-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpca.cpp
executable file
·104 lines (101 loc) · 3.85 KB
/
pca.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;
/*PCA example
./BasicOperations ../images/pca_rectangle.png
./BasicOperations ../images/gedeck1.jpg
*/
void drawAxis(Mat &img, Point p, Point q, Scalar colour,
const float scale = 0.2) {
double angle;
double hypotenuse;
angle = atan2((double)p.y - q.y, (double)p.x - q.x); // angle in radians
hypotenuse =
sqrt((double)(p.y - q.y) * (p.y - q.y) + (p.x - q.x) * (p.x - q.x));
// double degrees = angle * 180 / CV_PI; // convert radians to degrees
// (0-180 range) cout << "Degrees: " << abs(degrees - 180) << endl; //
// angle in 0-360 degrees range
// Here we lengthen the arrow by a factor of scale
q.x = (int)(p.x - scale * hypotenuse * cos(angle));
q.y = (int)(p.y - scale * hypotenuse * sin(angle));
cv:
line(img, p, q, colour, 1, LINE_AA);
// create the arrow hooks
p.x = (int)(q.x + 9 * cos(angle + CV_PI / 4));
p.y = (int)(q.y + 9 * sin(angle + CV_PI / 4));
cv::line(img, p, q, colour, 1, LINE_AA);
p.x = (int)(q.x + 9 * cos(angle - CV_PI / 4));
p.y = (int)(q.y + 9 * sin(angle - CV_PI / 4));
line(img, p, q, colour, 1, LINE_AA);
}
double getOrientation(const vector<Point> &pts, Mat &img) {
// Construct a buffer used by the pca analysis
int sz = static_cast<int>(pts.size());
Mat data_pts = Mat(sz, 2, CV_64FC1);
for (int i = 0; i < data_pts.rows; ++i) {
data_pts.at<double>(i, 0) = pts[i].x;
data_pts.at<double>(i, 1) = pts[i].y;
}
// Perform PCA analysis
PCA pca_analysis(data_pts, Mat(), PCA::DATA_AS_ROW);
// Store the center of the object
Point cntr = Point(static_cast<int>(pca_analysis.mean.at<double>(0, 0)),
static_cast<int>(pca_analysis.mean.at<double>(0, 1)));
// Store the eigenvalues and eigenvectors
vector<Point2d> eigen_vecs(2);
vector<double> eigen_val(2);
for (int i = 0; i < 2; ++i) {
eigen_vecs[i] = Point2d(pca_analysis.eigenvectors.at<double>(i, 0),
pca_analysis.eigenvectors.at<double>(i, 1));
eigen_val[i] = pca_analysis.eigenvalues.at<double>(0, i);
}
// Draw the principal components
circle(img, cntr, 3, Scalar(255, 0, 255), 2);
Point p1 =
cntr + 0.02 * Point(static_cast<int>(eigen_vecs[0].x * eigen_val[0]),
static_cast<int>(eigen_vecs[0].y * eigen_val[0]));
Point p2 =
cntr - 0.02 * Point(static_cast<int>(eigen_vecs[1].x * eigen_val[1]),
static_cast<int>(eigen_vecs[1].y * eigen_val[1]));
drawAxis(img, cntr, p1, Scalar(0, 255, 0), 1);
drawAxis(img, cntr, p2, Scalar(255, 255, 0), 5);
double angle =
atan2(eigen_vecs[0].y, eigen_vecs[0].x); // orientation in radians
return angle;
}
int draw_PCA(int argc, char **argv) {
// Load image
Mat src = imread(argv[1]);
// Check if image is loaded successfully
if (!src.data || src.empty()) {
cout << "Problem loading image!!!" << endl;
return EXIT_FAILURE;
}
imshow("src", src);
// Convert image to grayscale
Mat gray;
cvtColor(src, gray, COLOR_BGR2GRAY);
// Convert image to binary
Mat bw;
threshold(gray, bw, 50, 255, cv::THRESH_BINARY | cv::THRESH_OTSU);
// Find all the contours in the thresholded image
vector<Vec4i> hierarchy;
vector<vector<Point>> contours;
findContours(bw, contours, hierarchy, cv::RETR_LIST, cv::CHAIN_APPROX_NONE);
for (size_t i = 0; i < contours.size(); ++i) {
// Calculate the area of each contour
double area = contourArea(contours[i]);
// Ignore contours that are too small or too large
if (area < 1e2 || 1e5 < area)
continue;
// Draw each contour only for visualisation purposes
drawContours(src, contours, static_cast<int>(i), Scalar(0, 0, 255), 2, 8,
hierarchy, 0);
// Find the orientation of each shape
getOrientation(contours[i], src);
}
imshow("output", src);
waitKey(0);
return 0;
}
int main() {}