-
Notifications
You must be signed in to change notification settings - Fork 3
/
aio.json
8802 lines (8802 loc) · 375 KB
/
aio.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{
"graphs" : [ {
"id" : "https://w3id.org/aio/aio.json",
"meta" : {
"basicPropertyValues" : [ {
"pred" : "http://purl.org/dc/terms/description",
"val" : "This ontology models classes and relationships describing deep learning networks, their component layers and activation functions, as well as potential biases."
}, {
"pred" : "http://purl.org/dc/terms/license",
"val" : "http://creativecommons.org/licenses/by/4.0/"
}, {
"pred" : "http://purl.org/dc/terms/title",
"val" : "Artificial Intelligence Ontology"
}, {
"pred" : "http://www.w3.org/2002/07/owl#versionInfo",
"val" : "2024-11-11"
} ],
"version" : "https://w3id.org/aio/releases/2024-11-11/aio.json"
},
"nodes" : [ {
"id" : "https://w3id.org/aio/AbstractRNNCell",
"lbl" : "AbstractRNNCell",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A layer representing an RNN cell that is the base class for implementing RNN cells with custom behavior.",
"xrefs" : [ "https://www.tensorflow.org/api_docs/python/tf/keras/layers/AbstractRNNCell" ]
},
"subsets" : [ "https://w3id.org/aio/LayerSubset" ]
}
}, {
"id" : "https://w3id.org/aio/ActivationLayer",
"lbl" : "Activation Layer",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A layer that applies an activation function to an output.",
"xrefs" : [ "https://www.tensorflow.org/api_docs/python/tf/keras/layers/Activation" ]
},
"comments" : [ "Applies an activation function to an output." ],
"subsets" : [ "https://w3id.org/aio/LayerSubset" ]
}
}, {
"id" : "https://w3id.org/aio/ActiveLearning",
"lbl" : "Active Learning",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A machine learning task focused on methods that interactively query a user or another information source to label new data points with the desired outputs.",
"xrefs" : [ "https://en.wikipedia.org/wiki/Active_learning_(machine_learning)" ]
},
"subsets" : [ "https://w3id.org/aio/MachineLearningSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "Query Learning"
} ]
}
}, {
"id" : "https://w3id.org/aio/ActivityBias",
"lbl" : "Activity Bias",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A use and interpretation bias occurring when systems/platforms get training data from their most active users rather than less active or inactive users.",
"xrefs" : [ "https://en.wikipedia.org/wiki/Interpretive_bias" ]
},
"subsets" : [ "https://w3id.org/aio/BiasSubset" ]
}
}, {
"id" : "https://w3id.org/aio/ActivityRegularizationLayer",
"lbl" : "ActivityRegularization Layer",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A regularization layer that applies an update to the cost function based on input activity.",
"xrefs" : [ "https://www.tensorflow.org/api_docs/python/tf/keras/layers/ActivityRegularization" ]
},
"subsets" : [ "https://w3id.org/aio/LayerSubset" ]
}
}, {
"id" : "https://w3id.org/aio/AdaptiveAvgPool1DLayer",
"lbl" : "AdaptiveAvgPool1D Layer",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A pooling layer that applies a 1D adaptive average pooling over an input signal composed of several input planes.",
"xrefs" : [ "https://pytorch.org/docs/stable/nn.html#pooling-layers" ]
},
"subsets" : [ "https://w3id.org/aio/LayerSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "AdaptiveAvgPool1D"
} ]
}
}, {
"id" : "https://w3id.org/aio/AdaptiveAvgPool2DLayer",
"lbl" : "AdaptiveAvgPool2D Layer",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A pooling layer that applies a 2D adaptive average pooling over an input signal composed of several input planes.",
"xrefs" : [ "https://pytorch.org/docs/stable/nn.html#pooling-layers" ]
},
"subsets" : [ "https://w3id.org/aio/LayerSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "AdaptiveAvgPool2D"
} ]
}
}, {
"id" : "https://w3id.org/aio/AdaptiveAvgPool3DLayer",
"lbl" : "AdaptiveAvgPool3D Layer",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A pooling layer that applies a 3D adaptive average pooling over an input signal composed of several input planes.",
"xrefs" : [ "https://pytorch.org/docs/stable/nn.html#pooling-layers" ]
},
"subsets" : [ "https://w3id.org/aio/LayerSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "AdaptiveAvgPool3D"
} ]
}
}, {
"id" : "https://w3id.org/aio/AdaptiveMaxPool1DLayer",
"lbl" : "AdaptiveMaxPool1D Layer",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A pooling layer that applies a 1D adaptive max pooling over an input signal composed of several input planes.",
"xrefs" : [ "https://pytorch.org/docs/stable/nn.html#pooling-layers" ]
},
"subsets" : [ "https://w3id.org/aio/LayerSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "AdaptiveMaxPool1D"
} ]
}
}, {
"id" : "https://w3id.org/aio/AdaptiveMaxPool2DLayer",
"lbl" : "AdaptiveMaxPool2D Layer",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A pooling layer that applies a 2D adaptive max pooling over an input signal composed of several input planes.",
"xrefs" : [ "https://pytorch.org/docs/stable/nn.html#pooling-layers" ]
},
"subsets" : [ "https://w3id.org/aio/LayerSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "AdaptiveMaxPool2D"
} ]
}
}, {
"id" : "https://w3id.org/aio/AdaptiveMaxPool3DLayer",
"lbl" : "AdaptiveMaxPool3D Layer",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A pooling layer that applies a 3D adaptive max pooling over an input signal composed of several input planes.",
"xrefs" : [ "https://pytorch.org/docs/stable/nn.html#pooling-layers" ]
},
"subsets" : [ "https://w3id.org/aio/LayerSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "AdaptiveMaxPool3D"
} ]
}
}, {
"id" : "https://w3id.org/aio/AddLayer",
"lbl" : "Add Layer",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A merging layer that adds a list of inputs taking as input a list of tensors all of the same shape.",
"xrefs" : [ "https://www.tensorflow.org/api_docs/python/tf/keras/layers/Add" ]
},
"comments" : [ "Layer that adds a list of inputs. It takes as input a list of tensors, all of the same shape, and returns a single tensor (also of the same shape)." ],
"subsets" : [ "https://w3id.org/aio/LayerSubset" ]
}
}, {
"id" : "https://w3id.org/aio/AdditionLayer",
"lbl" : "Addition Layer",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A layer that adds inputs from one or more other layers to cells or neurons of a target layer."
},
"subsets" : [ "https://w3id.org/aio/LayerSubset" ]
}
}, {
"id" : "https://w3id.org/aio/AdditiveAttentionLayer",
"lbl" : "AdditiveAttention Layer",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "An attention layer that implements additive attention also known as Bahdanau-style attention.",
"xrefs" : [ "https://www.tensorflow.org/api_docs/python/tf/keras/layers/AdditiveAttention" ]
},
"comments" : [ "Additive attention layer, a.k.a. Bahdanau-style attention." ],
"subsets" : [ "https://w3id.org/aio/LayerSubset" ]
}
}, {
"id" : "https://w3id.org/aio/AlphaDropoutLayer",
"lbl" : "AlphaDropout Layer",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A regularization layer that applies Alpha Dropout to the input keeping mean and variance of inputs to ensure self-normalizing property.",
"xrefs" : [ "https://www.tensorflow.org/api_docs/python/tf/keras/layers/AlphaDropout" ]
},
"comments" : [ "Applies Alpha Dropout to the input. Alpha Dropout is a Dropout that keeps mean and variance of inputs to their original values, in order to ensure the self-normalizing property even after this dropout. Alpha Dropout fits well to Scaled Exponential Linear Units by randomly setting activations to the negative saturation value." ],
"subsets" : [ "https://w3id.org/aio/LayerSubset" ]
}
}, {
"id" : "https://w3id.org/aio/AmplificationBias",
"lbl" : "Amplification Bias",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A processing bias arising when the distribution over prediction outputs is skewed compared to the prior distribution of the prediction target.",
"xrefs" : [ "https://royalsocietypublishing.org/doi/10.1098/rspb.2019.0165#d1e5237" ]
},
"subsets" : [ "https://w3id.org/aio/BiasSubset" ]
}
}, {
"id" : "https://w3id.org/aio/AnchoringBias",
"lbl" : "Anchoring Bias",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "An individual bias characterized by the influence of a reference point or anchor on decisions leading to insufficient adjustment from that anchor point.",
"xrefs" : [ "https://doi.org/10.6028/NIST.SP.1270" ]
},
"subsets" : [ "https://w3id.org/aio/BiasSubset" ]
}
}, {
"id" : "https://w3id.org/aio/AnnotatorReportingBias",
"lbl" : "Annotator Reporting Bias",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "An individual bias occurring when users rely on automation as a heuristic replacement for their own information seeking and processing.",
"xrefs" : [ "https://doi.org/10.6028/NIST.SP.1270" ]
},
"subsets" : [ "https://w3id.org/aio/BiasSubset" ]
}
}, {
"id" : "https://w3id.org/aio/ArtificialNeuralNetwork",
"lbl" : "Artificial Neural Network",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A network based on a collection of connected units called artificial neurons modeled after biological neurons.",
"xrefs" : [ "https://en.wikipedia.org/wiki/Artificial_neural_network" ]
},
"comments" : [ "An artificial neural network (ANN) is based on a collection of connected units or nodes called artificial neurons, modeled after biological neurons, with connections transmitting signals processed by non-linear functions." ],
"subsets" : [ "https://w3id.org/aio/NetworkSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "ANN"
}, {
"pred" : "hasExactSynonym",
"val" : "NN"
} ]
}
}, {
"id" : "https://w3id.org/aio/AssociationRuleLearning",
"lbl" : "Association Rule Learning",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A supervised learning focused on a rule-based approach for discovering interesting relations between variables in large databases.",
"xrefs" : [ "https://en.wikipedia.org/wiki/Association_rule_learning" ]
},
"subsets" : [ "https://w3id.org/aio/MachineLearningSubset" ]
}
}, {
"id" : "https://w3id.org/aio/AttentionLayer",
"lbl" : "Attention Layer",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A layer that implements dot-product attention also known as Luong-style attention.",
"xrefs" : [ "https://www.tensorflow.org/api_docs/python/tf/keras/layers/Attention" ]
},
"comments" : [ "Dot-product attention layer, a.k.a. Luong-style attention." ],
"subsets" : [ "https://w3id.org/aio/LayerSubset" ]
}
}, {
"id" : "https://w3id.org/aio/AutoEncoderNetwork",
"lbl" : "Auto Encoder Network",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "An unsupervised pretrained network that learns efficient codings of unlabeled data by training to ignore insignificant data and regenerate input from encoding.",
"xrefs" : [ "https://en.wikipedia.org/wiki/Autoencoder" ]
},
"comments" : [ "Layers: Input, Hidden, Matched Output-Input" ],
"subsets" : [ "https://w3id.org/aio/NetworkSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "AE"
} ]
}
}, {
"id" : "https://w3id.org/aio/AutomationComplacencyBias",
"lbl" : "Automation Complacency Bias",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "An individual bias characterized by over-reliance on automated systems leading to attenuated human skills.",
"xrefs" : [ "https://doi.org/10.6028/NIST.SP.1270" ]
},
"comments" : [ "Over-reliance on automated systems, leading to attenuated human skills, such as with spelling and autocorrect." ],
"subsets" : [ "https://w3id.org/aio/BiasSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "Automation Complaceny"
} ]
}
}, {
"id" : "https://w3id.org/aio/AutoregressiveConditionalHeteroskedasticity",
"lbl" : "Autoregressive Conditional Heteroskedasticity",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A model that describes the variance of the current error term as a function of the previous periods' error terms, capturing volatility clustering. Used for time series data."
},
"subsets" : [ "https://w3id.org/aio/ModelSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "ARCH"
} ]
}
}, {
"id" : "https://w3id.org/aio/AutoregressiveDistributedLag",
"lbl" : "Autoregressive Distributed Lag",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A model that includes lagged values of both the dependent variable and one or more independent variables, capturing dynamic relationships over time. Used in time series analysis."
},
"subsets" : [ "https://w3id.org/aio/ModelSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "ARDL"
} ]
}
}, {
"id" : "https://w3id.org/aio/AutoregressiveIntegratedMovingAverage",
"lbl" : "Autoregressive Integrated Moving Average",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A model which combines autoregression (AR), differencing (I), and moving average (MA) components. Used for analyzing and forecasting time series data."
},
"subsets" : [ "https://w3id.org/aio/ModelSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "ARIMA"
} ]
}
}, {
"id" : "https://w3id.org/aio/AutoregressiveLanguageModel",
"lbl" : "Autoregressive Language Model",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A language model that generates text sequentially predicting one token at a time based on the previously generated tokens excelling at natural language generation tasks by modeling the probability distribution over sequences of tokens."
},
"subsets" : [ "https://w3id.org/aio/ModelSubset" ],
"synonyms" : [ {
"pred" : "hasRelatedSynonym",
"val" : "generative language model"
}, {
"pred" : "hasRelatedSynonym",
"val" : "sequence-to-sequence model"
} ]
}
}, {
"id" : "https://w3id.org/aio/AutoregressiveMovingAverage",
"lbl" : "Autoregressive Moving Average",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A model that combines autoregressive (AR) and moving average (MA) components to represent time series data, suitable for stationary series without the need for differencing."
},
"subsets" : [ "https://w3id.org/aio/ModelSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "ARMA"
} ]
}
}, {
"id" : "https://w3id.org/aio/AvailabilityHeuristicBias",
"lbl" : "Availability Heuristic Bias",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "An individual bias characterized by a mental shortcut where easily recalled information is overweighted in judgment and decision-making.",
"xrefs" : [ "https://doi.org/10.6028/NIST.SP.1270" ]
},
"subsets" : [ "https://w3id.org/aio/BiasSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "Availability Bias"
}, {
"pred" : "hasExactSynonym",
"val" : "Availability Heuristic"
} ]
}
}, {
"id" : "https://w3id.org/aio/AverageLayer",
"lbl" : "Average Layer",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A merging layer that averages a list of inputs element-wise taking as input a list of tensors all of the same shape.",
"xrefs" : [ "https://www.tensorflow.org/api_docs/python/tf/keras/layers/Average" ]
},
"comments" : [ "Layer that averages a list of inputs element-wise. It takes as input a list of tensors, all of the same shape, and returns a single tensor (also of the same shape)." ],
"subsets" : [ "https://w3id.org/aio/LayerSubset" ]
}
}, {
"id" : "https://w3id.org/aio/AveragePooling1DLayer",
"lbl" : "AveragePooling1D Layer",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A pooling layer that performs average pooling for temporal data.",
"xrefs" : [ "https://www.tensorflow.org/api_docs/python/tf/keras/layers/AveragePooling1D" ]
},
"comments" : [ "Average pooling for temporal data. Downsamples the input representation by taking the average value over the window defined by pool_size. The window is shifted by strides. The resulting output when using \"valid\" padding option has a shape of: output_shape = (input_shape - pool_size + 1) / strides). The resulting output shape when using the \"same\" padding option is: output_shape = input_shape / strides." ],
"subsets" : [ "https://w3id.org/aio/LayerSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "AvgPool1D"
} ]
}
}, {
"id" : "https://w3id.org/aio/AveragePooling2DLayer",
"lbl" : "AveragePooling2D Layer",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A pooling layer that performs average pooling for spatial data.",
"xrefs" : [ "https://www.tensorflow.org/api_docs/python/tf/keras/layers/AveragePooling2D" ]
},
"comments" : [ "Average pooling operation for spatial data. Downsamples the input along its spatial dimensions (height and width) by taking the average value over an input window (of size defined by pool_size) for each channel of the input. The window is shifted by strides along each dimension. The resulting output when using \"valid\" padding option has a shape (number of rows or columns) of: output_shape = math.floor((input_shape - pool_size) / strides) + 1 (when input_shape >= pool_size). The resulting output shape when using the \"same\" padding option is: output_shape = math.floor((input_shape - 1) / strides) + 1." ],
"subsets" : [ "https://w3id.org/aio/LayerSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "AvgPool2D"
} ]
}
}, {
"id" : "https://w3id.org/aio/AveragePooling3DLayer",
"lbl" : "AveragePooling3D Layer",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A pooling layer that performs average pooling for 3D data (spatial or spatio-temporal).",
"xrefs" : [ "https://www.tensorflow.org/api_docs/python/tf/keras/layers/AveragePooling3D" ]
},
"comments" : [ "Average pooling operation for 3D data (spatial or spatio-temporal). Downsamples the input along its spatial dimensions (depth, height, and width) by taking the average value over an input window (of size defined by pool_size) for each channel of the input. The window is shifted by strides along each dimension." ],
"subsets" : [ "https://w3id.org/aio/LayerSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "AvgPool3D"
} ]
}
}, {
"id" : "https://w3id.org/aio/AvgPool1DLayer",
"lbl" : "AvgPool1D Layer",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A pooling layer that applies a 1D average pooling over an input signal composed of several input planes.",
"xrefs" : [ "https://pytorch.org/docs/stable/nn.html#pooling-layers" ]
},
"subsets" : [ "https://w3id.org/aio/LayerSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "AvgPool1D"
} ]
}
}, {
"id" : "https://w3id.org/aio/AvgPool2DLayer",
"lbl" : "AvgPool2D Layer",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A pooling layer that applies a 2D average pooling over an input signal composed of several input planes.",
"xrefs" : [ "https://pytorch.org/docs/stable/nn.html#pooling-layers" ]
},
"subsets" : [ "https://w3id.org/aio/LayerSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "AvgPool2D"
} ]
}
}, {
"id" : "https://w3id.org/aio/AvgPool3DLayer",
"lbl" : "AvgPool3D Layer",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A pooling layer that applies a 3D average pooling over an input signal composed of several input planes.",
"xrefs" : [ "https://pytorch.org/docs/stable/nn.html#pooling-layers" ]
},
"subsets" : [ "https://w3id.org/aio/LayerSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "AvgPool3D"
} ]
}
}, {
"id" : "https://w3id.org/aio/BackfedInputLayer",
"lbl" : "Backfed Input Layer",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "An input layer that receives values from another layer."
},
"subsets" : [ "https://w3id.org/aio/LayerSubset" ]
}
}, {
"id" : "https://w3id.org/aio/BatchNorm1DLayer",
"lbl" : "BatchNorm1D Layer",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A batch normalization layer that applies Batch Normalization over a 2D or 3D input.",
"xrefs" : [ "https://pytorch.org/docs/stable/nn.html#normalization-layers" ]
},
"comments" : [ "Applies Batch Normalization over a 2D or 3D input as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift ." ],
"subsets" : [ "https://w3id.org/aio/LayerSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "BatchNorm1D"
} ]
}
}, {
"id" : "https://w3id.org/aio/BatchNorm2DLayer",
"lbl" : "BatchNorm2D Layer",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A batch normalization layer that applies Batch Normalization over a 4D input.",
"xrefs" : [ "https://pytorch.org/docs/stable/nn.html#normalization-layers" ]
},
"comments" : [ "Applies Batch Normalization over a 4D input (a mini-batch of 2D inputs with additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift ." ],
"subsets" : [ "https://w3id.org/aio/LayerSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "BatchNorm2D"
} ]
}
}, {
"id" : "https://w3id.org/aio/BatchNorm3DLayer",
"lbl" : "BatchNorm3D Layer",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A batch normalization layer that applies Batch Normalization over a 5D input.",
"xrefs" : [ "https://pytorch.org/docs/stable/nn.html#normalization-layers" ]
},
"comments" : [ "Applies Batch Normalization over a 5D input (a mini-batch of 3D inputs with additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift ." ],
"subsets" : [ "https://w3id.org/aio/LayerSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "BatchNorm3D"
} ]
}
}, {
"id" : "https://w3id.org/aio/BatchNormalizationLayer",
"lbl" : "BatchNormalization Layer",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A normalization layer that normalizes its inputs applying a transformation that maintains the mean close to 0 and the standard deviation close to 1.",
"xrefs" : [ "https://www.tensorflow.org/api_docs/python/tf/keras/layers/BatchNormalization" ]
},
"comments" : [ "Layer that normalizes its inputs. Batch normalization applies a transformation that maintains the mean output close to 0 and the output standard deviation close to 1. Importantly, batch normalization works differently during training and during inference. During training (i.e. when using fit() or when calling the layer/model with the argument training=True), the layer normalizes its output using the mean and standard deviation of the current batch of inputs. That is to say, for each channel being normalized, the layer returns gamma * (batch - mean(batch)) / sqrt(var(batch) + epsilon) + beta, where: epsilon is small constant (configurable as part of the constructor arguments), gamma is a learned scaling factor (initialized as 1), which can be disabled by passing scale=False to the constructor. beta is a learned offset factor (initialized as 0), which can be disabled by passing center=False to the constructor. During inference (i.e. when using evaluate() or predict() or when calling the layer/model with the argument training=False (which is the default), the layer normalizes its output using a moving average of the mean and standard deviation of the batches it has seen during training. That is to say, it returns gamma * (batch - self.moving_mean) / sqrt(self.moving_var + epsilon) + beta. self.moving_mean and self.moving_var are non-trainable variables that are updated each time the layer in called in training mode, as such: moving_mean = moving_mean * momentum + mean(batch) * (1 - momentum) moving_var = moving_var * momentum + var(batch) * (1 - momentum)." ],
"subsets" : [ "https://w3id.org/aio/LayerSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "BatchNorm"
} ]
}
}, {
"id" : "https://w3id.org/aio/BayesianNetwork",
"lbl" : "Bayesian Network",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A network that is a probabilistic graphical model representing variables and their conditional dependencies via a directed acyclic graph.",
"xrefs" : [ "https://en.wikipedia.org/wiki/Bayesian_network" ]
},
"subsets" : [ "https://w3id.org/aio/NetworkSubset" ]
}
}, {
"id" : "https://w3id.org/aio/BehavioralBias",
"lbl" : "Behavioral Bias",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "An individual bias characterized by systematic distortions in user behavior across platforms or contexts or across users represented in different datasets.",
"xrefs" : [ "https://doi.org/10.6028/NIST.SP.1270" ]
},
"comments" : [ "Systematic distortions in user behavior across platforms or contexts, or across users represented in different datasets." ],
"subsets" : [ "https://w3id.org/aio/BiasSubset" ]
}
}, {
"id" : "https://w3id.org/aio/Bias",
"lbl" : "Bias",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A systematic error introduced into sampling or testing by selecting or encouraging one outcome or answer over others.",
"xrefs" : [ "https://www.merriam-webster.com/dictionary/bias" ]
},
"subsets" : [ "https://w3id.org/aio/BiasSubset" ]
}
}, {
"id" : "https://w3id.org/aio/Biclustering",
"lbl" : "Biclustering",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A machine learning task focused on methods that simultaneously cluster the rows and columns of a matrix to identify submatrices with coherent patterns.",
"xrefs" : [ "https://en.wikipedia.org/wiki/Biclustering" ]
},
"subsets" : [ "https://w3id.org/aio/MachineLearningSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "Block Clustering"
}, {
"pred" : "hasExactSynonym",
"val" : "Co-clustering"
}, {
"pred" : "hasExactSynonym",
"val" : "Joint Clustering"
}, {
"pred" : "hasExactSynonym",
"val" : "Two-mode Clustering"
}, {
"pred" : "hasExactSynonym",
"val" : "Two-way Clustering"
} ]
}
}, {
"id" : "https://w3id.org/aio/BidirectionalLayer",
"lbl" : "Bidirectional Layer",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A recurrent layer that is a bidirectional wrapper for RNNs.",
"xrefs" : [ "https://www.tensorflow.org/api_docs/python/tf/keras/layers/Bidirectional" ]
},
"comments" : [ "Bidirectional wrapper for RNNs." ],
"subsets" : [ "https://w3id.org/aio/LayerSubset" ]
}
}, {
"id" : "https://w3id.org/aio/BidirectionalTransformerLanguageModel",
"lbl" : "Bidirectional Transformer Language Model",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A transformer language model such as BERT that uses the transformer architecture to build deep bidirectional representations by predicting masked tokens based on their context.",
"xrefs" : [ "https://arxiv.org/abs/1810.04805", "https://en.wikipedia.org/wiki/BERT_(language_model)" ]
},
"subsets" : [ "https://w3id.org/aio/ModelSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "BERT"
}, {
"pred" : "hasExactSynonym",
"val" : "Bidirectional Transformer LM"
} ]
}
}, {
"id" : "https://w3id.org/aio/BinaryClassification",
"lbl" : "Binary Classification",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A classification focused on methods that classify elements into two groups based on a classification rule.",
"xrefs" : [ "https://en.wikipedia.org/wiki/Binary_classification" ]
},
"subsets" : [ "https://w3id.org/aio/MachineLearningSubset" ]
}
}, {
"id" : "https://w3id.org/aio/BoltzmannMachineNetwork",
"lbl" : "Boltzmann Machine Network",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A symmetrically connected network that is a type of stochastic recurrent neural network and Markov random field.",
"xrefs" : [ "https://en.wikipedia.org/wiki/Boltzmann_machine" ]
},
"comments" : [ "Layers: Backfed Input, Probabilistic Hidden" ],
"subsets" : [ "https://w3id.org/aio/NetworkSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "BM"
}, {
"pred" : "hasExactSynonym",
"val" : "Sherrington–Kirkpatrick model with external field"
}, {
"pred" : "hasExactSynonym",
"val" : "stochastic Hopfield network with hidden units"
}, {
"pred" : "hasExactSynonym",
"val" : "stochastic Ising-Lenz-Little model"
} ]
}
}, {
"id" : "https://w3id.org/aio/CategoricalFeaturesPreprocessingLayer",
"lbl" : "Categorical Features Preprocessing Layer",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A layer that performs categorical data preprocessing operations.",
"xrefs" : [ "https://keras.io/guides/preprocessing_layers/" ]
},
"subsets" : [ "https://w3id.org/aio/LayerSubset" ]
}
}, {
"id" : "https://w3id.org/aio/CategoryEncodingLayer",
"lbl" : "CategoryEncoding Layer",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A categorical features preprocessing layer that encodes integer features providing options for condensing data into a categorical encoding.",
"xrefs" : [ "https://www.tensorflow.org/api_docs/python/tf/keras/layers/CategoryEncoding" ]
},
"comments" : [ "A preprocessing layer which encodes integer features. This layer provides options for condensing data into a categorical encoding when the total number of tokens are known in advance. It accepts integer values as inputs, and it outputs a dense or sparse representation of those inputs. For integer inputs where the total number of tokens is not known, use tf.keras.layers.IntegerLookup instead." ],
"subsets" : [ "https://w3id.org/aio/LayerSubset" ]
}
}, {
"id" : "https://w3id.org/aio/CausalGraphicalModel",
"lbl" : "Causal Graphical Model",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A probabilistic graphical model used to encode assumptions about the data-generating process.",
"xrefs" : [ "https://en.wikipedia.org/wiki/Causal_graph" ]
},
"subsets" : [ "https://w3id.org/aio/MachineLearningSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "Casaul Bayesian Network"
}, {
"pred" : "hasExactSynonym",
"val" : "Casaul Graph"
}, {
"pred" : "hasExactSynonym",
"val" : "DAG"
}, {
"pred" : "hasExactSynonym",
"val" : "Directed Acyclic Graph"
}, {
"pred" : "hasExactSynonym",
"val" : "Path Diagram"
} ]
}
}, {
"id" : "https://w3id.org/aio/CausalLLM",
"lbl" : "Causal LLM",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A large language model that only attends to previous tokens in the sequence when generating text modeling the probability distribution autoregressively from left-to-right or causally."
},
"subsets" : [ "https://w3id.org/aio/ModelSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "Causal Large Language Model"
}, {
"pred" : "hasRelatedSynonym",
"val" : "autoregressive"
}, {
"pred" : "hasRelatedSynonym",
"val" : "unidirectional"
} ]
}
}, {
"id" : "https://w3id.org/aio/CenterCropLayer",
"lbl" : "CenterCrop Layer",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "An image preprocessing layer that crops the central portion of images to a target size.",
"xrefs" : [ "https://www.tensorflow.org/api_docs/python/tf/keras/layers/CenterCrop" ]
},
"comments" : [ "A preprocessing layer which crops images. This layers crops the central portion of the images to a target size. If an image is smaller than the target size, it will be resized and cropped so as to return the largest possible window in the image that matches the target aspect ratio. Input pixel values can be of any range (e.g. [0., 1.) or [0, 255]) and of interger or floating point dtype. By default, the layer will output floats." ],
"subsets" : [ "https://w3id.org/aio/LayerSubset" ]
}
}, {
"id" : "https://w3id.org/aio/Classification",
"lbl" : "Classification",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A supervised learning focused on methods that distinguish and distribute kinds of \"things\" into different groups.",
"xrefs" : [ "https://en.wikipedia.org/wiki/Classification_(general_theory)" ]
},
"comments" : [ "Methods that distinguish and distribute kinds of \"things\" into different groups." ],
"subsets" : [ "https://w3id.org/aio/MachineLearningSubset" ]
}
}, {
"id" : "https://w3id.org/aio/Cleaning",
"lbl" : "Cleaning",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A data preparation that removes noise inconsistencies and irrelevant information from data to enhance its quality and prepare it for analysis or further processing."
},
"subsets" : [ "https://w3id.org/aio/PreprocessingSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "Data Cleansing"
}, {
"pred" : "hasExactSynonym",
"val" : "Standardization"
}, {
"pred" : "hasRelatedSynonym",
"val" : "Data cleaning"
}, {
"pred" : "hasRelatedSynonym",
"val" : "Text normalization"
} ]
}
}, {
"id" : "https://w3id.org/aio/Clustering",
"lbl" : "Clustering",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A machine learning task focused on methods that group a set of objects such that objects in the same group are more similar to each other than to those in other groups.",
"xrefs" : [ "https://en.wikipedia.org/wiki/Cluster_analysis" ]
},
"subsets" : [ "https://w3id.org/aio/MachineLearningSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "Cluster analysis"
} ]
}
}, {
"id" : "https://w3id.org/aio/CognitiveBias",
"lbl" : "Cognitive Bias",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "An individual bias characterized by deviations from rational judgment and decision-making including adaptive mental shortcuts known as heuristics.",
"xrefs" : [ "https://doi.org/10.6028/NIST.SP.1270" ]
},
"subsets" : [ "https://w3id.org/aio/BiasSubset" ]
}
}, {
"id" : "https://w3id.org/aio/CompositionalGeneralizationLLM",
"lbl" : "Compositional Generalization LLM",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A large language model that is trained to understand and recombine the underlying compositional structures in language enabling better generalization to novel combinations and out-of-distribution examples."
},
"subsets" : [ "https://w3id.org/aio/ModelSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "Compositional Generalization Large Language Model"
}, {
"pred" : "hasRelatedSynonym",
"val" : "out-of-distribution generalization"
}, {
"pred" : "hasRelatedSynonym",
"val" : "systematic generalization"
} ]
}
}, {
"id" : "https://w3id.org/aio/ComputationalBias",
"lbl" : "Computational Bias",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A bias caused by differences between results and facts in the process of data analysis (including the source of data the estimator chose) and analysis methods.",
"xrefs" : [ "https://doi.org/10.6028/NIST.SP.1270" ]
},
"subsets" : [ "https://w3id.org/aio/BiasSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "Statistical Bias"
} ]
}
}, {
"id" : "https://w3id.org/aio/ConcatenateLayer",
"lbl" : "Concatenate Layer",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A merging layer that concatenates a list of inputs taking as input a list of tensors all of the same shape except for the concatenation axis.",
"xrefs" : [ "https://www.tensorflow.org/api_docs/python/tf/keras/layers/Concatenate" ]
},
"comments" : [ "Layer that concatenates a list of inputs. It takes as input a list of tensors, all of the same shape except for the concatenation axis, and returns a single tensor that is the concatenation of all inputs." ],
"subsets" : [ "https://w3id.org/aio/LayerSubset" ]
}
}, {
"id" : "https://w3id.org/aio/ConceptDriftBias",
"lbl" : "Concept Drift Bias",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A use and interpretation bias due to the use of a system outside its planned domain of application causing performance gaps between laboratory settings and the real world.",
"xrefs" : [ "https://doi.org/10.6028/NIST.SP.1270" ]
},
"subsets" : [ "https://w3id.org/aio/BiasSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "Concept Drift"
} ]
}
}, {
"id" : "https://w3id.org/aio/ConfirmationBias",
"lbl" : "Confirmation Bias",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "An individual bias characterized by the tendency to prefer information that confirms existing beliefs influencing the search for interpretation of and recall of information.",
"xrefs" : [ "https://doi.org/10.6028/NIST.SP.1270" ]
},
"comments" : [ "The tendency to prefer information that confirms existing beliefs, influencing the search for, interpretation of, and recall of information." ],
"subsets" : [ "https://w3id.org/aio/BiasSubset" ]
}
}, {
"id" : "https://w3id.org/aio/ConsumerBias",
"lbl" : "Consumer Bias",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "An individual bias arising when an algorithm or platform provides users a venue to express their biases occurring from either side in a digital interaction.",
"xrefs" : [ "https://doi.org/10.6028/NIST.SP.1270" ]
},
"subsets" : [ "https://w3id.org/aio/BiasSubset" ]
}
}, {
"id" : "https://w3id.org/aio/ContentProductionBias",
"lbl" : "Content Production Bias",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A use and interpretation bias arising from structural lexical semantic and syntactic differences in user-generated content.",
"xrefs" : [ "https://doi.org/10.6028/NIST.SP.1270" ]
},
"comments" : [ "Bias from structural, lexical, semantic, and syntactic differences in user-generated content." ],
"subsets" : [ "https://w3id.org/aio/BiasSubset" ]
}
}, {
"id" : "https://w3id.org/aio/ContinualLearning",
"lbl" : "Continual Learning",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A deep neural network that learns sequential tasks without forgetting knowledge from preceding tasks and without access to old task data during new task training.",
"xrefs" : [ "https://paperswithcode.com/task/continual-learning" ]
},
"comments" : [ "Learning a model for sequential tasks without forgetting knowledge from preceding tasks, with no access to old task data during new task training." ],
"subsets" : [ "https://w3id.org/aio/NetworkSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "Incremental Learning"
}, {
"pred" : "hasExactSynonym",
"val" : "Life-Long Learning"
} ]
}
}, {
"id" : "https://w3id.org/aio/ContinualLearningLLM",
"lbl" : "Continual Learning LLM",
"type" : "CLASS",
"meta" : {
"definition" : {
"val" : "A large language model that continually acquires new knowledge and skills over time without forgetting previously learned information allowing the model to adapt and expand its capabilities as new data becomes available."
},
"subsets" : [ "https://w3id.org/aio/ModelSubset" ],
"synonyms" : [ {
"pred" : "hasExactSynonym",
"val" : "CL-Large Language Model"
}, {
"pred" : "hasExactSynonym",
"val" : "Continual Learning Large Language Model"
}, {
"pred" : "hasRelatedSynonym",
"val" : "catastrophic forgetting"
}, {
"pred" : "hasRelatedSynonym",
"val" : "lifelong learning"
} ]