-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy path3_dataset_cleaner.R
241 lines (172 loc) · 8.34 KB
/
3_dataset_cleaner.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
library(dplyr)
#------------------------------------
# I set the working directory here.
#------------------------------------
setwd("/home/benedek/Documents/societe/")
#------------------------------------------
#------------------------------------------
# FUNCTION for hot-one encoding.
#------------------------------------------
#------------------------------------------
dummygen <- function(new_table, original_table, dummified_column, column_values, new_name){
#-----------------------------------------------------------------
# INPUT 1. -- The new cleaned table -- I will attach the dummies.
# INPUT 2. -- The original table that is being cleaned.
# INPUT 3. -- The column that has the strings.
# INPUT 4. -- The unique values in the column encoded.
# INPUT 5. -- The new name of the columns.
# OUTPUT -- The new table with the dummy variables.
#-----------------------------------------------------------------
i <- 0
for (val in column_values){
i <- i + 1
new_variable <- data.frame(matrix(0, nrow(new_table), 1))
new_variable[original_table[,dummified_column] == val, 1] <- 1
colnames(new_variable) <- paste0(new_name, i)
new_table <- cbind(new_table,new_variable)
}
return(new_table)
}
#--------------------------------------------
#--------------------------------------------
# FUNCTION for aggregate dataset generation.
#--------------------------------------------
#--------------------------------------------
aggregate_joiner <- function(input_table, time_aggregator, rowbinded_table, naming_convention){
#-----------------------------------------------------------------
# INPUT 1. -- The training or test set.
# INPUT 2. -- A list of country-time level grouping keys.
# INPUT 3. -- The rwo binded test and training data.
# INPUT 4. -- Names in the new table.
# OUTPUT -- Aggregates added to the input table.
#-----------------------------------------------------------------
aggregates <- list()
#----------------------------------------------------
# The aggregates that I consider are as follows:
# Mean, min, max, standard deviation and median.
#----------------------------------------------------
functions <- c("mean", "min", "max", "sd", "median")
statistics <- c("means", "mins", "maxs", "sds", "medians")
for(i in 1:5){
aggregates[[statistics[i]]] <- aggregate(rowbinded_table, by = time_aggregator, eval(parse(text = functions[i])))
}
naming <- c("country", "year")
indexing_1 <- c(3:122)
indexing_2 <- c(1:120)
for (stat_value in statistics){
colnames(aggregates[[stat_value]])[1:2] <- naming
colnames(aggregates[[stat_value]])[indexing_1] <- paste0("aggregated_", stat_value, "_", naming_convention, "_", indexing_2)
input_table <- left_join(input_table, aggregates[[stat_value]])
}
return(input_table)
}
#--------------------------------------------
#--------------------------------------------
# FUNCTION for dataset cleaning.
#--------------------------------------------
#--------------------------------------------
data_clean <- function(input_table, input_table_2, target_aggregates, time_indices){
#--------------------------------------------------------------------------------
# INPUT 1. -- Training or test dataset.
# INPUT 2. -- The other dataset.
# INPUT 3. -- The aggregates of the target variable.
# INPUT 4. -- The linearized time mapping obtained with 2_time_series_pairing.R.
# OUTPUT -- The cleaned input table.
#--------------------------------------------------------------------------------
#-----------------------------------------------------------
# Creating a subset of the dataset with non index columns.
#-----------------------------------------------------------
non_index_columns <- c(4:123)
new_table <- input_table[, non_index_columns]
#-----------------------------
# Concatenating the datasets.
#-----------------------------
rowbinded_table <- rbind(input_table, input_table_2)
#--------------------------------------------------------------------
# Creating aggregation keys based on country-year and country-month.
#--------------------------------------------------------------------
time_aggregator_1 <- list(rowbinded_table$country, rowbinded_table$year)
time_aggregator_2 <- list(rowbinded_table$country, rowbinded_table$month)
#-----------------------------------------------------
# Keeping the non-index columns of the joined dataset.
#-----------------------------------------------------
rowbinded_table <- rowbinded_table[, non_index_columns]
#--------------------------------------------
# Creating the respective aggregate tables.
#--------------------------------------------
input_table <- aggregate_joiner(input_table, time_aggregator_1, rowbinded_table, "1")
input_table <- aggregate_joiner(input_table, time_aggregator_2, rowbinded_table, "2")
#-------------------------------------------
# Concatenating columwise the aggregates.
#-------------------------------------------
new_table <- cbind(new_table, input_table[125:ncol(input_table)])
#-------------------------------
# Adding month binary features.
# Adding year binary features.
#-------------------------------
new_table <- dummygen(new_table, input_table, "month", c(1:12), "month_")
new_table <- dummygen(new_table, input_table, "country", c(1:76), "country_")
#------------------------------
# Adding the target aggregates.
#------------------------------
mapped_table <- left_join(input_table, target_aggregates)
new_table <- cbind(new_table, mapped_table[,c("aggregated_target")])
#-------------------------------------
# Adding the linearized year indices.
#-------------------------------------
new_table <- new_table[, 1:ncol(new_table)-1]
new_table <- new_table[, colnames(new_table) != "year"]
mapped_2_table <- left_join(input_table, time_indices)
new_table$new_year <- mapped_2_table$new_year
new_table$time <- mapped_2_table$time
return(new_table)
}
########################################
##------------------------------------##
##------------------------------------##
##------------------------------------##
## Actual data cleaning happens here. ##
##------------------------------------##
##------------------------------------##
##------------------------------------##
########################################
#--------------------------------------
# Reading the training and test data.
#--------------------------------------
train <- read.csv("./raw_dataset/train.csv", sep = ";", stringsAsFactors = FALSE)
test <- read.csv("./raw_dataset/test.csv", sep = ";", stringsAsFactors = FALSE)
#------------------------------
# Reading the target variable.
#------------------------------
target <- read.csv("./raw_dataset/target.csv", sep = ";", stringsAsFactors = FALSE)
#-------------------------------
# Reading the linearized year.
#-------------------------------
mapping <- read.csv("./raw_dataset/mapped_year_linearized.csv", sep = ",", stringsAsFactors = FALSE)
#----------------------
# Joining the mapping.
#----------------------
train <- left_join(train, mapping)
test <- left_join(test, mapping)
#-----------------------------
# Reading the time indices.
#-----------------------------
time_indices <- read.csv("./raw_dataset/time_indices.csv", sep = ",", stringsAsFactors = FALSE)
#--------------------------
# Creating the aggregates.
#--------------------------
target_aggregates <- aggregate(target$Target, by = list(train$country, train$year), mean)
#----------------------------------
# Renaming the aggregate columns.
#----------------------------------
colnames(target_aggregates) <- c("country", "year", "aggregated_target")
#-------------------------------------------------------
# Creating the datasets for training with the function.
#-------------------------------------------------------
new_train <- data_clean(train, test, target_aggregates, time_indices)
new_test <- data_clean(test, train, target_aggregates, time_indices)
#-----------------
# Dumping to disk.
#-----------------
write.csv(new_train, "./clean_dataset/train.csv", row.names = FALSE)
write.csv(new_test, "./clean_dataset/test.csv", row.names = FALSE)