-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbatch_eval.sh
54 lines (50 loc) · 1.55 KB
/
batch_eval.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#!/usr/bin/env bash
# Evaluation script for model and observation combinations
SEEDS="0"
OBS_Val="atelectasis consolidation edema effusion opacity pneumonia pneumothorax"
MODELS="AGXNet_Siamese"
FRAC_Val="1.0"
ATT_Type="None Residual"
FREEZE_Flag="T"
CAM_NORM_TYPE="indep"
for seed in $SEEDS;do
for obs in $OBS_Val;do
for mdl in $MODELS;do
for frac in $FRAC_Val;do
for att in $ATT_Type;do
for frz in $FREEZE_Flag;do
for nrm in $CAM_NORM_TYPE;do
if [ $frac == "0.01" ]
then
fr="001"
elif [ $frac == "0.1" ]
then
fr="010"
elif [ $frac == "1.0" ]
then
fr="100"
fi
OUTPUT_DIR='./experiments/seed_'$seed'/'$obs'/'$fr'/'$mdl'_'$att'_'$frz
mkdir -p ${OUTPUT_DIR}
source activate WSL_Journal
python -W ignore eval_agxnet_saimese.py \
--exp-dir=${OUTPUT_DIR} \
--pretrained-type='AGXNet_Siamese' \
--freeze_net1=$frz \
--anatomy-attention-type=$att \
--epsilon=0.0 \
--exp-dir=${OUTPUT_DIR} \
--ckpt-name='model_best.pth.tar' \
--selected-obs=$obs \
--workers=4 \
--batch-size=1 \
--frac=$frac \
--seed=$seed \
--learning-rate=1e-4 >> ${OUTPUT_DIR}/eval.log 2>&1
done
done
done
done
done
done
done