-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathenvironment.yml
211 lines (211 loc) · 5.97 KB
/
environment.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
name: Mammo-CLIP
channels:
- pytorch
- conda-forge
- nvidia
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _openmp_mutex=5.1=1_gnu
- asttokens=2.0.5=pyhd3eb1b0_0
- backcall=0.2.0=pyhd3eb1b0_0
- blas=1.0=mkl
- brotli=1.0.9=h5eee18b_8
- brotli-bin=1.0.9=h5eee18b_8
- brotli-python=1.0.9=py38h6a678d5_8
- bzip2=1.0.8=h5eee18b_6
- ca-certificates=2024.3.11=h06a4308_0
- certifi=2024.2.2=py38h06a4308_0
- charset-normalizer=2.0.4=pyhd3eb1b0_0
- contourpy=1.0.5=py38hdb19cb5_0
- cuda-cudart=11.8.89=0
- cuda-cupti=11.8.87=0
- cuda-libraries=11.8.0=0
- cuda-nvrtc=11.8.89=0
- cuda-nvtx=11.8.86=0
- cuda-runtime=11.8.0=0
- cycler=0.11.0=pyhd3eb1b0_0
- dbus=1.13.18=hb2f20db_0
- decorator=5.1.1=pyhd3eb1b0_0
- executing=0.8.3=pyhd3eb1b0_0
- expat=2.4.8=h27087fc_0
- ffmpeg=4.3=hf484d3e_0
- filelock=3.13.1=py38h06a4308_0
- fontconfig=2.14.1=hef1e5e3_0
- fonttools=4.51.0=py38h5eee18b_0
- freetype=2.12.1=h4a9f257_0
- gdcm=2.8.9=py38heca6765_3
- giflib=5.2.1=h5eee18b_3
- glib=2.78.4=h6a678d5_0
- glib-tools=2.78.4=h6a678d5_0
- gmp=6.2.1=h295c915_3
- gmpy2=2.1.2=py38heeb90bb_0
- gnutls=3.6.15=he1e5248_0
- gst-plugins-base=1.14.1=h6a678d5_1
- gstreamer=1.14.1=h5eee18b_1
- icu=58.2=he6710b0_3
- idna=3.7=py38h06a4308_0
- importlib_resources=6.1.1=py38h06a4308_1
- intel-openmp=2023.1.0=hdb19cb5_46306
- ipython=8.12.2=py38h06a4308_0
- jedi=0.18.1=py38h06a4308_1
- jinja2=3.1.3=py38h06a4308_0
- joblib=1.4.0=py38h06a4308_0
- jpeg=9e=h166bdaf_1
- json-c=0.15=h98cffda_0
- kiwisolver=1.4.4=py38h6a678d5_0
- lame=3.100=h7b6447c_0
- lcms2=2.12=h3be6417_0
- ld_impl_linux-64=2.38=h1181459_1
- libbrotlicommon=1.0.9=h5eee18b_8
- libbrotlidec=1.0.9=h5eee18b_8
- libbrotlienc=1.0.9=h5eee18b_8
- libcublas=11.11.3.6=0
- libcufft=10.9.0.58=0
- libcufile=1.9.1.3=0
- libcurand=10.3.5.147=0
- libcusolver=11.4.1.48=0
- libcusparse=11.7.5.86=0
- libffi=3.4.4=h6a678d5_1
- libgcc-ng=11.2.0=h1234567_1
- libglib=2.78.4=hdc74915_0
- libgomp=11.2.0=h1234567_1
- libiconv=1.16=h5eee18b_3
- libidn2=2.3.4=h5eee18b_0
- libjpeg-turbo=2.1.1=h7f98852_0
- libnpp=11.8.0.86=0
- libnvjpeg=11.9.0.86=0
- libpng=1.6.37=h21135ba_2
- libstdcxx-ng=11.2.0=h1234567_1
- libtasn1=4.19.0=h5eee18b_0
- libtiff=4.2.0=hf544144_3
- libunistring=0.9.10=h27cfd23_0
- libwebp=1.2.2=h55f646e_0
- libwebp-base=1.2.2=h7f98852_1
- libxcb=1.15=h7f8727e_0
- libxml2=2.9.14=h74e7548_0
- llvm-openmp=14.0.6=h9e868ea_0
- lz4-c=1.9.3=h9c3ff4c_1
- markupsafe=2.1.3=py38h5eee18b_0
- matplotlib=3.7.2=py38h06a4308_0
- matplotlib-base=3.7.2=py38h1128e8f_0
- matplotlib-inline=0.1.6=py38h06a4308_0
- mkl=2023.1.0=h213fc3f_46344
- mkl-service=2.4.0=py38h5eee18b_1
- mkl_fft=1.3.8=py38h5eee18b_0
- mkl_random=1.2.4=py38hdb19cb5_0
- mpc=1.1.0=h10f8cd9_1
- mpfr=4.0.2=hb69a4c5_1
- mpmath=1.3.0=py38h06a4308_0
- ncurses=6.4=h6a678d5_0
- nettle=3.7.3=hbbd107a_1
- networkx=3.1=py38h06a4308_0
- openh264=2.1.1=h4ff587b_0
- openjpeg=2.4.0=hb52868f_1
- openssl=1.1.1w=h7f8727e_0
- parso=0.8.3=pyhd3eb1b0_0
- pcre2=10.42=hebb0a14_1
- pexpect=4.8.0=pyhd3eb1b0_3
- pickleshare=0.7.5=pyhd3eb1b0_1003
- pillow=9.4.0=py38h6a678d5_0
- pip=24.0=py38h06a4308_0
- prompt-toolkit=3.0.43=py38h06a4308_0
- ptyprocess=0.7.0=pyhd3eb1b0_2
- pure_eval=0.2.2=pyhd3eb1b0_0
- pygments=2.15.1=py38h06a4308_1
- pyparsing=3.0.9=py38h06a4308_0
- pyqt=5.9.2=py38h05f1152_4
- pysocks=1.7.1=py38h06a4308_0
- python=3.8.18=h7a1cb2a_0
- python-dateutil=2.9.0post0=py38h06a4308_2
- python_abi=3.8=2_cp38
- pytorch=2.2.2=py3.8_cuda11.8_cudnn8.7.0_0
- pytorch-cuda=11.8=h7e8668a_5
- pytorch-mutex=1.0=cuda
- pyyaml=6.0.1=py38h5eee18b_0
- qt=5.9.7=h5867ecd_1
- readline=8.2=h5eee18b_0
- requests=2.31.0=py38h06a4308_1
- setuptools=69.5.1=py38h06a4308_0
- sip=4.19.13=py38h295c915_0
- six=1.16.0=pyhd3eb1b0_1
- sqlite=3.45.3=h5eee18b_0
- stack_data=0.2.0=pyhd3eb1b0_0
- sympy=1.12=py38h06a4308_0
- tbb=2021.8.0=hdb19cb5_0
- tk=8.6.14=h39e8969_0
- torchaudio=2.2.2=py38_cu118
- torchtriton=2.2.0=py38
- torchvision=0.17.2=py38_cu118
- tornado=6.3.3=py38h5eee18b_0
- traitlets=5.7.1=py38h06a4308_0
- typing_extensions=4.11.0=py38h06a4308_0
- unicodedata2=15.1.0=py38h5eee18b_0
- urllib3=2.2.1=py38h06a4308_0
- wcwidth=0.2.5=pyhd3eb1b0_0
- wheel=0.43.0=py38h06a4308_0
- xz=5.4.6=h5eee18b_1
- yaml=0.2.5=h7b6447c_0
- zipp=3.17.0=py38h06a4308_0
- zlib=1.2.13=h5eee18b_1
- zstd=1.5.0=ha95c52a_0
- pip:
- absl-py==2.1.0
- albumentations==1.4.7
- annotated-types==0.7.0
- antlr4-python3-runtime==4.9.3
- astunparse==1.6.3
- cachetools==5.3.3
- click==8.1.7
- dicomsdl==0.109.3
- dm-tree==0.1.8
- fsspec==2024.5.0
- gast==0.5.4
- google-auth==2.29.0
- google-auth-oauthlib==1.0.0
- grpcio==1.64.0
- huggingface-hub==0.23.1
- imageio==2.34.1
- imgaug==0.4.0
- importlib-metadata==7.1.0
- lazy-loader==0.4
- markdown==3.6
- nltk==3.8.1
- numpy==1.24.4
- nvidia-dali-cuda110==1.37.1
- nvidia-dali-cuda120==1.37.1
- nvidia-nvimgcodec-cu11==0.2.0.7
- nvidia-nvimgcodec-cu12==0.2.0.7
- oauthlib==3.2.2
- omegaconf==2.3.0
- opencv-python==4.9.0.80
- opencv-python-headless==4.9.0.80
- packaging==24.0
- pandas==2.0.3
- protobuf==5.27.0
- pyasn1==0.6.0
- pyasn1-modules==0.4.0
- pydantic==2.7.1
- pydantic-core==2.18.2
- pydicom==2.4.4
- pytz==2024.1
- pywavelets==1.4.1
- regex==2024.5.15
- requests-oauthlib==2.0.0
- rsa==4.9
- safetensors==0.4.3
- scikit-image==0.21.0
- scikit-learn==1.3.2
- scipy==1.10.1
- shapely==2.0.4
- tensorboard==2.14.0
- tensorboard-data-server==0.7.2
- threadpoolctl==3.5.0
- tifffile==2023.7.10
- timm==1.0.3
- tokenizers==0.19.1
- tqdm==4.66.4
- transformers==4.41.1
- tzdata==2024.1
- werkzeug==3.0.3
prefix: /ocean/projects/asc170022p/shg121/anaconda3/envs/Mammo-CLIP