-
-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathFastAPI.py
106 lines (89 loc) · 3.32 KB
/
FastAPI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
from fastapi import FastAPI, Depends, HTTPException
from pydantic import BaseModel
import pickle
from typing import List
import json
# Load model at application start
def load_model():
with open("sentiment_model.pkl", "rb") as f:
return pickle.load(f)
# Initialize FastAPI app
app = FastAPI()
# Define PMLL components
class PMLLMemory:
"""Persistent Memory to store historical data."""
def __init__(self):
self.history = []
def save(self, input_text, prediction, feedback=None):
entry = {"text": input_text, "prediction": prediction, "feedback": feedback}
self.history.append(entry)
def get_history(self):
return self.history
# Define ARLL components
class ARLL:
"""Reinforcement Learning to improve the model."""
def __init__(self, model):
self.model = model
self.feedback_data = []
def record_feedback(self, input_text, true_sentiment):
self.feedback_data.append((input_text, true_sentiment))
def retrain_model(self):
# Simulate model improvement using feedback (this part should be replaced with real retraining logic)
print(f"Retraining model with {len(self.feedback_data)} new data points.")
# Example: Add data to the training set and re-fit the model here.
# Define EFLL components
class EFLL:
"""Emotional Feedback Learning Loop."""
def provide_emotional_feedback(self, sentiment):
feedback_map = {
"positive": "That's great to hear!",
"negative": "I'm sorry to hear that. Let me know how I can help.",
"neutral": "Thanks for sharing your thoughts."
}
return feedback_map.get(sentiment, "Thank you for your input.")
# Initialize frameworks
pmll_memory = PMLLMemory()
arll = ARLL(model=load_model())
efll = EFLL()
# Define input schema
class TextInput(BaseModel):
text: str
class FeedbackInput(BaseModel):
text: str
true_sentiment: str
# Load the model as a dependency
@app.on_event("startup")
def on_startup():
global model
model = load_model()
# Prediction endpoint
@app.post("/predict")
async def predict(input: TextInput, model=Depends(load_model)):
try:
prediction = model.predict([input.text])[0]
pmll_memory.save(input.text, prediction) # Save to PMLL memory
emotional_feedback = efll.provide_emotional_feedback(prediction) # Generate emotional feedback
return {"text": input.text, "sentiment": prediction, "emotional_feedback": emotional_feedback}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# Feedback endpoint for ARLL
@app.post("/feedback")
async def feedback(input: FeedbackInput):
try:
arll.record_feedback(input.text, input.true_sentiment)
pmll_memory.save(input.text, None, feedback=input.true_sentiment) # Save feedback to PMLL memory
return {"message": "Feedback recorded. Thank you!"}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# Retrain model with ARLL
@app.post("/retrain")
async def retrain_model():
try:
arll.retrain_model()
return {"message": "Model retrained with feedback data."}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# History endpoint
@app.get("/history")
async def get_history():
return pmll_memory.get_history()