-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathwarmup.py
178 lines (152 loc) · 5.5 KB
/
warmup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from __future__ import annotations
import os
import uuid
import typing as t
import asyncio
import platform
import warnings
import subprocess
import numpy as np
import torch
import easyocr
from PIL import Image
from detectron2.data import MetadataCatalog
from detectron2.utils.visualizer import ColorMode
from detectron2.utils.visualizer import Visualizer
import dit
import bentoml
if t.TYPE_CHECKING:
from detectron2.config import CfgNode
from detectron2.engine import DefaultPredictor
from detectron2.structures import Boxes
from detectron2.structures import Instances
warnings.filterwarnings("ignore", category=UserWarning)
def convert_pdf_to_images(
pdf_path: str | bytes, **convert_attrs: t.Any
) -> list[Image.Image]:
try:
subprocess.check_output(["pdfinfo", "-v"], stderr=subprocess.PIPE)
except subprocess.CalledProcessError:
if platform.system() == "Darwin":
raise RuntimeError(
"Make sure to install 'poppler' on macOS with brew: 'brew install poppler'"
)
elif platform.system() == "Windows":
raise RuntimeError(
"Refer to https://github.com/Belval/pdf2image for Windows instruction."
)
else:
raise RuntimeError(
"'pdftocairo' and 'pdftoppm' should already be included in your Linux distrobution (Seems like they are not installed). Refer to your package manager and install 'poppler-utils'"
)
try:
import pdf2image
except ImportError:
raise RuntimeError(
"Make sure to install all required dependencies with 'pip install -r requirements.txt'."
)
if not isinstance(pdf_path, (str, bytes)):
raise TypeError(
"pdf_path should be either a path to a PDF file or a bytes object containing a PDF file."
)
convert_attrs.setdefault("thread_count", 6)
fn = (
pdf2image.convert_from_bytes
if isinstance(pdf_path, bytes)
else pdf2image.convert_from_path
)
return fn(pdf_path, **convert_attrs)
def segmentation(
im: Image.Image, predictor: DefaultPredictor, cfg: CfgNode, visualize: bool = False
) -> tuple[list[int], list[float], Boxes]:
md = MetadataCatalog.get(cfg.DATASETS.TEST[0])
tensor = np.array(im)
output: Instances = predictor(tensor)["instances"]
if visualize:
v = Visualizer(
tensor[:, :, ::-1], md, scale=1.0, instance_mode=ColorMode.SEGMENTATION
)
res = v.draw_instance_predictions(output.to("cpu"))
Image.fromarray(res.get_image()[:, :, ::-1]).save(
f"{uuid.uuid4()}-segmented.png"
)
return (
output.get("pred_classes").tolist(),
output.get("scores").tolist(),
output.get("pred_boxes"),
)
async def process_im(
im: Image.Image,
predictor: DefaultPredictor,
cfg: CfgNode,
reader: easyocr.Reader,
res: list[str],
threshold: float = 0.8,
):
async def _proc_cls_scores(
cls: int, score: float, box: torch.Tensor, im: Image.Image
):
if cls != 4 and score >= threshold:
cropped = im.crop(box.numpy())
join_char = "" if cls == 0 else " "
text = join_char.join([t[1] for t in reader.readtext(np.asarray(cropped))])
# ignore annotations for table footer
if not text.startswith("Figure") or not text.startswith("Table"):
print("Extract text:", text)
res.append(text)
classes, scores, boxes = segmentation(im, predictor, cfg)
return await asyncio.gather(
*[
_proc_cls_scores(cls, score, box, im)
for cls, score, box in zip(classes, scores, boxes)
]
)
reader = easyocr.Reader(["en"])
cfg = dit.get_cfg()
predictor = dit.get_predictor(cfg)
def download_models() -> tuple[bentoml.Model, bentoml.Model]:
tag = "en-reader"
try:
reader_model = bentoml.easyocr.get(tag)
print(f"'{tag}' is previously saved: {reader_model}")
except bentoml.exceptions.NotFound:
reader_model = bentoml.easyocr.save_model(tag, reader)
print(f"'{tag}' is saved: {reader_model}")
tag = "dit-predictor"
try:
predictor_model = bentoml.detectron.get(tag)
print(f"'{tag}' is previously saved: {predictor_model}")
except bentoml.exceptions.NotFound:
predictor_model = bentoml.detectron.save_model(tag, predictor)
print(f"'{tag}' is saved: {predictor_model}")
return reader_model, predictor_model
@torch.inference_mode()
async def main(threshold: float = 0.8, analyze: bool = False):
# TODO: support EOL token.
_ = download_models()
if analyze:
intro = (
"\nUsing EasyOCR model with LayouLMv3 Detectron2 model for PDF extraction."
)
print(intro)
print("=" * len(intro))
res = []
await asyncio.gather(
*[
process_im(im, predictor, cfg, reader, res, threshold)
for im in convert_pdf_to_images(
os.path.join("samples", "2204.08387.pdf"), dpi=300
)
]
)
print("results:", res)
print("Finished processing all pages.")
print("=" * 30)
return 0
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--analyze", action="store_true", default=False)
parser.add_argument("--threshold", type=float, default=0.8)
args = parser.parse_args()
raise SystemExit(asyncio.run(main(**vars(args))))