-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmake_configs.py
592 lines (485 loc) · 25.7 KB
/
make_configs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
import json
import numpy as np
import os
from time import gmtime, strftime
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
from copy import deepcopy
from itertools import product
from __init__ import project_root
from shutil import rmtree
def make_base_config():
data_config = {
"dataset_name": "",
"data_seed": 464355,
# dict of args passed to make_density_data_providers() in data_providers.py
"data_args": {},
"frac": 1, # fraction of data to use (useful for fast testing)
# value of nu in the NCE (logistic) objective function (note: this doesn't alter size of minibatch)
"objective_nu": 1,
"do_mutual_info_estimation": False,
"noise_dist_name": None,
"data_dist_name": None, # for toy problems where data_dist is known
"waymark_mechanism": "linear_combinations", # either 'linear_combinations' or 'dimwise_mixing'
"shuffle_waymarks": False, # if shuffle_waymarks=True, consecutive waymark samples will no longer be coupled
"initial_waymark_indices": [0, 1],
"linear_combo_alphas": [0.0, 1.0],
"create_waymarks_in_zspace": False,
"dimwise_mixing_strategy": "fixed_single_order",
"n_event_dims_to_mix": None,
# if waymark_method == 'dimwise_mixing', this is the number of new dimensions we mix with each successive waymark
"waymark_mixing_increment": 1,
}
optim_config = {
"loss_function": "logistic",
"energy_restore_path": None,
"optimizer": "adam",
"n_epochs": 300,
"n_batch": 256,
"energy_lr": 1e-4,
"scale_param_lr_multiplier": 10.0,
"energy_reg_coef": 0.,
# Can apply different dropout rates to each bridge, by specifying an `start_rate' for the first bridge,
# an 'end_rate' for the final bridge, and a 'power' that controls the interpolation between the start & end rates.
# by default, dropout is turned off (and isn't used for final results in the paper)
"dropout_params": [False, 0.0, 0.0, 2.0], # (include_final_layer, start_rate, end_rate, power)
"max_spectral_norm_params": None, # 'None' means don't use spectral_norm, which is default
"just_track_spectral_norm": False,
"label_smoothing_alpha": 0.0, # 0.0 means no label smoothing (which is the default)
"one_sided_smoothing": True,
"loss_decay_factor": 1.0, # 1.0 means no reweighting of the loss (which is the default)
"patience": np.inf, # terminate learning if val loss doesn't improve after this many epochs
"save_every_x_epochs": None # may be set to an integer x. Otherwise, just save best model so far
}
architecture_config = {
"network_type": "mlp",
"mlp_hidden_size": 128,
"mlp_output_size": None, # defaults to mlp_hidden_size
"mlp_n_blocks": 1,
"activation_name": "leaky_relu",
"use_residual_mlp": True,
"use_fc_layer": True, # use fully connected layer at end of convnet
"final_pool_shape": (2, 2),
"conv_kernel_shape": (3, 3),
"use_global_sum_pooling": True,
"use_attention": True,
"head_type": "quadratic",
"use_single_head": False,
"use_cond_scale_shift": True, # bridge-conditional scale+shift per hidden unit
"shift_scale_per_channel": False, # instead of per hidden unit, make the bridge parameters channel-wise
"use_instance_norm": False,
}
ais_config = {
"ais_n_chains": 100,
"ais_total_n_steps": 10000,
"only_sample_n_chains": 100,
"only_sample_total_n_steps": 1000,
"ais_n_leapfrog_steps": 10
}
flow_config = {
"flow_lr": 5e-4,
"flow_keep_prob": 1.0,
"flow_n_bijectors": 5, # doesn't apply to glow - see 'glow_depth'
"flow_num_layers_or_blocks": 2, # doesn't apply to glow
"flow_hidden_size": 256,
"flow_activation": "relu",
"flow_type": "GaussianCopula",
"glow_depth": 8,
"glow_use_split": False,
"glow_coupling_type": "rational_quadratic",
"flow_num_spline_bins": 8,
"glow_temperature": 1.0,
"mogmade_n_mixture_components": 10,
"num_splines": 1, # for gauss copula
"spline_interval_min": -3, # for gauss copula
"nbins_for_splines": 128, # for gauss copula
"logit_copula_marginals": False # for gauss copula
}
config = {
"data": data_config,
"architecture": architecture_config,
"optimisation": optim_config,
"ais": ais_config,
"flow": flow_config
}
return config
def make_1d_configs():
config = make_base_config()
config["data"]["n_dims"] = 1
config["architecture"]["mlp_hidden_size"] = 32
config["architecture"]["mlp_n_blocks"] = 2
config["optimisation"]["n_batch"] = 512
config["optimisation"]["n_epochs"] = 250
return config
# def make_1d_gauss_configs():
# config = make_1d_configs()
# config["data"]["dataset_name"] = "1d_gauss"
# config["data"]["data_args"] = {"n_gaussians": 1, "mean": 0, "std": 1e-6, "n_samples": 10000, "outliers": False}
# config["data"]["noise_dist_name"] = "gaussian"
# config["data"]["noise_dist_gaussian_loc"] = 0.0
# config["data"]["noise_dist_gaussian_std"] = 1.0
#
# config["architecture"]["network_type"] = "quadratic"
# config["architecture"]["quadratic_head_use_linear_term"] = True
# config["optimisation"]["energy_lr"] = 1e-2
# config["optimisation"]["n_batch"] = 1000
#
# dargs1 = {"n_gaussians": 1, "mean": 0.0, "std": 1e-6, "n_samples": 10000}
# dargs2 = {"n_gaussians": 1, "mean": -1.0, "std": 0.08, "n_samples": 10000}
# dargs3 = {"n_gaussians": 1, "mean": -2.0, "std": 0.08, "n_samples": 10000}
# dargs4 = {"n_gaussians": 1, "mean": -5.0, "std": 1.0, "n_samples": 10000}
#
# p1 = [["data", "data", "data", "data", "data"],
# ["data_args",
# "noise_dist_gaussian_loc",
# "noise_dist_gaussian_std",
# "linear_combo_alphas",
# "initial_waymark_indices"],
# [
# [dargs1, 0.0, 1.0, *get_poly_wmark_coefs(num=4, p=5.0)],
# [dargs2, 2.0, 0.15, *get_poly_wmark_coefs(num=20, p=1.0)],
# [dargs3, 2.0, 0.15, *get_poly_wmark_coefs(num=30, p=1.0)],
# [dargs4, 5.0, 1.0, *get_poly_wmark_coefs(num=10, p=1.0)],
# ]
# ]
#
# generate_configs_for_gridsearch(config, "model", p1)
def make_1d_gauss_configs():
config = make_1d_configs()
config["data"]["dataset_name"] = "1d_gauss"
config["data"]["data_args"] = {"n_gaussians": 1, "mean": 0, "std": 1e-6, "n_samples": 10000, "outliers": False}
config["data"]["noise_dist_gaussian_loc"] = 0.0
config["data"]["noise_dist_gaussian_std"] = 1.0
# config["architecture"]["network_type"] = "linear"
config["architecture"]["network_type"] = "quadratic"
config["architecture"]["quadratic_head_use_linear_term"] = False
config["optimisation"]["energy_lr"] = 1e-3
config["optimisation"]["n_batch"] = 1000
p1 = ["optimisation", "loss_function", ["logistic", "nwj", "lsq"]]
p2 = [["data", "data", "data"],
["noise_dist_name", "linear_combo_alphas", "initial_waymark_indices"],
[
["gaussian", *get_poly_wmark_coefs(num=2, p=1.0)],
["gaussian", *get_poly_wmark_coefs(num=5, p=7.0)],
]
]
generate_configs_for_gridsearch(config, "model", p1, p2)
#
# def make_gaussians_configs():
# config = make_base_config()
# config["data"]["dataset_name"] = "gaussians"
# config["data"]["data_dist_name"] = "gaussian"
# config["data"]["noise_dist_name"] = "gaussian"
#
# config["optimisation"]["n_epochs"] = 250
# config["optimisation"]["n_batch"] = 512
# config["optimisation"]["patience"] = 50
# config["optimisation"]["save_every_x_epochs"] = 10
#
# # config["architecture"]["network_type"] = "mlp"
# config["architecture"]["network_type"] = "quadratic"
# config["architecture"]["quadratic_constraint_type"] = "symmetric_pos_diag"
# config["architecture"]["quadratic_head_use_linear_term"] = True
#
# config["ais"]["ais_n_chains"] = 1000
# config["ais"]["ais_total_n_steps"] = 1000
#
# data_args1 = {"n_samples": 100000, "n_dims": 40, "mean": -1.0, "std": 1.0}
# data_args2 = {"n_samples": 100000, "n_dims": 160, "mean": -0.5, "std": 1.0}
# data_args3 = {"n_samples": 100000, "n_dims": 320, "mean": -0.5, "std": 1.0}
#
# p1 = [["data", "data", "data", "data", "data", "data", "optimisation"],
# ["linear_combo_alphas", "initial_waymark_indices", "n_dims",
# "data_args", "noise_dist_gaussian_loc", "noise_dist_gaussian_std", "energy_lr"],
# [
# [*get_poly_wmark_coefs(num=9, p=1.0), data_args1["n_dims"], data_args1, 1.0, 1.0, 1e-4],
# [*get_poly_wmark_coefs(num=2, p=1.0), data_args1["n_dims"], data_args1, 1.0, 1.0, 5e-4],
#
# [*get_poly_wmark_coefs(num=13, p=1.0), data_args2["n_dims"], data_args2, 0.6, 1.0, 1e-4],
# [*get_poly_wmark_coefs(num=2, p=1.0), data_args2["n_dims"], data_args2, 0.6, 1.0, 5e-4],
#
# [*get_poly_wmark_coefs(num=17, p=1.0), data_args3["n_dims"], data_args3, 0.5, 1.0, 1e-4],
# [*get_poly_wmark_coefs(num=2, p=1.0), data_args3["n_dims"], data_args3, 0.5, 1.0, 5e-4],
# ]
# ]
#
# generate_configs_for_gridsearch(config, "model", p1)
def make_gaussians_configs():
config = make_base_config()
config["data"]["dataset_name"] = "gaussians"
config["data"]["n_dims"] = 80
config["data"]["data_args"] = {"n_samples": 100000, "dims": config["data"]["n_dims"], "true_mutual_info": 20}
config["data"]["data_dist_name"] = "gaussian"
config["data"]["noise_dist_name"] = "gaussian"
config["optimisation"]["n_epochs"] = 250
config["optimisation"]["n_batch"] = 512
config["optimisation"]["patience"] = 50
config["optimisation"]["save_every_x_epochs"] = 10
# config["architecture"]["network_type"] = "mlp"
config["architecture"]["network_type"] = "quadratic"
config["architecture"]["quadratic_constraint_type"] = "symmetric_pos_diag"
config["architecture"]["quadratic_head_use_linear_term"] = True
config["ais"]["ais_n_chains"] = 1000
config["ais"]["ais_total_n_steps"] = 1000
data_args1 = {"n_samples": 100000, "n_dims": 40, "true_mutual_info": 10}
data_args2 = {"n_samples": 100000, "n_dims": 80, "true_mutual_info": 20}
data_args3 = {"n_samples": 100000, "n_dims": 160, "true_mutual_info": 40}
data_args4 = {"n_samples": 100000, "n_dims": 320, "true_mutual_info": 80}
p1 = [["data", "data", "data", "data", "optimisation"],
["linear_combo_alphas", "initial_waymark_indices", "n_dims", "data_args", "energy_lr"],
[
[*get_poly_wmark_coefs(num=3, p=1.0), data_args1["n_dims"], data_args1, 1e-4],
[*get_poly_wmark_coefs(num=2, p=1.0), data_args1["n_dims"], data_args1, 5e-4],
[*get_poly_wmark_coefs(num=5, p=1.0), data_args2["n_dims"], data_args2, 1e-4],
[*get_poly_wmark_coefs(num=2, p=1.0), data_args2["n_dims"], data_args2, 5e-4],
[*get_poly_wmark_coefs(num=7, p=1.0), data_args3["n_dims"], data_args3, 1e-4],
[*get_poly_wmark_coefs(num=2, p=1.0), data_args3["n_dims"], data_args3, 5e-4],
[*get_poly_wmark_coefs(num=9, p=1.0), data_args4["n_dims"], data_args4, 1e-4],
[*get_poly_wmark_coefs(num=2, p=1.0), data_args4["n_dims"], data_args4, 5e-4],
]
]
generate_configs_for_gridsearch(config, "model", p1)
def make_mnist_configs():
config = make_base_config()
config["data"]["dataset_name"] = "mnist"
config["data"]["n_dims"] = 784
config["data"]["data_args"] = {"dequantize": True, "logit": True, "img_shape": [28, 28, 1]}
config["data"]["create_waymarks_in_zspace"] = True
# First, we need to train a copula/flow model. This model will be saved under a specific time identifier
# (e.g. 20200408-1721_0), and then, to train a corresponding TRE model, we need to set config["flow]["flow_id"]
_make_mnist_noise_dist_config(config, noise_type="GaussianCopula")
# _make_mnist_noise_dist_config(config, noise_type="GLOW")
config["architecture"]["network_type"] = "resnet"
config["architecture"]["channel_widths"] = [[64], [64, 64], [64, 64], [128, 128], [128, 128]]
config["architecture"]["mlp_hidden_size"] = 128
config["optimisation"]["n_epochs"] = 150
p1 = [["data", "data", "data", "flow", "flow", "optimisation"],
["linear_combo_alphas", "initial_waymark_indices", "noise_dist_name", "flow_type", "flow_id", "n_batch"],
[
[*get_poly_wmark_coefs(num=11, p=1.0, drop_first=True), "full_covariance_gaussian", None, None, 250],
[*get_poly_wmark_coefs(num=16, p=1.0, drop_first=True), "full_covariance_gaussian", None, None, 375],
[*get_poly_wmark_coefs(num=21, p=1.0, drop_first=True), "full_covariance_gaussian", None, None, 500],
[*get_poly_wmark_coefs(num=26, p=1.0, drop_first=True), "full_covariance_gaussian", None, None, 625],
[*get_poly_wmark_coefs(num=31, p=1.0, drop_first=True), "full_covariance_gaussian", None, None, 750],
[*get_poly_wmark_coefs(num=11, p=1.0, drop_first=True), "flow", "GaussianCopula", "20200408-1721_0", 250],
[*get_poly_wmark_coefs(num=16, p=1.0, drop_first=True), "flow", "GaussianCopula", "20200408-1721_0", 375],
[*get_poly_wmark_coefs(num=21, p=1.0, drop_first=True), "flow", "GaussianCopula", "20200408-1721_0", 500],
[*get_poly_wmark_coefs(num=26, p=1.0, drop_first=True), "flow", "GaussianCopula", "20200408-1721_0", 625],
[*get_poly_wmark_coefs(num=11, p=1.0, drop_first=True), "flow", "GLOW", "20200220-1137_2", 125],
]
]
# p2 = ["data", "create_waymarks_in_zspace", [True, False]]
generate_configs_for_gridsearch(config, "model", p1)
def _make_mnist_noise_dist_config(config, noise_type):
config["flow"]["flow_hidden_size"] = 64
config["flow"]["flow_num_spline_bins"] = 8
if noise_type == "full_covariance_gaussian":
config["data"]["noise_dist_name"] = "full_covariance_gaussian"
elif noise_type == "GaussianCopula":
config["data"]["noise_dist_name"] = "flow"
config["flow"]["flow_type"] = "GaussianCopula"
config["data"]["flow_id"] = "20200408-1721_0"
config["optimisation"]["n_epochs"] = 400
config["optimisation"]["n_batch"] = 512
config["optimisation"]["patience"] = 200
p1 = ["flow", "flow_lr", [1e-4]]
generate_configs_for_gridsearch(config, "flow", p1)
elif noise_type == "GLOW":
config["data"]["noise_dist_name"] = "flow"
config["flow"]["flow_type"] = "GLOW"
config["data"]["flow_id"] = "20200220-1137_2"
config["flow"]["flow_keep_prob"] = 0.9
config["optimisation"]["n_epochs"] = 1024
config["optimisation"]["n_batch"] = 256
config["optimisation"]["patience"] = 1500
p1 = ["flow", "flow_keep_prob", [0.9]]
generate_configs_for_gridsearch(config, "flow", p1)
else:
raise NotImplementedError
def make_multiomniglot_configs():
config = make_base_config()
config["data"]["dataset_name"] = "multiomniglot"
config["data"]["do_mutual_info_estimation"] = True
config["data"]["waymark_mechanism"] = "dimwise_mixing"
config["data"]["dimwise_mixing_strategy"] = "fixed_single_order"
config["data"]["n_event_dims_to_mix"] = 1 # don't mix pixel values, just image blocks
config["architecture"]["use_attention"] = False
config["architecture"]["use_average_pooling"] = False
config["optimisation"]["n_batch"] = 256
stacked = False # if False, use spatial layout of images
p1 = [["data", "data", "data", "data",
"architecture", "architecture", "architecture", "architecture", "architecture", "optimisation"],
["data_args", "n_dims", "waymark_mixing_increment", "initial_waymark_indices",
"network_type", "channel_widths", "init_kernel_shape", "init_kernel_strides", "mlp_hidden_size", "n_epochs"],
[
# 1 image, 1 ratio, various widths
_get_single_multiomniglot_hparam_setting(
n_imgs=1, stacked=stacked, mixing_increment=1, network_type="resnet", base_channel_width=32,
init_kernel_shape=(5, 5), init_kernel_strides=(3, 3), base_mlp_width=300),
_get_single_multiomniglot_hparam_setting(
n_imgs=1, stacked=stacked, mixing_increment=1, network_type="resnet", base_channel_width=32,
init_kernel_shape=(5, 5), init_kernel_strides=(3, 3), base_mlp_width=500),
# 4 imgs, 4 ratios, various widths
_get_single_multiomniglot_hparam_setting(
n_imgs=4, stacked=stacked, mixing_increment=1, network_type="resnet", base_channel_width=32,
init_kernel_shape=(5, 5), init_kernel_strides=(3, 3), base_mlp_width=300),
_get_single_multiomniglot_hparam_setting(
n_imgs=4, stacked=stacked, mixing_increment=1, network_type="resnet", base_channel_width=32,
init_kernel_shape=(5, 5), init_kernel_strides=(3, 3), base_mlp_width=500),
# 4 imgs, 1 ratio, various widths
_get_single_multiomniglot_hparam_setting(
n_imgs=4, stacked=stacked, mixing_increment=4, network_type="resnet", base_channel_width=32,
init_kernel_shape=(5, 5), init_kernel_strides=(3, 3), base_mlp_width=150),
_get_single_multiomniglot_hparam_setting(
n_imgs=4, stacked=stacked, mixing_increment=4, network_type="resnet", base_channel_width=32,
init_kernel_shape=(5, 5), init_kernel_strides=(3, 3), base_mlp_width=300),
_get_single_multiomniglot_hparam_setting(
n_imgs=4, stacked=stacked, mixing_increment=4, network_type="resnet", base_channel_width=32,
init_kernel_shape=(5, 5), init_kernel_strides=(3, 3), base_mlp_width=500),
# 9 imgs, 9 ratios, various widths
_get_single_multiomniglot_hparam_setting(
n_imgs=9, stacked=stacked, mixing_increment=1, network_type="resnet", base_channel_width=32,
init_kernel_shape=(5, 5), init_kernel_strides=(3, 3), base_mlp_width=300),
_get_single_multiomniglot_hparam_setting(
n_imgs=9, stacked=stacked, mixing_increment=1, network_type="resnet", base_channel_width=32,
init_kernel_shape=(5, 5), init_kernel_strides=(3, 3), base_mlp_width=500),
# 9 imgs, 1 ratio, various widths
_get_single_multiomniglot_hparam_setting(
n_imgs=9, stacked=stacked, mixing_increment=9, network_type="resnet", base_channel_width=32,
init_kernel_shape=(5, 5), init_kernel_strides=(3, 3), base_mlp_width=150),
_get_single_multiomniglot_hparam_setting(
n_imgs=9, stacked=stacked, mixing_increment=9, network_type="resnet", base_channel_width=32,
init_kernel_shape=(5, 5), init_kernel_strides=(3, 3), base_mlp_width=300),
_get_single_multiomniglot_hparam_setting(
n_imgs=9, stacked=stacked, mixing_increment=9, network_type="resnet", base_channel_width=32,
init_kernel_shape=(5, 5), init_kernel_strides=(3, 3), base_mlp_width=500),
]
]
generate_configs_for_gridsearch(config, "model", p1)
def _get_single_multiomniglot_hparam_setting(n_imgs,
stacked,
mixing_increment,
network_type,
base_channel_width=32,
init_kernel_shape=(3, 3),
init_kernel_strides=(1, 1),
base_mlp_width=128,
):
n_sqrt = int(n_imgs**0.5)
d_args = _get_multiomniglot_data_args(n_imgs, stacked)
n_dims = int(np.prod(d_args["img_shape"]))
wmark_idxs = list(range(int(n_imgs/mixing_increment) + 1))
channel_widths = [[base_channel_width], [base_channel_width]*2, [2*base_channel_width]*2, [2*base_channel_width]*2]
mlp_width = base_mlp_width*n_sqrt
n_epochs = int((2000 * mixing_increment) / n_imgs)
hparams = [
d_args, n_dims, mixing_increment, wmark_idxs, network_type,
channel_widths, init_kernel_shape, init_kernel_strides, mlp_width, n_epochs
]
return hparams
def _get_multiomniglot_data_args(n_imgs, stacked):
n_sqrt = int(n_imgs**0.5)
if stacked:
return {"n_imgs": n_imgs, "stacked": True, "img_shape": [28, 28, n_imgs, 2]}
else:
return {"n_imgs": n_imgs, "stacked": False, "img_shape": [n_sqrt*28, n_sqrt*28, 1, 2]} # spatially arranged
def generate_configs_for_gridsearch(config, name, *args):
keys1 = [arg[0] for arg in args]
keys2 = [arg[1] for arg in args]
params = [arg[2] for arg in args]
configs = []
params_grid = product(*params)
for i, p in enumerate(params_grid):
config_i = deepcopy(config)
for key1, key2, val in zip(keys1, keys2, p):
if not isinstance(key1, list):
key1, key2, val = [key1], [key2], [val]
assert len(key1) == len(key2) == len(val), "the *args input to this function contains " \
"elements of the form [keys1, keys2, associated_vals_to_grid_search_over]. \n If keys1 " \
"is a list (e.g ['architecture', 'optimisation]), then key2 must also be a list of " \
"same length (e.g. ['num_layers', 'energy_lr']) and the associated vals should be of the form " \
"[[2, '1e-3] [2, '1e-4], [3, '1e-4]]"
for subkey1, subkey2, subval in zip(key1, key2, val):
config_i[subkey1][subkey2] = subval
save_config(config_i, name, i)
configs.append(config_i)
# save the gridsearch hparams to a .txt file
if name == "model":
hparams_dir = os.path.join(project_root, "saved_models", config["data"]["dataset_name"], "hparams")
os.makedirs(hparams_dir, exist_ok=True)
hparams_to_txt_file(os.path.join(hparams_dir, "{}_hparams.txt".format(time_id)), args)
return configs
def hparams_to_txt_file(filename, hparams):
with open(filename, 'w+') as f:
for h in hparams:
f.write("\n")
for i, hi in enumerate(h):
if i <2:
f.write(str(hi) + "\n")
else:
for hii in hi:
f.write(str(hii) + "\n")
def check_valid_config(c):
pass
def update_waymark_method_settings(c):
pass
def update_config(c, i):
dataset_name = c["data"]["dataset_name"]
c["data"]["fig_dir_name"] = "{}figs/{}/{}/".format(project_root, dataset_name, time_id)
c["data"]["save_dir"] = project_root + "{}/{}/{}_{}/".format("saved_models", dataset_name, time_id, i)
p_exc = c["data"]["data_args"].get("percent_excluded", None)
if p_exc is not None:
c["data"]["data_args"]["flow_type"] = c["flow"]["flow_type"]
c["data"]["init_num_ratios"] = len(c["data"]["initial_waymark_indices"]) - 1
c["data"]["waymark_idxs"] = c["data"]["initial_waymark_indices"]
c["data"]["bridge_idxs"] = c["data"]["initial_waymark_indices"][:-1]
n_ratios = c["data"]["init_num_ratios"]
c["optimisation"]["num_losses"] = n_ratios
update_waymark_method_settings(c)
def get_flow_base_mixture_stds_and_weights(num, start_std, end_std, weight_factor=1.0):
stds = [x for x in np.linspace(start_std, end_std, num=num)]
weights = np.linspace(1.0, 1.0/weight_factor, num=num)
weights /= np.sum(weights)
weights = [w for w in weights]
return [stds, weights]
def get_poly_wmark_coefs(num, p, mini=None, drop_first=False):
if mini is not None:
scales = [0.0] + [(x/(num-1)) ** p for x in np.linspace((num-1) * (mini ** (1 / p)), num-1, num-1)]
else:
scales = [(x/num) ** p for x in np.linspace(0.0, num, num)]
start = 1 if drop_first else 0
idxs = np.arange(start, len(scales))
return scales, [int(i) for i in idxs]
def get_symmetric_poly_noise_scales(n, p, mini=None, drop_first=False):
m = int(n/2)+1
if mini is not None:
scales = [0.0] + [(x/(m-1)) ** p for x in np.linspace((m-1) * (mini ** (1 / p)), m-1, m-1)]
else:
scales = [(x/m) ** p for x in np.linspace(0.0, m, m)]
scales = np.array(scales) / 2
scales = np.concatenate([scales, 1-scales[:-1][::-1]])
scales = [x for x in scales]
start = 1 if drop_first else 0
idxs = np.arange(start, len(scales))
return scales, [int(i) for i in idxs]
def save_config(config, name, i):
update_config(config, i)
check_valid_config(config)
save_dir = project_root + 'configs/{}/{}/'.format(config["data"]["dataset_name"], name)
if i == 0:
rmtree(save_dir, ignore_errors=True)
os.makedirs(save_dir, exist_ok=True)
with open(save_dir + '{}.json'.format(i), 'w') as fp:
json.dump(config, fp, indent=4)
def main():
parser = ArgumentParser(description='Create configs for TRE',
formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument('--time_id', type=str, help="model config ids", default=None)
args = parser.parse_args()
time_id = strftime('%Y%m%d-%H%M', gmtime()) if not args.time_id else args.time_id
globals().update({"time_id": time_id})
make_1d_gauss_configs()
make_gaussians_configs()
make_mnist_configs()
make_multiomniglot_configs()
if __name__ == "__main__":
main()