}
else if(d_mode == TMode::Dropout) {
// automatically gets the scaling right
d_lhs->d_grads.array() += d_grads.array() * d_rhs->d_val.array();
}
else if(d_mode == TMode::Slice) {
d_lhs->d_grads.block(d_slicep.r, d_slicep.c, d_slicep.h, d_slicep.w) += d_grads;
}
else if(d_mode == TMode::Sum) {
d_lhs->d_grads.array() += d_grads(0,0);
}
else if(d_mode == TMode::LogSoftMax) {
d_lhs->d_grads.array() += d_grads.array() - d_val.array().exp() * d_grads.sum();
// it looks like magic, but it really works: https://stackoverflow.com/questions/35304393/trying-to-understand-code-that-computes-the-gradient-wrt-to-the-input-for-logsof
// https://github.com/torch/nn/blob/master/lib/THNN/generic/LogSoftMax.c
// https://math.stackexchange.com/questions/2013050/log-of-softmax-function-derivative
}
else if(d_mode == TMode::Func) {
d_lhs->d_grads.array() += d_grads.array()*d_lhs->d_val.unaryExpr(d_deriv).array();
}
else if(d_mode == TMode::Convo) { // this is where we spend _all_ our time
// weights in d_rhs
// need to convey grads to input (d_lhs), weights (r_hs) and bias
// if kernel is same size, convolution delivers a single number in d_val
// the grad of the kernel is then the values of the input and vv
// like this:
// d_lhs->d_grads.array() += d_rhs->d_val.array();
// d_rhs->d_grads.array() += d_lhs->d_val.array();
//
// if the kernel is smaller, it needs to walk over the input and add up
// itself to the grads there, and conversely, add up the grads from there to itself (??)
// the output (d_val) has shape 1 + d_lhs (input) - d_rhs (filters)
if(!d_lhs->d_nograd)
for(int r = 0 ; r < d_val.rows(); ++r)
for(int c = 0 ; c < d_val.cols(); ++c)
d_lhs->d_grads.block(r,c,d_convop.kernel, d_convop.kernel) += d_rhs->d_val * d_grads(r,c);
// now add grads to the filter - note that this convolves over blocks
// this is the size of the output:
for(int r = 0 ; r < d_rhs->d_val.rows(); ++r)
for(int c = 0 ; c < d_rhs->d_val.cols(); ++c)
d_rhs->d_grads(r,c) += (d_lhs->d_val.block(r, c, d_val.rows(), d_val.cols())*d_grads).sum();
// this is a d_vals sized block
d_rhs->d_grads.array() /= sqrt(d_grads.rows()*d_grads.cols());
d_convop.bias->d_grads(0,0) += d_grads.sum();
}
else if(d_mode == TMode::Max2D) {
for(int r = 0 ; r < d_lhs->d_val.rows(); r += d_max2dp.kernel) {
for(int c = 0 ; c < d_lhs->d_val.cols(); c += d_max2dp.kernel) {
unsigned int mrow=0, mcol=0;
// padding
int effheight = std::min(r+ d_max2dp.kernel, (int)d_lhs->d_val.rows()) - r;
int effwidth = std::min(c+ d_max2dp.kernel, (int)d_lhs->d_val.cols()) - c;
d_lhs->d_val.block(r, c, effheight, effwidth).maxCoeff(&mrow, &mcol);
d_lhs->d_grads(r+mrow, c+mcol) += d_grads(r/d_max2dp.kernel, c/d_max2dp.kernel);
}
}
}
else {
abort();
}
}
mutable EigenMatrix d_val, d_grads, d_prevaccumgrads, d_accumgrads;
std::function<T(T)> d_func, d_deriv;
std::shared_ptr<us_t> d_lhs, d_rhs;
TMode d_mode;
mutable bool d_haveval = false;
bool d_nograd{false};
struct AdamVals
{
EigenMatrix m;
EigenMatrix v;
} d_adamval;
struct SliceParams
{
int r, c;
int h, w;
} d_slicep;
struct Max2DParams
{
int kernel;
} d_max2dp;
struct ConvoParams
{
int kernel;
std::shared_ptr<TensorImp<T>> bias;
} d_convop;
struct FlattenParams
{
std::vector<std::shared_ptr<TensorImp<T>>> members;
} d_flattenp;
struct RandomParams
{
float rate;
} d_randomp;
};
template<typename T=float>
struct Tensor
{
using EigenMatrix = Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>;
typedef Tensor<T> us_t;
Tensor() : d_imp(std::make_shared<TensorImp<T>>())
{}
Tensor(unsigned int rows, unsigned int cols) : d_imp(std::make_shared<TensorImp<T>>(rows, cols))
{}
// to make life somewhat easier
explicit Tensor(const T& val) : d_imp(std::make_shared<TensorImp<T>>(1, 1))
{
(*d_imp)(0,0) = val;
}
T& operator()(int x, int y)
{
return (*d_imp)(x, y);
}
const T& operator()(int x, int y) const
{
return (*d_imp)(x, y);
}
EigenMatrix& raw()
{
assert(d_imp->d_mode == TMode::Parameter);
return d_imp->d_val;
}
Tensor<T> sum()
{
Tensor<T> ret;
ret.d_imp = std::make_shared<TensorImp<T>>(d_imp, std::shared_ptr<TensorImp<T>>(), TMode::Sum);
return ret;
}
std::vector<TensorImp<T>* > getTopo()
{
std::vector<TensorImp<T>* > topo;
std::unordered_set<TensorImp<T>* > visited;
d_imp->build_topo(visited, topo);
topo.shrink_to_fit();
return topo;
}
void backward() // SLLOOOOW
{
auto topo = getTopo();
backward(topo);
}
void backward(std::vector<TensorImp<T>*> topo)
{
d_imp->assureValue();
d_imp->d_grads = d_imp->d_val; // dimensions
d_imp->d_grads.setConstant(1.0);
for(auto iter = topo.rbegin(); iter != topo.rend(); ++iter) {
(*iter)->doGrad();
}
}
void zerograd(std::vector<TensorImp<T>*> topo=0)
{
for(auto iter = topo.rbegin(); iter != topo.rend(); ++iter) {
(*iter)->d_grads.setConstant(0);
if((*iter)->d_mode != TMode::Parameter)
(*iter)->d_haveval = false;
// aren't these in topo?
if((*iter)->d_mode == TMode::Convo) {// UGLY
(*iter)->d_convop.bias->d_grads.setConstant(0);
}
// same?
if((*iter)->d_mode == TMode::Flatten) {// UGLY
for(auto& m : (*iter)->d_flattenp.members) {
m->d_grads.setConstant(0);
}
}
}
}
void zeroAccumGrads(std::vector<TensorImp<T>*> topo)
{
for(auto iter = topo.rbegin(); iter != topo.rend(); ++iter) {
(*iter)->d_prevaccumgrads = (*iter)->d_accumgrads;
(*iter)->d_accumgrads = EigenMatrix::Constant((*iter)->d_grads.rows(), (*iter)->d_grads.cols(), 0.0F);
}
}
void accumGrads(std::vector<TensorImp<T>*> topo)
{
for(auto iter = topo.rbegin(); iter != topo.rend(); ++iter) {
(*iter)->d_accumgrads += (*iter)->d_grads;
}
}
void copyParams(const std::vector<TensorImp<T>*> from, const std::vector<TensorImp<T>*> to)
{
assert(from.size() == to.size());
for(size_t pos = 0 ; pos < from.size(); ++pos) {
assert(from[pos]->d_mode == to[pos]->d_mode);
if(from[pos]->d_mode == TMode::Parameter) {
to[pos]->d_val = from[pos]->d_val;
}
}
}
void addAccumGrads(const std::vector<TensorImp<T>*> from, const std::vector<TensorImp<T>*> to)
{
assert(from.size() == to.size());
for(size_t pos = 0 ; pos < from.size(); ++pos) {
assert(from[pos]->d_mode == to[pos]->d_mode);
if(from[pos]->d_mode == TMode::Parameter) {
to[pos]->d_accumgrads += from[pos]->d_accumgrads;
}
}
}
EigenMatrix getGrad()
{
return d_imp->d_grads;
}
EigenMatrix getPrevAccumGrad()
{
return d_imp->d_prevaccumgrads;
}
EigenMatrix getAccumGrad()
{
return d_imp->d_accumgrads;
}
void randomize(float fact)
{
d_imp->d_mode = TMode::Parameter;
d_imp->d_val = EigenMatrix::Random(d_imp->d_val.rows(), d_imp->d_val.cols()); // uniform -1..1
d_imp->d_val.array() *= fact;
}
void zero()
{
constant(0);
}
void oneHotColumn(int c)
{
zero();
d_imp->d_val(0,c) = 1;
}
void oneHotRow(int r)
{
zero();
d_imp->d_val(r,0) = 1;
}
void constant(float f)
{
d_imp->d_mode = TMode::Parameter;
d_imp->d_val = EigenMatrix::Constant(d_imp->d_val.rows(), d_imp->d_val.cols(), f);
}
void iota(float f)
{
d_imp->d_mode = TMode::Parameter;
for(unsigned int r = 0 ; r < d_imp->d_val.rows(); ++r) {
for(unsigned int c = 0 ; c < d_imp->d_val.cols(); ++c) {
d_imp->d_val(r,c)= f++;
}
}
}
void identity(float f)
{
assert(d_imp->d_val.rows() == d_imp->d_val.cols());
d_imp->d_mode = TMode::Parameter;
for(unsigned int r = 0 ; r < d_imp->d_val.rows(); ++r) {
d_imp->d_val(r,r)= f;
}
}
auto& operator-=(const EigenMatrix& rhs)
{
d_imp->d_val -= rhs;
return *this;
}
unsigned int maxValueIndexOfColumn(int c)
{
assert(c==0 && d_imp->d_val.cols() == 1); // we only support one column right now!
Eigen::Index maxRow, maxCol;
d_imp->d_val.maxCoeff(&maxRow, &maxCol);
return maxRow;
}
Tensor<T> dot(const Tensor<T>& rhs)
{
Tensor<T> ret;
ret.d_imp = std::make_shared<TensorImp<T>>(d_imp, rhs.d_imp, TMode::DotProd);
return ret;
}
Tensor<T> makeSlice(int r, int c, int h, int w=-1)
{
if(w <= 0)
w = h;
Tensor<T> ret;
ret.d_imp = std::make_shared<TensorImp<T>>(d_imp, std::shared_ptr<TensorImp<T>>(), TMode::Slice);
ret.d_imp->d_slicep={r, c, h, w};
return ret;
}
Tensor<T> makeConvo(int kernel, Tensor<T>& weights, Tensor<T>& bias)
{
Tensor<T> ret;
ret.d_imp = std::make_shared<TensorImp<T>>(d_imp, weights.d_imp, TMode::Convo);
ret.d_imp->d_convop.kernel = kernel;
ret.d_imp->d_convop.bias = bias.d_imp;
return ret;
}
Tensor<T> makeMax2d(int kernel)
{
Tensor<T> ret;
ret.d_imp = std::make_shared<TensorImp<T>>(d_imp, std::shared_ptr<TensorImp<T>>(), TMode::Max2D);
ret.d_imp->d_max2dp.kernel = kernel;
return ret;
}
Tensor<T> makeDropout(float rate)
{
Tensor<T> ret;
Tensor<T> rnd;
rnd.d_imp->d_mode = TMode::Parameter;
ret.d_imp = std::make_shared<TensorImp<T>>(d_imp, rnd.d_imp, TMode::Dropout);
ret.d_imp->d_randomp.rate = rate;
return ret;
}
unsigned int getRows() const
{
return d_imp->d_val.rows();
}
unsigned int getCols() const
{
return d_imp->d_val.cols();
}
void save(std::ostream& out) const
{
auto swrite = [&out](float v) {
out.write((char*)&v, sizeof(v));
};
swrite(d_imp->d_val.rows());
swrite(d_imp->d_val.cols());
out.write((const char*)d_imp->d_val.data(), sizeof(T)*d_imp->d_val.rows() * d_imp->d_val.cols());
}
void load(std::istream& in)
{
auto sread = [&in]() {
float v;
in.read((char*)&v, sizeof(v));
return v;
};
if(d_imp->d_val.rows() != sread() || d_imp->d_val.cols() !=sread()) // living dangerously here!
throw std::logic_error("Dimensions of stream to load from do not match");
in.read((char*)d_imp->d_val.data(), sizeof(T)*d_imp->d_val.rows() * d_imp->d_val.cols());
}
void normalize(T mean, T stddev = -1)
{
assert(d_imp->d_mode == TMode::Parameter);
auto& val = d_imp->d_val;
val.array() *= mean/val.mean();
if(stddev >= 0) {
T curstddev = sqrt((val.array() - mean).unaryExpr([](float v) { return v*v; }).sum()/(val.cols()*val.rows()));
T ratio = stddev/curstddev;
val = val.unaryExpr([&ratio, &mean](float v) {
return mean + (v-mean)*ratio;
});
}
}
std::shared_ptr<TensorImp<T>> d_imp;
};
template<typename T>
inline Tensor<T> operator+(const Tensor<T>& lhs, const Tensor<T>& rhs)
{
Tensor<T> ret;
ret.d_imp = std::make_shared<TensorImp<T>>(lhs.d_imp, rhs.d_imp, TMode::Addition);
return ret;
}
template<typename T>
Tensor<T> operator-(const Tensor<T>& lhs, const Tensor<T>& rhs)
{
Tensor<T> neg;
neg.d_imp = std::make_shared<TensorImp<T>>(rhs.d_imp, std::shared_ptr<TensorImp<T>>(), TMode::Neg);
return lhs + neg;
}
template<typename T>
inline Tensor<T> operator-(const Tensor<T>& lhs)
{
Tensor<T> neg;
neg.d_imp = std::make_shared<TensorImp<T>>(lhs.d_imp, std::shared_ptr<TensorImp<T>>(), TMode::Neg);
return neg;
}
template<typename T>
inline Tensor<T> operator*(const Tensor<T>& lhs, const Tensor<T>& rhs)
{
Tensor<T> ret;
ret.d_imp = std::make_shared<TensorImp<T>>(lhs.d_imp, rhs.d_imp, TMode::Mult);
return ret;
}
template<typename T>
inline Tensor<T> operator/(const Tensor<T>& lhs, const Tensor<T>& rhs)
{
Tensor<T> ret;
assert(rhs.d_imp->d_val.cols() == 1 && rhs.d_imp->d_val.rows() == 1);
ret.d_imp = std::make_shared<TensorImp<T>>(lhs.d_imp, rhs.d_imp, TMode::Div);
return ret;
}
template<typename F, typename T>
inline Tensor<T> makeFunction(const Tensor<T>& lhs)
{
Tensor<T> ret;
ret.d_imp = std::make_shared<TensorImp<T>>(lhs.d_imp, std::shared_ptr<TensorImp<T>>(), TMode::Func);
ret.d_imp->d_func = &F::func;
ret.d_imp->d_deriv = &F::deriv;
return ret;
}
template<typename T>
inline Tensor<T> makeLogSoftMax(const Tensor<T>& lhs)
{
Tensor<T> ret;
ret.d_imp = std::make_shared<TensorImp<T>>(lhs.d_imp, std::shared_ptr<TensorImp<T>>(), TMode::LogSoftMax);
return ret;
}
template<typename T, size_t N>
Tensor<T> makeFlatten(const std::array<Tensor<T>, N>& members)
{
Tensor<T> ret;
ret.d_imp = std::make_shared<TensorImp<T>>(std::shared_ptr<TensorImp<T>>(), std::shared_ptr<TensorImp<T>>(), TMode::Flatten);
for(const auto& m : members)
ret.d_imp->d_flattenp.members.push_back(m.d_imp);
return ret;
}
template<typename T>
Tensor<T> makeFlatten(const std::initializer_list<Tensor<T>>& members)
{
Tensor<T> ret;
ret.d_imp = std::make_shared<TensorImp<T>>(std::shared_ptr<TensorImp<T>>(), std::shared_ptr<TensorImp<T>>(), TMode::Flatten);
for(const auto& m : members)
ret.d_imp->d_flattenp.members.push_back(m.d_imp);
return ret;
}
template<typename T>
std::ostream& operator<<(std::ostream& os, const Tensor<T>& ns)
{
ns.d_imp->assureValue();
os <<ns.d_imp->d_val;
return os;
}