-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathevaluate.py
240 lines (212 loc) · 7.21 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import argparse
import json
import os
import torch
from torch import nn
from torch.utils.data import DataLoader
from tqdm import tqdm
import yaml
from visdialch.data.dataset import VisDialDataset
from visdialch.encoders import Encoder
from visdialch.decoders import Decoder
from visdialch.metrics import SparseGTMetrics, NDCG, scores_to_ranks
from visdialch.model import EncoderDecoderModel
from visdialch.utils.checkpointing import load_checkpoint
parser = argparse.ArgumentParser(
"Evaluate and/or generate EvalAI submission file."
)
parser.add_argument(
"--config-yml",
default="configs/lf_disc_faster_rcnn_x101.yml",
help="Path to a config file listing reader, model and optimization "
"parameters.",
)
parser.add_argument(
"--split",
default="val",
choices=["val", "test"],
help="Which split to evaluate upon.",
)
parser.add_argument(
"--val-json",
default="data/visdial_1.0_val.json",
help="Path to VisDial v1.0 val data. This argument doesn't work when "
"--split=test.",
)
parser.add_argument(
"--val-dense-json",
default="data/visdial_1.0_val_dense_annotations.json",
help="Path to VisDial v1.0 val dense annotations (if evaluating on val "
"split). This argument doesn't work when --split=test.",
)
parser.add_argument(
"--test-json",
default="data/visdial_1.0_test.json",
help="Path to VisDial v1.0 test data. This argument doesn't work when "
"--split=val.",
)
parser.add_argument_group("Evaluation related arguments")
parser.add_argument(
"--load-pthpath",
default="checkpoints/checkpoint_xx.pth",
help="Path to .pth file of pretrained checkpoint.",
)
parser.add_argument_group(
"Arguments independent of experiment reproducibility"
)
parser.add_argument(
"--gpu-ids",
nargs="+",
type=int,
default=-1,
help="List of ids of GPUs to use.",
)
parser.add_argument(
"--cpu-workers",
type=int,
default=4,
help="Number of CPU workers for reading data.",
)
parser.add_argument(
"--overfit",
action="store_true",
help="Overfit model on 5 examples, meant for debugging.",
)
parser.add_argument(
"--in-memory",
action="store_true",
help="Load the whole dataset and pre-extracted image features in memory. "
"Use only in presence of large RAM, atleast few tens of GBs.",
)
parser.add_argument_group("Submission related arguments")
parser.add_argument(
"--save-ranks-path",
default="logs/ranks.json",
help="Path (json) to save ranks, in a EvalAI submission format.",
)
# For reproducibility.
# Refer https://pytorch.org/docs/stable/notes/randomness.html
torch.manual_seed(0)
torch.cuda.manual_seed_all(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
# =============================================================================
# INPUT ARGUMENTS AND CONFIG
# =============================================================================
args = parser.parse_args()
# keys: {"dataset", "model", "solver"}
config = yaml.load(open(args.config_yml))
if isinstance(args.gpu_ids, int):
args.gpu_ids = [args.gpu_ids]
device = (
torch.device("cuda", args.gpu_ids[0])
if args.gpu_ids[0] >= 0
else torch.device("cpu")
)
# Print config and args.
print(yaml.dump(config, default_flow_style=False))
for arg in vars(args):
print("{:<20}: {}".format(arg, getattr(args, arg)))
# =============================================================================
# SETUP DATASET, DATALOADER, MODEL
# =============================================================================
if args.split == "val":
val_dataset = VisDialDataset(
config["dataset"],
args.val_json,
args.val_dense_json,
overfit=args.overfit,
in_memory=args.in_memory,
return_options=True,
add_boundary_toks=False
if config["model"]["decoder"] == "disc"
else True,
)
else:
val_dataset = VisDialDataset(
config["dataset"],
args.test_json,
overfit=args.overfit,
in_memory=args.in_memory,
return_options=True,
add_boundary_toks=False
if config["model"]["decoder"] == "disc"
else True,
)
val_dataloader = DataLoader(
val_dataset,
batch_size=config["solver"]["batch_size"]
if config["model"]["decoder"] == "disc"
else 5,
num_workers=args.cpu_workers,
)
# Pass vocabulary to construct Embedding layer.
encoder = Encoder(config["model"], val_dataset.vocabulary)
decoder = Decoder(config["model"], val_dataset.vocabulary)
print("Encoder: {}".format(config["model"]["encoder"]))
print("Decoder: {}".format(config["model"]["decoder"]))
# Share word embedding between encoder and decoder.
decoder.word_embed = encoder.word_embed
# Wrap encoder and decoder in a model.
model = EncoderDecoderModel(encoder, decoder).to(device)
if -1 not in args.gpu_ids:
model = nn.DataParallel(model, args.gpu_ids)
model_state_dict, _ = load_checkpoint(args.load_pthpath)
if isinstance(model, nn.DataParallel):
model.module.load_state_dict(model_state_dict)
else:
model.load_state_dict(model_state_dict)
print("Loaded model from {}".format(args.load_pthpath))
# Declare metric accumulators (won't be used if --split=test)
sparse_metrics = SparseGTMetrics()
ndcg = NDCG()
# =============================================================================
# EVALUATION LOOP
# =============================================================================
model.eval()
ranks_json = []
for _, batch in enumerate(tqdm(val_dataloader)):
for key in batch:
batch[key] = batch[key].to(device)
with torch.no_grad():
output = model(batch)
ranks = scores_to_ranks(output)
for i in range(len(batch["img_ids"])):
# Cast into types explicitly to ensure no errors in schema.
# Round ids are 1-10, not 0-9
if args.split == "test":
ranks_json.append(
{
"image_id": batch["img_ids"][i].item(),
"round_id": int(batch["num_rounds"][i].item()),
"ranks": [
rank.item()
for rank in ranks[i][batch["num_rounds"][i] - 1]
],
}
)
else:
for j in range(batch["num_rounds"][i]):
ranks_json.append(
{
"image_id": batch["img_ids"][i].item(),
"round_id": int(j + 1),
"ranks": [rank.item() for rank in ranks[i][j]],
}
)
if args.split == "val":
sparse_metrics.observe(output, batch["ans_ind"])
if "gt_relevance" in batch:
output = output[
torch.arange(output.size(0)), batch["round_id"] - 1, :
]
ndcg.observe(output, batch["gt_relevance"])
if args.split == "val":
all_metrics = {}
all_metrics.update(sparse_metrics.retrieve(reset=True))
all_metrics.update(ndcg.retrieve(reset=True))
for metric_name, metric_value in all_metrics.items():
print(f"{metric_name}: {metric_value}")
print("Writing ranks to {}".format(args.save_ranks_path))
os.makedirs(os.path.dirname(args.save_ranks_path), exist_ok=True)
json.dump(ranks_json, open(args.save_ranks_path, "w"))