diff --git a/.gitignore b/.gitignore index 82c8aaf..e643c63 100644 --- a/.gitignore +++ b/.gitignore @@ -161,12 +161,15 @@ cython_debug/ .DS_Store dist/ -docs/_build/* - # pkl files *.pkl # logs and checkpoints examples/lightning_logs -*.ckpt \ No newline at end of file +*.ckpt + +docs/_build/doctrees/* +docs/_build/html/* + +dev/* diff --git a/README.md b/README.md index f106cac..4cfee14 100644 --- a/README.md +++ b/README.md @@ -245,3 +245,5 @@ If you find this project useful in your research, please consider cite: ``` ## License + +The entire codebase is under MIT license. diff --git a/docs/_build/doctrees/api/base_models/BaseModels.doctree b/docs/_build/doctrees/api/base_models/BaseModels.doctree deleted file mode 100644 index a39e415..0000000 Binary files a/docs/_build/doctrees/api/base_models/BaseModels.doctree and /dev/null differ diff --git a/docs/_build/doctrees/api/base_models/index.doctree b/docs/_build/doctrees/api/base_models/index.doctree deleted file mode 100644 index 63c4ad8..0000000 Binary files a/docs/_build/doctrees/api/base_models/index.doctree and /dev/null differ diff --git a/docs/_build/doctrees/api/models/Models.doctree b/docs/_build/doctrees/api/models/Models.doctree deleted file mode 100644 index 2a7fd8c..0000000 Binary files a/docs/_build/doctrees/api/models/Models.doctree and /dev/null differ diff --git a/docs/_build/doctrees/api/models/index.doctree b/docs/_build/doctrees/api/models/index.doctree deleted file mode 100644 index 405f5cd..0000000 Binary files a/docs/_build/doctrees/api/models/index.doctree and /dev/null differ diff --git a/docs/_build/doctrees/api/utils/Preprocessor.doctree b/docs/_build/doctrees/api/utils/Preprocessor.doctree deleted file mode 100644 index f4e900a..0000000 Binary files a/docs/_build/doctrees/api/utils/Preprocessor.doctree and /dev/null differ diff --git a/docs/_build/doctrees/api/utils/index.doctree b/docs/_build/doctrees/api/utils/index.doctree deleted file mode 100644 index 0d1b00f..0000000 Binary files a/docs/_build/doctrees/api/utils/index.doctree and /dev/null differ diff --git a/docs/_build/doctrees/codeofconduct.doctree b/docs/_build/doctrees/codeofconduct.doctree deleted file mode 100644 index 818746a..0000000 Binary files a/docs/_build/doctrees/codeofconduct.doctree and /dev/null differ diff --git a/docs/_build/doctrees/development.doctree b/docs/_build/doctrees/development.doctree deleted file mode 100644 index 12bc9e2..0000000 Binary files a/docs/_build/doctrees/development.doctree and /dev/null differ diff --git a/docs/_build/doctrees/environment.pickle b/docs/_build/doctrees/environment.pickle deleted file mode 100644 index 3ce69dd..0000000 Binary files a/docs/_build/doctrees/environment.pickle and /dev/null differ diff --git a/docs/_build/doctrees/examples/classification.doctree b/docs/_build/doctrees/examples/classification.doctree deleted file mode 100644 index d434db7..0000000 Binary files a/docs/_build/doctrees/examples/classification.doctree and /dev/null differ diff --git a/docs/_build/doctrees/examples/distributional.doctree b/docs/_build/doctrees/examples/distributional.doctree deleted file mode 100644 index 339b272..0000000 Binary files a/docs/_build/doctrees/examples/distributional.doctree and /dev/null differ diff --git a/docs/_build/doctrees/examples/embedding.doctree b/docs/_build/doctrees/examples/embedding.doctree deleted file mode 100644 index c9b93fe..0000000 Binary files a/docs/_build/doctrees/examples/embedding.doctree and /dev/null differ diff --git a/docs/_build/doctrees/examples/regression.doctree b/docs/_build/doctrees/examples/regression.doctree deleted file mode 100644 index ba5eea0..0000000 Binary files a/docs/_build/doctrees/examples/regression.doctree and /dev/null differ diff --git a/docs/_build/doctrees/homepage.doctree b/docs/_build/doctrees/homepage.doctree deleted file mode 100644 index 46f5ef5..0000000 Binary files a/docs/_build/doctrees/homepage.doctree and /dev/null differ diff --git a/docs/_build/doctrees/index.doctree b/docs/_build/doctrees/index.doctree deleted file mode 100644 index 5a332ab..0000000 Binary files a/docs/_build/doctrees/index.doctree and /dev/null differ diff --git a/docs/_build/doctrees/installation.doctree b/docs/_build/doctrees/installation.doctree deleted file mode 100644 index 4129ac2..0000000 Binary files a/docs/_build/doctrees/installation.doctree and /dev/null differ diff --git a/docs/_build/doctrees/release.doctree b/docs/_build/doctrees/release.doctree deleted file mode 100644 index 35e1f81..0000000 Binary files a/docs/_build/doctrees/release.doctree and /dev/null differ diff --git a/docs/_build/html/.buildinfo b/docs/_build/html/.buildinfo deleted file mode 100644 index 3ec0b77..0000000 --- a/docs/_build/html/.buildinfo +++ /dev/null @@ -1,4 +0,0 @@ -# Sphinx build info version 1 -# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: bce5b05eaf79767051391db80a9feb34 -tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/docs/_build/html/_modules/index.html b/docs/_build/html/_modules/index.html deleted file mode 100644 index 0a5d59f..0000000 --- a/docs/_build/html/_modules/index.html +++ /dev/null @@ -1,385 +0,0 @@ - - - - - - - - - - - Overview: module code — mambular - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - -
-
-
-
-
- - - - -
-
- - - - - -
- - - - - - - - - - - - - -
- -
- - - -
- -
-
- -
-
- -
- -
- -
- - -
- -
- -
- - - - - - - - - - - - -
- -
- -
-
- - - -
-

- -
-
- -
-
-
- - - - - - - - - - - -
- -
-
-
- -
- - - -
- - -
- - - -
-
-
- - - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/mambular/base_models/classifier.html b/docs/_build/html/_modules/mambular/base_models/classifier.html deleted file mode 100644 index 881b906..0000000 --- a/docs/_build/html/_modules/mambular/base_models/classifier.html +++ /dev/null @@ -1,796 +0,0 @@ - - - - - - - - - - - mambular.base_models.classifier — mambular - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - -
-
-
-
-
- - - - -
-
- - - - - -
- - - - - - - - - - - - - -
- -
- - - -
- -
-
- -
-
- -
- -
- -
- - -
- -
- -
- - - - - - - - - - - - -
- -
- -
-
- - - -
-

- -
-
- -
-
-
- - - - -
- -

Source code for mambular.base_models.classifier

-import lightning as pl
-import torch
-import torch.nn as nn
-import torchmetrics
-from ..utils.mamba_arch import Mamba
-from ..utils.mlp_utils import MLP
-from ..utils.normalization_layers import (
-    RMSNorm,
-    LayerNorm,
-    LearnableLayerScaling,
-    BatchNorm,
-    InstanceNorm,
-    GroupNorm,
-)
-from ..utils.configs import DefaultMambularConfig
-
-
-
[docs]class BaseMambularClassifier(pl.LightningModule): - """ - A base class for building classification models using the Mambular architecture within the PyTorch Lightning framework. - - This class integrates various components such as embeddings for categorical and numerical features, the Mambular model - for processing sequences of embeddings, and a classification head for prediction. It supports multi-class and binary classification tasks. - - Parameters - ---------- - num_classes : int - number of classes for classification. - cat_feature_info : dict - Dictionary containing information about categorical features. - num_feature_info : dict - Dictionary containing information about numerical features. - config : DefaultMambularConfig, optional - Configuration object containing default hyperparameters for the model (default is DefaultMambularConfig()). - **kwargs : dict - Additional keyword arguments. - - - Attributes - ---------- - lr : float - Learning rate. - lr_patience : int - Patience for learning rate scheduler. - weight_decay : float - Weight decay for optimizer. - lr_factor : float - Factor by which the learning rate will be reduced. - pooling_method : str - Method to pool the features. - cat_feature_info : dict - Dictionary containing information about categorical features. - num_feature_info : dict - Dictionary containing information about numerical features. - embedding_activation : callable - Activation function for embeddings. - mamba : Mamba - Mamba architecture component. - norm_f : nn.Module - Normalization layer. - num_embeddings : nn.ModuleList - Module list for numerical feature embeddings. - cat_embeddings : nn.ModuleList - Module list for categorical feature embeddings. - tabular_head : MLP - Multi-layer perceptron head for tabular data. - cls_token : nn.Parameter - Class token parameter. - embedding_norm : nn.Module, optional - Layer normalization applied after embedding if specified. - loss_fct : nn.Module - The loss function used for training the model, configured based on the number of classes. - acc : torchmetrics.Accuracy - A metric for computing the accuracy of predictions. - auroc : torchmetrics.AUROC - A metric for computing the Area Under the Receiver Operating Characteristic curve. - precision : torchmetrics.Precision - A metric for computing the precision of predictions. - - """ - - def __init__( - self, - num_classes, - cat_feature_info, - num_feature_info, - config: DefaultMambularConfig = DefaultMambularConfig(), - **kwargs, - ): - super().__init__() - - self.num_classes = 1 if num_classes == 2 else num_classes - # Save all hyperparameters - self.save_hyperparameters(ignore=["cat_feature_info", "num_feature_info"]) - - # Assigning values from hyperparameters - self.lr = self.hparams.get("lr", config.lr) - self.lr_patience = self.hparams.get("lr_patience", config.lr_patience) - self.weight_decay = self.hparams.get("weight_decay", config.weight_decay) - self.lr_factor = self.hparams.get("lr_factor", config.lr_factor) - self.pooling_method = self.hparams.get("pooling_method", config.pooling_method) - self.cat_feature_info = cat_feature_info - self.num_feature_info = num_feature_info - - self.embedding_activation = self.hparams.get( - "num_embedding_activation", config.num_embedding_activation - ) - - # Additional layers and components initialization based on hyperparameters - self.mamba = Mamba( - d_model=self.hparams.get("d_model", config.d_model), - n_layers=self.hparams.get("n_layers", config.n_layers), - expand_factor=self.hparams.get("expand_factor", config.expand_factor), - bias=self.hparams.get("bias", config.bias), - d_conv=self.hparams.get("d_conv", config.d_conv), - conv_bias=self.hparams.get("conv_bias", config.conv_bias), - dropout=self.hparams.get("dropout", config.dropout), - dt_rank=self.hparams.get("dt_rank", config.dt_rank), - d_state=self.hparams.get("d_state", config.d_state), - dt_scale=self.hparams.get("dt_scale", config.dt_scale), - dt_init=self.hparams.get("dt_init", config.dt_init), - dt_max=self.hparams.get("dt_max", config.dt_max), - dt_min=self.hparams.get("dt_min", config.dt_min), - dt_init_floor=self.hparams.get("dt_init_floor", config.dt_init_floor), - norm=globals()[self.hparams.get("norm", config.norm)], - activation=self.hparams.get("activation", config.activation), - ) - - # Set the normalization layer dynamically - norm_layer = self.hparams.get("norm", config.norm) - if norm_layer == "RMSNorm": - self.norm_f = RMSNorm(self.hparams.get("d_model", config.d_model)) - elif norm_layer == "LayerNorm": - self.norm_f = LayerNorm(self.hparams.get("d_model", config.d_model)) - elif norm_layer == "BatchNorm": - self.norm_f = BatchNorm(self.hparams.get("d_model", config.d_model)) - elif norm_layer == "InstanceNorm": - self.norm_f = InstanceNorm(self.hparams.get("d_model", config.d_model)) - elif norm_layer == "GroupNorm": - self.norm_f = GroupNorm(1, self.hparams.get("d_model", config.d_model)) - elif norm_layer == "LearnableLayerScaling": - self.norm_f = LearnableLayerScaling( - self.hparams.get("d_model", config.d_model) - ) - else: - raise ValueError(f"Unsupported normalization layer: {norm_layer}") - - self.num_embeddings = nn.ModuleList( - [ - nn.Sequential( - nn.Linear( - input_shape, - self.hparams.get("d_model", config.d_model), - bias=False, - ), - self.embedding_activation, - ) - for feature_name, input_shape in num_feature_info.items() - ] - ) - - self.cat_embeddings = nn.ModuleList( - [ - nn.Embedding( - num_categories + 1, self.hparams.get("d_model", config.d_model) - ) - for feature_name, num_categories in cat_feature_info.items() - ] - ) - - head_activation = self.hparams.get("head_activation", config.head_activation) - - self.tabular_head = MLP( - self.hparams.get("d_model", config.d_model), - hidden_units_list=self.hparams.get( - "head_layer_sizes", config.head_layer_sizes - ), - dropout_rate=self.hparams.get("head_dropout", config.head_dropout), - use_skip_layers=self.hparams.get( - "head_skip_layers", config.head_skip_layers - ), - activation_fn=head_activation, - use_batch_norm=self.hparams.get( - "head_use_batch_norm", config.head_use_batch_norm - ), - n_output_units=self.num_classes, - ) - - self.cls_token = nn.Parameter( - torch.zeros(1, 1, self.hparams.get("d_model", config.d_model)) - ) - - self.loss_fct = nn.MSELoss() - - if self.hparams.get("layer_norm_after_embedding"): - self.embedding_norm = nn.LayerNorm( - self.hparams.get("d_model", config.d_model) - ) - - if self.num_classes > 2: - self.loss_fct = nn.CrossEntropyLoss() - self.acc = torchmetrics.Accuracy( - task="multiclass", num_classes=self.num_classes - ) - self.auroc = torchmetrics.AUROC( - task="multiclass", num_classes=self.num_classes - ) - self.precision = torchmetrics.Precision( - task="multiclass", num_classes=self.num_classes - ) - else: - self.loss_fct = torch.nn.BCEWithLogitsLoss() - self.acc = torchmetrics.Accuracy(task="binary") - self.auroc = torchmetrics.AUROC(task="binary") - self.precision = torchmetrics.Precision(task="binary") - -
[docs] def forward(self, num_features, cat_features): - """ - Defines the forward pass of the classifier. - - Parameters - ---------- - cat_features : Tensor - Tensor containing the categorical features. - num_features : Tensor - Tensor containing the numerical features. - - - Returns - ------- - Tensor - The output predictions of the model. - """ - batch_size = ( - cat_features[0].size(0) if cat_features != [] else num_features[0].size(0) - ) - cls_tokens = self.cls_token.expand(batch_size, -1, -1) - - # Process categorical features if present - if len(self.cat_embeddings) > 0 and cat_features: - cat_embeddings = [ - emb(cat_features[i]) for i, emb in enumerate(self.cat_embeddings) - ] - cat_embeddings = torch.stack(cat_embeddings, dim=1) - cat_embeddings = torch.squeeze(cat_embeddings, dim=2) - if self.hparams.get("layer_norm_after_embedding"): - cat_embeddings = self.embedding_norm(cat_embeddings) - else: - cat_embeddings = None - - # Process numerical features if present - if len(self.num_embeddings) > 0 and num_features: - num_embeddings = [ - emb(num_features[i]) for i, emb in enumerate(self.num_embeddings) - ] - num_embeddings = torch.stack(num_embeddings, dim=1) - if self.hparams.get("layer_norm_after_embedding"): - num_embeddings = self.embedding_norm(num_embeddings) - else: - num_embeddings = None - - # Combine embeddings if both types are present, otherwise use whichever is available - if cat_embeddings is not None and num_embeddings is not None: - x = torch.cat([cls_tokens, cat_embeddings, num_embeddings], dim=1) - elif cat_embeddings is not None: - x = torch.cat([cls_tokens, cat_embeddings], dim=1) - elif num_embeddings is not None: - x = torch.cat([cls_tokens, num_embeddings], dim=1) - else: - raise ValueError("No features provided to the model.") - - x = self.mamba(x) - - # Apply pooling based on the specified method - if self.pooling_method == "avg": - x = torch.mean(x, dim=1) - elif self.pooling_method == "max": - x, _ = torch.max(x, dim=1) - elif self.pooling_method == "sum": - x = torch.sum(x, dim=1) - elif self.pooling_method == "cls": - x = x[:, 0] - else: - raise ValueError(f"Invalid pooling method: {self.pooling_method}") - - x = self.norm_f(x) - preds = self.tabular_head(x) - return preds
- -
[docs] def training_step(self, batch, batch_idx): - """ - Processes a single batch during training, computes the loss and logs training metrics. - - Parameters - ---------- - batch : tuple - A batch of data from the DataLoader, containing numerical features, categorical features, and labels. - batch_idx : int - The index of the batch within the epoch. - """ - - cat_features, num_features, labels = batch - preds = self(num_features=num_features, cat_features=cat_features) - - if self.num_classes == 1: - labels = torch.float( - labels.unsqueeze(1), dtype=torch.float32 - ) # Reshape for binary classification loss calculation - - loss = self.loss_fct(preds, labels) - self.log("train_loss", loss) - # Calculate and log training accuracy - - acc = self.acc(preds, labels.int()) - self.log( - "train_acc", - acc, - on_step=False, - on_epoch=True, - prog_bar=True, - logger=True, - ) - - # Calculate and log AUROC - auroc = self.auroc(preds, labels.int()) - self.log( - "train_auroc", - auroc, - on_step=False, - on_epoch=True, - prog_bar=True, - logger=True, - ) - - # Calculate and log precision - precision = self.precision(preds, labels.int()) - self.log( - "train_precision", - precision, - on_step=False, - on_epoch=True, - prog_bar=True, - logger=True, - ) - - return loss
- -
[docs] def validation_step(self, batch, batch_idx): - """ - Processes a single batch during validation, computes the loss and logs validation metrics. - - Parameters - ---------- - batch : tuple - A batch of data from the DataLoader, containing numerical features, categorical features, and labels. - batch_idx : int - The index of the batch within the epoch. - """ - cat_features, num_features, labels = batch - preds = self(num_features=num_features, cat_features=cat_features) - - if self.num_classes == 1: - labels = labels.unsqueeze( - 1 - ).float() # Reshape for binary classification loss calculation - - loss = self.loss_fct(preds, labels) - self.log("val_loss", loss) - # Calculate and log training accuracy - - acc = self.acc(preds, labels.int()) - self.log( - "val_acc", - acc, - on_step=False, - on_epoch=True, - prog_bar=True, - logger=True, - ) - - auroc = self.auroc(preds, labels.int()) - self.log( - "val_auroc", auroc, on_step=False, on_epoch=True, prog_bar=True, logger=True - ) - - # Calculate and log precision - precision = self.precision(preds, labels.int()) - self.log( - "val_precision", - precision, - on_step=False, - on_epoch=True, - prog_bar=True, - logger=True, - )
- -
[docs] def configure_optimizers(self): - """ - Sets up the model's optimizer and learning rate scheduler based on the configurations provided. - - Returns - ------- - dict - A dictionary containing the optimizer and lr_scheduler configurations. - """ - optimizer = torch.optim.Adam( - self.parameters(), lr=self.lr, weight_decay=self.weight_decay - ) - scheduler = { - "scheduler": torch.optim.lr_scheduler.ReduceLROnPlateau( - optimizer, - mode="min", - factor=self.lr_factor, - patience=self.lr_patience, - verbose=True, - ), - "monitor": "val_loss", # Name of the metric to monitor - "interval": "epoch", - "frequency": 1, - } - - return {"optimizer": optimizer, "lr_scheduler": scheduler}
-
- -
- - - - - - -
- -
-
-
- -
- - - -
- - -
- - - -
-
-
- - - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/mambular/base_models/distributional.html b/docs/_build/html/_modules/mambular/base_models/distributional.html deleted file mode 100644 index b637529..0000000 --- a/docs/_build/html/_modules/mambular/base_models/distributional.html +++ /dev/null @@ -1,757 +0,0 @@ - - - - - - - - - - - mambular.base_models.distributional — mambular - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - -
-
-
-
-
- - - - -
-
- - - - - -
- - - - - - - - - - - - - -
- -
- - - -
- -
-
- -
-
- -
- -
- -
- - -
- -
- -
- - - - - - - - - - - - -
- -
- -
-
- - - -
-

- -
-
- -
-
-
- - - - -
- -

Source code for mambular.base_models.distributional

-import lightning as pl
-import torch
-import torch.nn as nn
-
-from ..utils.configs import DefaultMambularConfig
-from ..utils.mlp_utils import MLP
-from ..utils.distributions import (
-    BetaDistribution,
-    CategoricalDistribution,
-    DirichletDistribution,
-    GammaDistribution,
-    InverseGammaDistribution,
-    NegativeBinomialDistribution,
-    NormalDistribution,
-    PoissonDistribution,
-    StudentTDistribution,
-)
-from ..utils.normalization_layers import (
-    RMSNorm,
-    LayerNorm,
-    LearnableLayerScaling,
-    BatchNorm,
-    InstanceNorm,
-    GroupNorm,
-)
-from ..utils.mamba_arch import Mamba
-
-
-
[docs]class BaseMambularLSS(pl.LightningModule): - """ - A base module for likelihood-based statistical learning (LSS) models built on PyTorch Lightning, - integrating the Mamba architecture for tabular data. This module is designed to accommodate various - statistical distribution families for different types of regression and classification tasks. - - - Parameters - ---------- - family : str - The name of the statistical distribution family to be used for modeling. Supported families include - 'normal', 'poisson', 'gamma', 'beta', 'dirichlet', 'studentt', 'negativebinom', 'inversegamma', and 'categorical'. - cat_feature_info : dict - Dictionary containing information about categorical features. - num_feature_info : dict - Dictionary containing information about numerical features. - config : DefaultMambularConfig, optional - Configuration object containing default hyperparameters for the model (default is DefaultMambularConfig()). - **kwargs : dict - Additional keyword arguments. - - - Attributes - ---------- - lr : float - Learning rate. - lr_patience : int - Patience for learning rate scheduler. - weight_decay : float - Weight decay for optimizer. - lr_factor : float - Factor by which the learning rate will be reduced. - pooling_method : str - Method to pool the features. - cat_feature_info : dict - Dictionary containing information about categorical features. - num_feature_info : dict - Dictionary containing information about numerical features. - embedding_activation : callable - Activation function for embeddings. - mamba : Mamba - Mamba architecture component. - norm_f : nn.Module - Normalization layer. - num_embeddings : nn.ModuleList - Module list for numerical feature embeddings. - cat_embeddings : nn.ModuleList - Module list for categorical feature embeddings. - tabular_head : MLP - Multi-layer perceptron head for tabular data. - cls_token : nn.Parameter - Class token parameter. - embedding_norm : nn.Module, optional - Layer normalization applied after embedding if specified. - """ - - def __init__( - self, - family, - cat_feature_info, - num_feature_info, - config: DefaultMambularConfig = DefaultMambularConfig(), - distributional_kwargs=None, - **kwargs, - ): - super().__init__() - - # Save all hyperparameters - self.save_hyperparameters(ignore=["cat_feature_info", "num_feature_info"]) - - # Assigning values from hyperparameters - self.lr = self.hparams.get("lr", config.lr) - self.lr_patience = self.hparams.get("lr_patience", config.lr_patience) - self.weight_decay = self.hparams.get("weight_decay", config.weight_decay) - self.lr_factor = self.hparams.get("lr_factor", config.lr_factor) - self.pooling_method = self.hparams.get("pooling_method", config.pooling_method) - self.cat_feature_info = cat_feature_info - self.num_feature_info = num_feature_info - - self.embedding_activation = self.hparams.get( - "num_embedding_activation", config.num_embedding_activation - ) - - distribution_classes = { - "normal": NormalDistribution, - "poisson": PoissonDistribution, - "gamma": GammaDistribution, - "beta": BetaDistribution, - "dirichlet": DirichletDistribution, - "studentt": StudentTDistribution, - "negativebinom": NegativeBinomialDistribution, - "inversegamma": InverseGammaDistribution, - "categorical": CategoricalDistribution, - } - - if distributional_kwargs is None: - distributional_kwargs = {} - - if family in distribution_classes: - self.family = distribution_classes[family](**distributional_kwargs) - else: - raise ValueError("Unsupported family: {}".format(family)) - - # Set the normalization layer dynamically - norm_layer = self.hparams.get("norm", config.norm) - if norm_layer == "RMSNorm": - self.norm_f = RMSNorm(self.hparams.get("d_model", config.d_model)) - elif norm_layer == "LayerNorm": - self.norm_f = LayerNorm(self.hparams.get("d_model", config.d_model)) - elif norm_layer == "BatchNorm": - self.norm_f = BatchNorm(self.hparams.get("d_model", config.d_model)) - elif norm_layer == "InstanceNorm": - self.norm_f = InstanceNorm(self.hparams.get("d_model", config.d_model)) - elif norm_layer == "GroupNorm": - self.norm_f = GroupNorm(1, self.hparams.get("d_model", config.d_model)) - elif norm_layer == "LearnableLayerScaling": - self.norm_f = LearnableLayerScaling( - self.hparams.get("d_model", config.d_model) - ) - else: - raise ValueError(f"Unsupported normalization layer: {norm_layer}") - - # Additional layers and components initialization based on hyperparameters - self.mamba = Mamba( - d_model=self.hparams.get("d_model", config.d_model), - n_layers=self.hparams.get("n_layers", config.n_layers), - expand_factor=self.hparams.get("expand_factor", config.expand_factor), - bias=self.hparams.get("bias", config.bias), - d_conv=self.hparams.get("d_conv", config.d_conv), - conv_bias=self.hparams.get("conv_bias", config.conv_bias), - dropout=self.hparams.get("dropout", config.dropout), - dt_rank=self.hparams.get("dt_rank", config.dt_rank), - d_state=self.hparams.get("d_state", config.d_state), - dt_scale=self.hparams.get("dt_scale", config.dt_scale), - dt_init=self.hparams.get("dt_init", config.dt_init), - dt_max=self.hparams.get("dt_max", config.dt_max), - dt_min=self.hparams.get("dt_min", config.dt_min), - dt_init_floor=self.hparams.get("dt_init_floor", config.dt_init_floor), - norm=globals()[self.hparams.get("norm", config.norm)], - activation=self.hparams.get("activation", config.activation), - ) - - self.num_embeddings = nn.ModuleList( - [ - nn.Sequential( - nn.Linear( - input_shape, - self.hparams.get("d_model", config.d_model), - bias=False, - ), - self.embedding_activation, - ) - for feature_name, input_shape in num_feature_info.items() - ] - ) - - self.cat_embeddings = nn.ModuleList( - [ - nn.Embedding( - num_categories + 1, self.hparams.get("d_model", config.d_model) - ) - for feature_name, num_categories in cat_feature_info.items() - ] - ) - - head_activation = self.hparams.get("head_activation", config.head_activation) - - self.tabular_head = MLP( - self.hparams.get("d_model", config.d_model), - hidden_units_list=self.hparams.get( - "head_layer_sizes", config.head_layer_sizes - ), - dropout_rate=self.hparams.get("head_dropout", config.head_dropout), - use_skip_layers=self.hparams.get( - "head_skip_layers", config.head_skip_layers - ), - activation_fn=head_activation, - use_batch_norm=self.hparams.get( - "head_use_batch_norm", config.head_use_batch_norm - ), - n_output_units=self.family.param_count, - ) - - self.cls_token = nn.Parameter( - torch.zeros(1, 1, self.hparams.get("d_model", config.d_model)) - ) - - self.loss_fct = nn.MSELoss() - - if self.hparams.get("layer_norm_after_embedding"): - self.embedding_norm = nn.LayerNorm( - self.hparams.get("d_model", config.d_model) - ) - - def compute_loss(self, predictions, y_true): - return self.family.compute_loss(predictions, y_true) - -
[docs] def forward(self, cat_features, num_features): - """ - Defines the forward pass of the model, processing both categorical and numerical features, - and returning predictions based on the configured statistical distribution. - - Parameters - ---------- - cat_features : Tensor - Tensor containing the categorical features. - num_features : Tensor - Tensor containing the numerical features. - - - Returns - ------- - Tensor - The predictions of the model, typically the parameters of the chosen statistical distribution. - """ - - batch_size = ( - cat_features[0].size(0) if cat_features != [] else num_features[0].size(0) - ) - cls_tokens = self.cls_token.expand(batch_size, -1, -1) - - # Process categorical features if present - if len(self.cat_embeddings) > 0 and cat_features: - cat_embeddings = [ - emb(cat_features[i]) for i, emb in enumerate(self.cat_embeddings) - ] - cat_embeddings = torch.stack(cat_embeddings, dim=1) - cat_embeddings = torch.squeeze(cat_embeddings, dim=2) - if self.hparams.get("layer_norm_after_embedding"): - cat_embeddings = self.embedding_norm(cat_embeddings) - else: - cat_embeddings = None - - # Process numerical features if present - if len(self.num_embeddings) > 0 and num_features: - num_embeddings = [ - emb(num_features[i]) for i, emb in enumerate(self.num_embeddings) - ] - num_embeddings = torch.stack(num_embeddings, dim=1) - if self.hparams.get("layer_norm_after_embedding"): - num_embeddings = self.embedding_norm(num_embeddings) - else: - num_embeddings = None - - # Combine embeddings if both types are present, otherwise use whichever is available - if cat_embeddings is not None and num_embeddings is not None: - x = torch.cat([cls_tokens, cat_embeddings, num_embeddings], dim=1) - elif cat_embeddings is not None: - x = torch.cat([cls_tokens, cat_embeddings], dim=1) - elif num_embeddings is not None: - x = torch.cat([cls_tokens, num_embeddings], dim=1) - else: - raise ValueError("No features provided to the model.") - - x = self.mamba(x) - - # Apply pooling based on the specified method - if self.pooling_method == "avg": - x = torch.mean(x, dim=1) - elif self.pooling_method == "max": - x, _ = torch.max(x, dim=1) - elif self.pooling_method == "sum": - x = torch.sum(x, dim=1) - elif self.pooling_method == "cls": - x = x[:, 0] - else: - raise ValueError(f"Invalid pooling method: {self.pooling_method}") - - x = self.norm_f(x) - preds = self.tabular_head(x) - - return preds
- -
[docs] def training_step(self, batch, batch_idx): - """ - Processes a single batch during training, computes the loss using the distribution-specific loss function, - and logs training metrics. - - Parameters - ---------- - batch : tuple - A batch of data from the DataLoader, containing numerical features, categorical features, and labels. - batch_idx : int - The index of the batch within the epoch. - - Returns - ------- - Tensor - The computed loss for the batch. - """ - cat_features, num_features, labels = batch - preds = self(num_features=num_features, cat_features=cat_features) - - loss = self.compute_loss(preds, labels) - self.log( - "train_loss", - loss, - on_epoch=True, - prog_bar=True, - logger=True, - ) - return loss
- -
[docs] def validation_step(self, batch, batch_idx): - """ - Processes a single batch during validation, computes the loss using the distribution-specific loss function, - and logs validation metrics. - - Parameters - ---------- - batch : tuple - A batch of data from the DataLoader, containing numerical features, categorical features, and labels. - batch_idx : int - The index of the batch within the epoch. - """ - - cat_features, num_features, labels = batch - preds = self(num_features=num_features, cat_features=cat_features) - - loss = self.compute_loss(preds, labels) - self.log( - "val_loss", - loss, - on_epoch=True, - prog_bar=True, - logger=True, - ) - return loss
- -
[docs] def configure_optimizers(self): - """ - Sets up the model's optimizer and learning rate scheduler based on the configurations provided. - - Returns - ------- - dict - A dictionary containing the optimizer and lr_scheduler configurations. - """ - optimizer = torch.optim.Adam( - self.parameters(), lr=self.lr, weight_decay=self.weight_decay - ) - scheduler = { - "scheduler": torch.optim.lr_scheduler.ReduceLROnPlateau( - optimizer, - mode="min", - factor=self.lr_factor, - patience=self.lr_patience, - verbose=True, - ), - "monitor": "val_loss", # Name of the metric to monitor - "interval": "epoch", - "frequency": 1, - } - - return {"optimizer": optimizer, "lr_scheduler": scheduler}
-
- -
- - - - - - -
- -
-
-
- -
- - - -
- - -
- - - -
-
-
- - - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/mambular/base_models/embedding_classifier.html b/docs/_build/html/_modules/mambular/base_models/embedding_classifier.html deleted file mode 100644 index 2d70ec6..0000000 --- a/docs/_build/html/_modules/mambular/base_models/embedding_classifier.html +++ /dev/null @@ -1,865 +0,0 @@ - - - - - - - - - - - mambular.base_models.embedding_classifier — mambular - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - -
-
-
-
-
- - - - -
-
- - - - - -
- - - - - - - - - - - - - -
- -
- - - -
- -
-
- -
-
- -
- -
- -
- - -
- -
- -
- - - - - - - - - - - - -
- -
- -
-
- - - -
-

- -
-
- -
-
-
- - - - -
- -

Source code for mambular.base_models.embedding_classifier

-import lightning as pl
-import torch
-import torch.nn as nn
-import torchmetrics
-
-from ..utils.mamba_arch import Mamba
-from ..utils.mlp_utils import MLP
-from ..utils.normalization_layers import (
-    RMSNorm,
-    LayerNorm,
-    LearnableLayerScaling,
-    BatchNorm,
-    InstanceNorm,
-    GroupNorm,
-)
-from ..utils.configs import DefaultMambularConfig
-
-
-
[docs]class BaseEmbeddingMambularClassifier(pl.LightningModule): - """ - A specialized classification module for protein data, built on PyTorch Lightning and integrating the Mamba architecture. - It supports embeddings for categorical features and can process raw or embedded numerical features, making it suitable - for complex protein sequence data. - - Parameters - ---------- - num_classes : int - number of classes for classification. - cat_feature_info : dict - Dictionary containing information about categorical features. - num_feature_info : dict - Dictionary containing information about numerical features. - config : DefaultMambularConfig, optional - Configuration object containing default hyperparameters for the model (default is DefaultMambularConfig()). - seq_size : int, optional - Size of sequence chunks for processing numerical features. Relevant when `raw_embeddings` is False. - raw_embeddings : bool, optional - Indicates whether to use raw numerical features directly or to process them into embeddings. Defaults to False. - - - Attributes - ---------- - lr : float - Learning rate. - lr_patience : int - Patience for learning rate scheduler. - weight_decay : float - Weight decay for optimizer. - lr_factor : float - Factor by which the learning rate will be reduced. - pooling_method : str - Method to pool the features. - cat_feature_info : dict - Dictionary containing information about categorical features. - num_feature_info : dict - Dictionary containing information about numerical features. - embedding_activation : callable - Activation function for embeddings. - mamba : Mamba - Mamba architecture component. - norm_f : nn.Module - Normalization layer. - num_embeddings : nn.ModuleList - Module list for numerical feature embeddings. - cat_embeddings : nn.ModuleList - Module list for categorical feature embeddings. - tabular_head : MLP - Multi-layer perceptron head for tabular data. - cls_token : nn.Parameter - Class token parameter. - embedding_norm : nn.Module, optional - Layer normalization applied after embedding if specified. - loss_fct : nn.Module - The loss function used for training the model, configured based on the number of classes. - acc : torchmetrics.Accuracy - A metric for computing the accuracy of predictions. - auroc : torchmetrics.AUROC - A metric for computing the Area Under the Receiver Operating Characteristic curve. - precision : torchmetrics.Precision - A metric for computing the precision of predictions. - - """ - - def __init__( - self, - num_classes, - cat_feature_info, - num_feature_info, - config: DefaultMambularConfig = DefaultMambularConfig(), - seq_size: int = 20, - raw_embeddings=False, - **kwargs, - ): - super().__init__() - - self.num_classes = 1 if num_classes == 2 else num_classes - # Save all hyperparameters - self.save_hyperparameters(ignore=["cat_feature_info", "num_feature_info"]) - - # Assigning values from hyperparameters - self.lr = self.hparams.get("lr", config.lr) - self.lr_patience = self.hparams.get("lr_patience", config.lr_patience) - self.weight_decay = self.hparams.get("weight_decay", config.weight_decay) - self.lr_factor = self.hparams.get("lr_factor", config.lr_factor) - self.pooling_method = self.hparams.get("pooling_method", config.pooling_method) - self.cat_feature_info = cat_feature_info - self.num_feature_info = num_feature_info - - self.embedding_activation = self.hparams.get( - "num_embedding_activation", config.num_embedding_activation - ) - self.seq_size = seq_size - self.raw_embeddings = raw_embeddings - - # Additional layers and components initialization based on hyperparameters - self.mamba = Mamba( - d_model=self.hparams.get("d_model", config.d_model), - n_layers=self.hparams.get("n_layers", config.n_layers), - expand_factor=self.hparams.get("expand_factor", config.expand_factor), - bias=self.hparams.get("bias", config.bias), - d_conv=self.hparams.get("d_conv", config.d_conv), - conv_bias=self.hparams.get("conv_bias", config.conv_bias), - dropout=self.hparams.get("dropout", config.dropout), - dt_rank=self.hparams.get("dt_rank", config.dt_rank), - d_state=self.hparams.get("d_state", config.d_state), - dt_scale=self.hparams.get("dt_scale", config.dt_scale), - dt_init=self.hparams.get("dt_init", config.dt_init), - dt_max=self.hparams.get("dt_max", config.dt_max), - dt_min=self.hparams.get("dt_min", config.dt_min), - dt_init_floor=self.hparams.get("dt_init_floor", config.dt_init_floor), - norm=globals()[self.hparams.get("norm", config.norm)], - activation=self.hparams.get("activation", config.activation), - ) - - # Set the normalization layer dynamically - norm_layer = self.hparams.get("norm", config.norm) - if norm_layer == "RMSNorm": - self.norm_f = RMSNorm(self.hparams.get("d_model", config.d_model)) - elif norm_layer == "LayerNorm": - self.norm_f = LayerNorm(self.hparams.get("d_model", config.d_model)) - elif norm_layer == "BatchNorm": - self.norm_f = BatchNorm(self.hparams.get("d_model", config.d_model)) - elif norm_layer == "InstanceNorm": - self.norm_f = InstanceNorm(self.hparams.get("d_model", config.d_model)) - elif norm_layer == "GroupNorm": - self.norm_f = GroupNorm(1, self.hparams.get("d_model", config.d_model)) - elif norm_layer == "LearnableLayerScaling": - self.norm_f = LearnableLayerScaling( - self.hparams.get("d_model", config.d_model) - ) - else: - raise ValueError(f"Unsupported normalization layer: {norm_layer}") - - if not self.raw_embeddings: - data_size = len(num_feature_info.items()) - num_embedding_modules = data_size // self.seq_size - self.num_embeddings = nn.ModuleList( - [ - nn.Sequential( - nn.Linear( - self.seq_size, - self.hparams.get("d_model", config.d_model), - bias=False, - ), - # Example using ReLU as the activation function, change as needed - self.embedding_activation, - ) - for _ in range(num_embedding_modules) - ] - ) - else: - data_size = len(num_feature_info.items()) - num_embedding_modules = data_size - self.num_embeddings = nn.ModuleList( - [ - nn.Sequential( - nn.Linear( - input_shape, - self.hparams.get("d_model", config.d_model), - bias=False, - ), - # Example using ReLU as the activation function, change as needed - self.embedding_activation, - ) - for feature_name, input_shape in num_feature_info.items() - ] - ) - - self.cat_embeddings = nn.ModuleList( - [ - nn.Embedding( - num_categories + 1, self.hparams.get("d_model", config.d_model) - ) - for feature_name, num_categories in cat_feature_info.items() - ] - ) - - head_activation = self.hparams.get("head_activation", config.head_activation) - - self.tabular_head = MLP( - self.hparams.get("d_model", config.d_model), - hidden_units_list=self.hparams.get( - "head_layer_sizes", config.head_layer_sizes - ), - dropout_rate=self.hparams.get("head_dropout", config.head_dropout), - use_skip_layers=self.hparams.get( - "head_skip_layers", config.head_skip_layers - ), - activation_fn=head_activation, - use_batch_norm=self.hparams.get( - "head_use_batch_norm", config.head_use_batch_norm - ), - n_output_units=self.num_classes, - ) - - self.cls_token = nn.Parameter( - torch.zeros(1, 1, self.hparams.get("d_model", config.d_model)) - ) - - self.loss_fct = nn.MSELoss() - - if self.hparams.get("layer_norm_after_embedding"): - self.embedding_norm = nn.LayerNorm( - self.hparams.get("d_model", config.d_model) - ) - - if self.num_classes > 2: - self.loss_fct = nn.CrossEntropyLoss() - self.acc = torchmetrics.Accuracy( - task="multiclass", num_classes=self.num_classes - ) - self.auroc = torchmetrics.AUROC( - task="multiclass", num_classes=self.num_classes - ) - self.precision = torchmetrics.Precision( - task="multiclass", num_classes=self.num_classes - ) - else: - self.loss_fct = torch.nn.BCEWithLogitsLoss() - self.acc = torchmetrics.Accuracy(task="binary") - self.auroc = torchmetrics.AUROC(task="binary") - self.precision = torchmetrics.Precision(task="binary") - -
[docs] def forward(self, cat_features, num_features): - """ - Defines the forward pass of the model, processing both categorical and numerical features, - and returning regression predictions. - - Parameters - ---------- - cat_features : Tensor - Tensor containing the categorical features. - num_features : Tensor - Tensor containing the numerical features or raw sequence data, depending on `raw_embeddings`. - - - Returns - ------- - Tensor - The output predictions of the model for regression tasks. - """ - batch_size = ( - cat_features[0].size(0) if cat_features != [] else num_features[0].size(0) - ) - cls_tokens = self.cls_token.expand(batch_size, -1, -1) - # Process categorical features if present - if not self.raw_embeddings: - if len(self.cat_embeddings) > 0 and cat_features: - cat_embeddings = [ - emb(cat_features[i]) for i, emb in enumerate(self.cat_embeddings) - ] - cat_embeddings = torch.stack(cat_embeddings, dim=1) - cat_embeddings = torch.squeeze(cat_embeddings, dim=2) - else: - cat_embeddings = None - - if len(self.num_embeddings) > 0 and num_features: - num_embeddings = [] - # Iterate through the num_embeddings, taking slices of num_features for each - for i, emb in enumerate(self.num_embeddings): - # Calculate start and end indices for slicing the list - start_idx = i * self.seq_size - end_idx = start_idx + self.seq_size - - # Slice the num_features list to get the current chunk - current_chunk = num_features[start_idx:end_idx] - - # If the current_chunk is not empty, process it - if current_chunk: - # Concatenate tensors in the current chunk along dimension 1 - chunk_tensor = torch.cat(current_chunk, dim=1) - # Apply the embedding layer to the chunk_tensor - num_embeddings.append(emb(chunk_tensor)) - - # Stack the resulting embeddings along the second dimension if num_embeddings is not empty - if num_embeddings: - num_embeddings = torch.stack(num_embeddings, dim=1) - else: - num_embeddings = None - - else: - # Process categorical features if present - if len(self.cat_embeddings) > 0 and cat_features: - cat_embeddings = [ - emb(cat_features[i]) for i, emb in enumerate(self.cat_embeddings) - ] - cat_embeddings = torch.stack(cat_embeddings, dim=1) - cat_embeddings = torch.squeeze(cat_embeddings, dim=2) - if self.config.layer_norm_after_embedding: - cat_embeddings = self.embedding_norm(cat_embeddings) - else: - cat_embeddings = None - - # Process numerical features if present - if len(self.num_embeddings) > 0 and num_features: - num_embeddings = [ - emb(num_features[i]) for i, emb in enumerate(self.num_embeddings) - ] - num_embeddings = torch.stack(num_embeddings, dim=1) - if self.config.layer_norm_after_embedding: - num_embeddings = self.embedding_norm(num_embeddings) - else: - num_embeddings = None - - # Combine embeddings if both types are present, otherwise use whichever is available - if cat_embeddings is not None and num_embeddings is not None: - x = torch.cat([cls_tokens, cat_embeddings, num_embeddings], dim=1) - elif cat_embeddings is not None: - x = torch.cat([cls_tokens, cat_embeddings], dim=1) - elif num_embeddings is not None: - x = torch.cat([cls_tokens, num_embeddings], dim=1) - else: - raise ValueError("No features provided to the model.") - - x = self.mamba(x) - - # Apply pooling based on the specified method - if self.pooling_method == "avg": - x = torch.mean(x, dim=1) - elif self.pooling_method == "max": - x, _ = torch.max(x, dim=1) - elif self.pooling_method == "sum": - x = torch.sum(x, dim=1) - elif self.pooling_method == "cls_token": - x = x[:, 0] - else: - raise ValueError(f"Invalid pooling method: {self.pooling_method}") - - x = self.norm_f(x) - preds = self.tabular_head(x) - - return preds
- -
[docs] def training_step(self, batch, batch_idx): - """ - Processes a single batch during training, computes the loss, and logs training metrics. - - Parameters - ---------- - batch : tuple - A batch of data from the DataLoader, containing numerical features, categorical features, and labels. - batch_idx : int - The index of the batch within the epoch. - - - Returns - ------- - Tensor - The computed loss for the batch. - """ - cat_features, num_features, labels = batch - preds = self(num_features=num_features, cat_features=cat_features) - - if self.num_classes == 1: - labels = torch.float( - labels.unsqueeze(1), dtype=torch.float32 - ) # Reshape for binary classification loss calculation - - loss = self.loss_fct(preds, labels) - self.log("train_loss", loss) - # Calculate and log training accuracy - - acc = self.acc(preds, labels.int()) - self.log( - "train_acc", - acc, - on_step=False, - on_epoch=True, - prog_bar=True, - logger=True, - ) - - # Calculate and log AUROC - auroc = self.auroc(preds, labels.int()) - self.log( - "train_auroc", - auroc, - on_step=False, - on_epoch=True, - prog_bar=True, - logger=True, - ) - - # Calculate and log precision - precision = self.precision(preds, labels.int()) - self.log( - "train_precision", - precision, - on_step=False, - on_epoch=True, - prog_bar=True, - logger=True, - ) - - return loss
- -
[docs] def validation_step(self, batch, batch_idx): - """ - Processes a single batch during validation, computes the loss, and logs validation metrics. - - Parameters - ---------- - batch : tuple - A batch of data from the DataLoader, containing numerical features, categorical features, and labels. - batch_idx : int - The index of the batch within the epoch. - """ - cat_features, num_features, labels = batch - preds = self(num_features=num_features, cat_features=cat_features) - - if self.num_classes == 1: - labels = labels.unsqueeze( - 1 - ).float() # Reshape for binary classification loss calculation - - loss = self.loss_fct(preds, labels) - self.log("val_loss", loss) - # Calculate and log training accuracy - - acc = self.acc(preds, labels.int()) - self.log( - "val_acc", - acc, - on_step=False, - on_epoch=True, - prog_bar=True, - logger=True, - ) - - auroc = self.auroc(preds, labels.int()) - self.log( - "val_auroc", auroc, on_step=False, on_epoch=True, prog_bar=True, logger=True - ) - - # Calculate and log precision - precision = self.precision(preds, labels.int()) - self.log( - "val_precision", - precision, - on_step=False, - on_epoch=True, - prog_bar=True, - logger=True, - )
- -
[docs] def configure_optimizers(self): - """ - Sets up the model's optimizer and learning rate scheduler based on the configurations provided. - - Returns - ------- - dict - A dictionary containing the optimizer and lr_scheduler configurations. - """ - optimizer = torch.optim.Adam( - self.parameters(), lr=self.lr, weight_decay=self.weight_decay - ) - scheduler = { - "scheduler": torch.optim.lr_scheduler.ReduceLROnPlateau( - optimizer, - mode="min", - factor=self.lr_factor, - patience=self.lr_patience, - verbose=True, - ), - "monitor": "val_loss", # Name of the metric to monitor - "interval": "epoch", - "frequency": 1, - } - - return {"optimizer": optimizer, "lr_scheduler": scheduler}
-
- -
- - - - - - -
- -
-
-
- -
- - - -
- - -
- - - -
-
-
- - - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/mambular/base_models/embedding_regressor.html b/docs/_build/html/_modules/mambular/base_models/embedding_regressor.html deleted file mode 100644 index b44708d..0000000 --- a/docs/_build/html/_modules/mambular/base_models/embedding_regressor.html +++ /dev/null @@ -1,781 +0,0 @@ - - - - - - - - - - - mambular.base_models.embedding_regressor — mambular - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - -
-
-
-
-
- - - - -
-
- - - - - -
- - - - - - - - - - - - - -
- -
- - - -
- -
-
- -
-
- -
- -
- -
- - -
- -
- -
- - - - - - - - - - - - -
- -
- -
-
- - - -
-

- -
-
- -
-
-
- - - - -
- -

Source code for mambular.base_models.embedding_regressor

-import lightning as pl
-import torch
-import torch.nn as nn
-from ..utils.normalization_layers import (
-    RMSNorm,
-    LayerNorm,
-    LearnableLayerScaling,
-    BatchNorm,
-    InstanceNorm,
-    GroupNorm,
-)
-
-from ..utils.configs import DefaultMambularConfig
-from ..utils.mamba_arch import Mamba
-from ..utils.mlp_utils import MLP
-
-
-
[docs]class BaseEmbeddingMambularRegressor(pl.LightningModule): - """ - A specialized regression module for protein data, built on PyTorch Lightning and integrating the Mamba architecture. - It supports embeddings for categorical features and can process raw or embedded numerical features, making it suitable - for complex protein sequence data. - - Parameters - ---------- - cat_feature_info : dict - Dictionary containing information about categorical features. - num_feature_info : dict - Dictionary containing information about numerical features. - config : DefaultMambularConfig, optional - Configuration object containing default hyperparameters for the model (default is DefaultMambularConfig()). - seq_size : int, optional - Size of sequence chunks for processing numerical features. Relevant when `raw_embeddings` is False. - raw_embeddings : bool, optional - Indicates whether to use raw numerical features directly or to process them into embeddings. Defaults to False. - - - Attributes - ---------- - lr : float - Learning rate. - lr_patience : int - Patience for learning rate scheduler. - weight_decay : float - Weight decay for optimizer. - lr_factor : float - Factor by which the learning rate will be reduced. - pooling_method : str - Method to pool the features. - cat_feature_info : dict - Dictionary containing information about categorical features. - num_feature_info : dict - Dictionary containing information about numerical features. - embedding_activation : callable - Activation function for embeddings. - mamba : Mamba - Mamba architecture component. - norm_f : nn.Module - Normalization layer. - num_embeddings : nn.ModuleList - Module list for numerical feature embeddings. - cat_embeddings : nn.ModuleList - Module list for categorical feature embeddings. - tabular_head : MLP - Multi-layer perceptron head for tabular data. - cls_token : nn.Parameter - Class token parameter. - embedding_norm : nn.Module, optional - Layer normalization applied after embedding if specified. - loss_fct : nn.Module - The loss function used for training the model, MSE loss. - - """ - - def __init__( - self, - cat_feature_info, - num_feature_info, - config: DefaultMambularConfig = DefaultMambularConfig(), - seq_size: int = 20, - raw_embeddings=False, - **kwargs, - ): - super().__init__() - - # Save all hyperparameters - self.save_hyperparameters(ignore=["cat_feature_info", "num_feature_info"]) - - # Assigning values from hyperparameters - self.lr = self.hparams.get("lr", config.lr) - self.lr_patience = self.hparams.get("lr_patience", config.lr_patience) - self.weight_decay = self.hparams.get("weight_decay", config.weight_decay) - self.lr_factor = self.hparams.get("lr_factor", config.lr_factor) - self.pooling_method = self.hparams.get("pooling_method", config.pooling_method) - self.cat_feature_info = cat_feature_info - self.num_feature_info = num_feature_info - - self.embedding_activation = self.hparams.get( - "num_embedding_activation", config.num_embedding_activation - ) - self.seq_size = seq_size - self.raw_embeddings = raw_embeddings - - # Additional layers and components initialization based on hyperparameters - self.mamba = Mamba( - d_model=self.hparams.get("d_model", config.d_model), - n_layers=self.hparams.get("n_layers", config.n_layers), - expand_factor=self.hparams.get("expand_factor", config.expand_factor), - bias=self.hparams.get("bias", config.bias), - d_conv=self.hparams.get("d_conv", config.d_conv), - conv_bias=self.hparams.get("conv_bias", config.conv_bias), - dropout=self.hparams.get("dropout", config.dropout), - dt_rank=self.hparams.get("dt_rank", config.dt_rank), - d_state=self.hparams.get("d_state", config.d_state), - dt_scale=self.hparams.get("dt_scale", config.dt_scale), - dt_init=self.hparams.get("dt_init", config.dt_init), - dt_max=self.hparams.get("dt_max", config.dt_max), - dt_min=self.hparams.get("dt_min", config.dt_min), - dt_init_floor=self.hparams.get("dt_init_floor", config.dt_init_floor), - norm=globals()[self.hparams.get("norm", config.norm)], - activation=self.hparams.get("activation", config.activation), - ) - - # Set the normalization layer dynamically - norm_layer = self.hparams.get("norm", config.norm) - if norm_layer == "RMSNorm": - self.norm_f = RMSNorm(self.hparams.get("d_model", config.d_model)) - elif norm_layer == "LayerNorm": - self.norm_f = LayerNorm(self.hparams.get("d_model", config.d_model)) - elif norm_layer == "BatchNorm": - self.norm_f = BatchNorm(self.hparams.get("d_model", config.d_model)) - elif norm_layer == "InstanceNorm": - self.norm_f = InstanceNorm(self.hparams.get("d_model", config.d_model)) - elif norm_layer == "GroupNorm": - self.norm_f = GroupNorm(1, self.hparams.get("d_model", config.d_model)) - elif norm_layer == "LearnableLayerScaling": - self.norm_f = LearnableLayerScaling( - self.hparams.get("d_model", config.d_model) - ) - else: - raise ValueError(f"Unsupported normalization layer: {norm_layer}") - - if not self.raw_embeddings: - data_size = len(num_feature_info.items()) - num_embedding_modules = data_size // self.seq_size - self.num_embeddings = nn.ModuleList( - [ - nn.Sequential( - nn.Linear( - self.seq_size, - self.hparams.get("d_model", config.d_model), - bias=False, - ), - # Example using ReLU as the activation function, change as needed - self.embedding_activation, - ) - for _ in range(num_embedding_modules) - ] - ) - else: - data_size = len(num_feature_info.items()) - num_embedding_modules = data_size - self.num_embeddings = nn.ModuleList( - [ - nn.Sequential( - nn.Linear( - input_shape, - self.hparams.get("d_model", config.d_model), - bias=False, - ), - # Example using ReLU as the activation function, change as needed - self.embedding_activation, - ) - for feature_name, input_shape in num_feature_info.items() - ] - ) - - self.cat_embeddings = nn.ModuleList( - [ - nn.Embedding( - num_categories + 1, self.hparams.get("d_model", config.d_model) - ) - for feature_name, num_categories in cat_feature_info.items() - ] - ) - - head_activation = self.hparams.get("head_activation", config.head_activation) - - self.tabular_head = MLP( - self.hparams.get("d_model", config.d_model), - hidden_units_list=self.hparams.get( - "head_layer_sizes", config.head_layer_sizes - ), - dropout_rate=self.hparams.get("head_dropout", config.head_dropout), - use_skip_layers=self.hparams.get( - "head_skip_layers", config.head_skip_layers - ), - activation_fn=head_activation, - use_batch_norm=self.hparams.get( - "head_use_batch_norm", config.head_use_batch_norm - ), - ) - - self.cls_token = nn.Parameter( - torch.zeros(1, 1, self.hparams.get("d_model", config.d_model)) - ) - - self.loss_fct = nn.MSELoss() - - if self.hparams.get("layer_norm_after_embedding"): - self.embedding_norm = nn.LayerNorm( - self.hparams.get("d_model", config.d_model) - ) - -
[docs] def forward(self, cat_features, num_features): - """ - Defines the forward pass of the model, processing both categorical and numerical features, - and returning regression predictions. - - Parameters - ---------- - cat_features : Tensor - Tensor containing the categorical features. - num_features : Tensor - Tensor containing the numerical features or raw sequence data, depending on `raw_embeddings`. - - - Returns - ------- - Tensor - The output predictions of the model for regression tasks. - """ - batch_size = ( - cat_features[0].size(0) if cat_features != [] else num_features[0].size(0) - ) - cls_tokens = self.cls_token.expand(batch_size, -1, -1) - # Process categorical features if present - if not self.raw_embeddings: - if len(self.cat_embeddings) > 0 and cat_features: - cat_embeddings = [ - emb(cat_features[i]) for i, emb in enumerate(self.cat_embeddings) - ] - cat_embeddings = torch.stack(cat_embeddings, dim=1) - cat_embeddings = torch.squeeze(cat_embeddings, dim=2) - else: - cat_embeddings = None - - if len(self.num_embeddings) > 0 and num_features: - num_embeddings = [] - # Iterate through the num_embeddings, taking slices of num_features for each - for i, emb in enumerate(self.num_embeddings): - # Calculate start and end indices for slicing the list - start_idx = i * self.seq_size - end_idx = start_idx + self.seq_size - - # Slice the num_features list to get the current chunk - current_chunk = num_features[start_idx:end_idx] - - # If the current_chunk is not empty, process it - if current_chunk: - # Concatenate tensors in the current chunk along dimension 1 - chunk_tensor = torch.cat(current_chunk, dim=1) - # Apply the embedding layer to the chunk_tensor - num_embeddings.append(emb(chunk_tensor)) - - # Stack the resulting embeddings along the second dimension if num_embeddings is not empty - if num_embeddings: - num_embeddings = torch.stack(num_embeddings, dim=1) - else: - num_embeddings = None - - else: - # Process categorical features if present - if len(self.cat_embeddings) > 0 and cat_features: - cat_embeddings = [ - emb(cat_features[i]) for i, emb in enumerate(self.cat_embeddings) - ] - cat_embeddings = torch.stack(cat_embeddings, dim=1) - cat_embeddings = torch.squeeze(cat_embeddings, dim=2) - if self.hparams.get("layer_norm_after_embedding"): - cat_embeddings = self.embedding_norm(cat_embeddings) - else: - cat_embeddings = None - - # Process numerical features if present - if len(self.num_embeddings) > 0 and num_features: - num_embeddings = [ - emb(num_features[i]) for i, emb in enumerate(self.num_embeddings) - ] - num_embeddings = torch.stack(num_embeddings, dim=1) - if self.hparams.get("layer_norm_after_embedding"): - num_embeddings = self.embedding_norm(num_embeddings) - else: - num_embeddings = None - - # Combine embeddings if both types are present, otherwise use whichever is available - if cat_embeddings is not None and num_embeddings is not None: - x = torch.cat([cls_tokens, cat_embeddings, num_embeddings], dim=1) - elif cat_embeddings is not None: - x = torch.cat([cls_tokens, cat_embeddings], dim=1) - elif num_embeddings is not None: - x = torch.cat([cls_tokens, num_embeddings], dim=1) - else: - raise ValueError("No features provided to the model.") - - x = self.mamba(x) - - # Apply pooling based on the specified method - if self.pooling_method == "avg": - x = torch.mean(x, dim=1) - elif self.pooling_method == "max": - x, _ = torch.max(x, dim=1) - elif self.pooling_method == "sum": - x = torch.sum(x, dim=1) - elif self.pooling_method == "cls_token": - x = x[:, 0] - else: - raise ValueError(f"Invalid pooling method: {self.pooling_method}") - - x = self.norm_f(x) - preds = self.tabular_head(x) - - return preds
- -
[docs] def training_step(self, batch, batch_idx): - """ - Processes a single batch during training, computes the loss, and logs training metrics. - - Parameters - ---------- - batch : tuple - A batch of data from the DataLoader, containing numerical features, categorical features, and labels. - batch_idx : int - The index of the batch within the epoch. - - - Returns - ------- - Tensor - The computed loss for the batch. - """ - cat_features, num_features, labels = batch - preds = self(num_features=num_features, cat_features=cat_features) - - loss = self.loss_fct(preds.squeeze(), labels.float()) - self.log( - "train_loss", - loss, - on_step=True, - on_epoch=True, - prog_bar=True, - logger=True, - ) - return loss
- -
[docs] def validation_step(self, batch, batch_idx): - """ - Processes a single batch during validation, computes the loss, and logs validation metrics. - - Parameters - ---------- - batch : tuple - A batch of data from the DataLoader, containing numerical features, categorical features, and labels. - batch_idx : int - The index of the batch within the epoch. - """ - cat_features, num_features, labels = batch - preds = self(num_features=num_features, cat_features=cat_features) - - loss = self.loss_fct(preds.squeeze(), labels.float()) - self.log( - "val_loss", - loss, - on_step=True, - on_epoch=True, - prog_bar=True, - logger=True, - ) - - return loss
- -
[docs] def configure_optimizers(self): - """ - Sets up the model's optimizer and learning rate scheduler based on the configurations provided. - - Returns - ------- - dict - A dictionary containing the optimizer and lr_scheduler configurations. - """ - optimizer = torch.optim.Adam( - self.parameters(), lr=self.lr, weight_decay=self.weight_decay - ) - scheduler = { - "scheduler": torch.optim.lr_scheduler.ReduceLROnPlateau( - optimizer, - mode="min", - factor=self.lr_factor, - patience=self.lr_patience, - verbose=True, - ), - "monitor": "val_loss", # Name of the metric to monitor - "interval": "epoch", - "frequency": 1, - } - - return {"optimizer": optimizer, "lr_scheduler": scheduler}
-
- -
- - - - - - -
- -
-
-
- -
- - - -
- - -
- - - -
-
-
- - - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/mambular/base_models/regressor.html b/docs/_build/html/_modules/mambular/base_models/regressor.html deleted file mode 100644 index ebbb22f..0000000 --- a/docs/_build/html/_modules/mambular/base_models/regressor.html +++ /dev/null @@ -1,715 +0,0 @@ - - - - - - - - - - - mambular.base_models.regressor — mambular - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - -
-
-
-
-
- - - - -
-
- - - - - -
- - - - - - - - - - - - - -
- -
- - - -
- -
-
- -
-
- -
- -
- -
- - -
- -
- -
- - - - - - - - - - - - -
- -
- -
-
- - - -
-

- -
-
- -
-
-
- - - - -
- -

Source code for mambular.base_models.regressor

-import lightning as pl
-import torch
-import torch.nn as nn
-from ..utils.mamba_arch import Mamba
-from ..utils.mlp_utils import MLP
-from ..utils.normalization_layers import (
-    RMSNorm,
-    LayerNorm,
-    LearnableLayerScaling,
-    BatchNorm,
-    InstanceNorm,
-    GroupNorm,
-)
-from ..utils.configs import DefaultMambularConfig
-
-
-
[docs]class BaseMambularRegressor(pl.LightningModule): - """ - A PyTorch Lightning Module for regression tasks utilizing the Mamba architecture and various normalization techniques. - - Parameters - ---------- - cat_feature_info : dict - Dictionary containing information about categorical features. - num_feature_info : dict - Dictionary containing information about numerical features. - config : DefaultMambularConfig, optional - Configuration object containing default hyperparameters for the model (default is DefaultMambularConfig()). - **kwargs : dict - Additional keyword arguments. - - Attributes - ---------- - lr : float - Learning rate. - lr_patience : int - Patience for learning rate scheduler. - weight_decay : float - Weight decay for optimizer. - lr_factor : float - Factor by which the learning rate will be reduced. - pooling_method : str - Method to pool the features. - cat_feature_info : dict - Dictionary containing information about categorical features. - num_feature_info : dict - Dictionary containing information about numerical features. - embedding_activation : callable - Activation function for embeddings. - mamba : Mamba - Mamba architecture component. - norm_f : nn.Module - Normalization layer. - num_embeddings : nn.ModuleList - Module list for numerical feature embeddings. - cat_embeddings : nn.ModuleList - Module list for categorical feature embeddings. - tabular_head : MLP - Multi-layer perceptron head for tabular data. - cls_token : nn.Parameter - Class token parameter. - loss_fct : nn.Module - Loss function. - embedding_norm : nn.Module, optional - Layer normalization applied after embedding if specified. - """ - - def __init__( - self, - cat_feature_info, - num_feature_info, - config: DefaultMambularConfig = DefaultMambularConfig(), - **kwargs, - ): - super().__init__() - - # Save all hyperparameters - self.save_hyperparameters(ignore=["cat_feature_info", "num_feature_info"]) - - # Assigning values from hyperparameters - self.lr = self.hparams.get("lr", config.lr) - self.lr_patience = self.hparams.get("lr_patience", config.lr_patience) - self.weight_decay = self.hparams.get("weight_decay", config.weight_decay) - self.lr_factor = self.hparams.get("lr_factor", config.lr_factor) - self.pooling_method = self.hparams.get("pooling_method", config.pooling_method) - self.cat_feature_info = cat_feature_info - self.num_feature_info = num_feature_info - - self.embedding_activation = self.hparams.get( - "num_embedding_activation", config.num_embedding_activation - ) - - # Additional layers and components initialization based on hyperparameters - self.mamba = Mamba( - d_model=self.hparams.get("d_model", config.d_model), - n_layers=self.hparams.get("n_layers", config.n_layers), - expand_factor=self.hparams.get("expand_factor", config.expand_factor), - bias=self.hparams.get("bias", config.bias), - d_conv=self.hparams.get("d_conv", config.d_conv), - conv_bias=self.hparams.get("conv_bias", config.conv_bias), - dropout=self.hparams.get("dropout", config.dropout), - dt_rank=self.hparams.get("dt_rank", config.dt_rank), - d_state=self.hparams.get("d_state", config.d_state), - dt_scale=self.hparams.get("dt_scale", config.dt_scale), - dt_init=self.hparams.get("dt_init", config.dt_init), - dt_max=self.hparams.get("dt_max", config.dt_max), - dt_min=self.hparams.get("dt_min", config.dt_min), - dt_init_floor=self.hparams.get("dt_init_floor", config.dt_init_floor), - norm=globals()[self.hparams.get("norm", config.norm)], - activation=self.hparams.get("activation", config.activation), - ) - - # Set the normalization layer dynamically - norm_layer = self.hparams.get("norm", config.norm) - if norm_layer == "RMSNorm": - self.norm_f = RMSNorm(self.hparams.get("d_model", config.d_model)) - elif norm_layer == "LayerNorm": - self.norm_f = LayerNorm(self.hparams.get("d_model", config.d_model)) - elif norm_layer == "BatchNorm": - self.norm_f = BatchNorm(self.hparams.get("d_model", config.d_model)) - elif norm_layer == "InstanceNorm": - self.norm_f = InstanceNorm(self.hparams.get("d_model", config.d_model)) - elif norm_layer == "GroupNorm": - self.norm_f = GroupNorm(1, self.hparams.get("d_model", config.d_model)) - elif norm_layer == "LearnableLayerScaling": - self.norm_f = LearnableLayerScaling( - self.hparams.get("d_model", config.d_model) - ) - else: - raise ValueError(f"Unsupported normalization layer: {norm_layer}") - - self.num_embeddings = nn.ModuleList( - [ - nn.Sequential( - nn.Linear( - input_shape, - self.hparams.get("d_model", config.d_model), - bias=False, - ), - self.embedding_activation, - ) - for feature_name, input_shape in num_feature_info.items() - ] - ) - - self.cat_embeddings = nn.ModuleList( - [ - nn.Embedding( - num_categories + 1, self.hparams.get("d_model", config.d_model) - ) - for feature_name, num_categories in cat_feature_info.items() - ] - ) - - head_activation = self.hparams.get("head_activation", config.head_activation) - - self.tabular_head = MLP( - self.hparams.get("d_model", config.d_model), - hidden_units_list=self.hparams.get( - "head_layer_sizes", config.head_layer_sizes - ), - dropout_rate=self.hparams.get("head_dropout", config.head_dropout), - use_skip_layers=self.hparams.get( - "head_skip_layers", config.head_skip_layers - ), - activation_fn=head_activation, - use_batch_norm=self.hparams.get( - "head_use_batch_norm", config.head_use_batch_norm - ), - ) - - self.cls_token = nn.Parameter( - torch.zeros(1, 1, self.hparams.get("d_model", config.d_model)) - ) - - self.loss_fct = nn.MSELoss() - - if self.hparams.get("layer_norm_after_embedding"): - self.embedding_norm = nn.LayerNorm( - self.hparams.get("d_model", config.d_model) - ) - -
[docs] def forward(self, num_features, cat_features): - """ - Defines the forward pass of the regressor. - - Parameters - ---------- - cat_features : Tensor - Tensor containing the categorical features. - num_features : Tensor - Tensor containing the numerical features. - - - Returns - ------- - Tensor - The output predictions of the model for regression tasks. - """ - - batch_size = ( - cat_features[0].size(0) if cat_features != [] else num_features[0].size(0) - ) - cls_tokens = self.cls_token.expand(batch_size, -1, -1) - - # Process categorical features if present - if len(self.cat_embeddings) > 0 and cat_features: - cat_embeddings = [ - emb(cat_features[i]) for i, emb in enumerate(self.cat_embeddings) - ] - cat_embeddings = torch.stack(cat_embeddings, dim=1) - cat_embeddings = torch.squeeze(cat_embeddings, dim=2) - if self.hparams.get("layer_norm_after_embedding"): - cat_embeddings = self.embedding_norm(cat_embeddings) - else: - cat_embeddings = None - - # Process numerical features if present - if len(self.num_embeddings) > 0 and num_features: - num_embeddings = [ - emb(num_features[i]) for i, emb in enumerate(self.num_embeddings) - ] - num_embeddings = torch.stack(num_embeddings, dim=1) - if self.hparams.get("layer_norm_after_embedding"): - num_embeddings = self.embedding_norm(num_embeddings) - else: - num_embeddings = None - - # Combine embeddings if both types are present, otherwise use whichever is available - - if cat_embeddings is not None and num_embeddings is not None: - x = torch.cat([cls_tokens, cat_embeddings, num_embeddings], dim=1) - elif cat_embeddings is not None: - x = torch.cat([cls_tokens, cat_embeddings], dim=1) - elif num_embeddings is not None: - x = torch.cat([cls_tokens, num_embeddings], dim=1) - else: - raise ValueError("No features provided to the model.") - - x = self.mamba(x) - - # Apply pooling based on the specified method - if self.pooling_method == "avg": - x = torch.mean(x, dim=1) - elif self.pooling_method == "max": - x, _ = torch.max(x, dim=1) - elif self.pooling_method == "sum": - x = torch.sum(x, dim=1) - elif self.pooling_method == "cls_token": - x = x[:, 0] - else: - raise ValueError(f"Invalid pooling method: {self.pooling_method}") - - x = self.norm_f(x) - preds = self.tabular_head(x) - - return preds
- -
[docs] def training_step(self, batch, batch_idx): - """ - Defines the forward pass of the regressor. - - Parameters - ---------- - cat_features : Tensor - Tensor containing the categorical features. - num_features : Tensor - Tensor containing the numerical features. - - - Returns - ------- - Tensor - The output predictions of the model for regression tasks. - """ - cat_features, num_features, labels = batch - preds = self(num_features=num_features, cat_features=cat_features) - - loss = self.loss_fct(preds.squeeze(), labels.float()) - self.log( - "train_loss", - loss, - on_step=True, - on_epoch=True, - prog_bar=True, - logger=True, - ) - return loss
- -
[docs] def validation_step(self, batch, batch_idx): - """ - Processes a single batch during validation, computes the loss, and logs validation metrics. - - Parameters - ---------- - batch : tuple - A batch of data from the DataLoader, containing numerical features, categorical features, and labels. - batch_idx : int - The index of the batch within the epoch. - """ - cat_features, num_features, labels = batch - preds = self(num_features=num_features, cat_features=cat_features) - - loss = self.loss_fct(preds.squeeze(), labels.float()) - self.log( - "val_loss", - loss, - on_step=True, - on_epoch=True, - prog_bar=True, - logger=True, - ) - - return loss
- -
[docs] def configure_optimizers(self): - """ - Sets up the model's optimizer and learning rate scheduler based on the configurations provided. - - Returns - ------- - dict - A dictionary containing the optimizer and lr_scheduler configurations. - """ - optimizer = torch.optim.Adam( - self.parameters(), lr=self.lr, weight_decay=self.weight_decay - ) - scheduler = { - "scheduler": torch.optim.lr_scheduler.ReduceLROnPlateau( - optimizer, - mode="min", - factor=self.lr_factor, - patience=self.lr_patience, - verbose=True, - ), - "monitor": "val_loss", # Name of the metric to monitor - "interval": "epoch", - "frequency": 1, - } - - return {"optimizer": optimizer, "lr_scheduler": scheduler}
-
- -
- - - - - - -
- -
-
-
- -
- - - -
- - -
- - - -
-
-
- - - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/mambular/models/sklearn_classifier.html b/docs/_build/html/_modules/mambular/models/sklearn_classifier.html deleted file mode 100644 index 93213cf..0000000 --- a/docs/_build/html/_modules/mambular/models/sklearn_classifier.html +++ /dev/null @@ -1,1080 +0,0 @@ - - - - - - - - - - - mambular.models.sklearn_classifier — mambular - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - -
-
-
-
-
- - - - -
-
- - - - - -
- - - - - - - - - - - - - -
- -
- - - -
- -
-
- -
-
- -
- -
- -
- - -
- -
- -
- - - - - - - - - - - - -
- -
- -
-
- - - -
-

- -
-
- -
-
-
- - - - -
- -

Source code for mambular.models.sklearn_classifier

-import lightning as pl
-import numpy as np
-import warnings
-import pandas as pd
-import torch
-from lightning.pytorch.callbacks import EarlyStopping, ModelCheckpoint
-from sklearn.base import BaseEstimator
-from sklearn.metrics import accuracy_score
-from sklearn.model_selection import train_test_split
-from torch.utils.data import DataLoader
-
-from ..base_models.classifier import BaseMambularClassifier
-from ..utils.configs import DefaultMambularConfig
-from ..utils.dataset import MambularDataModule, MambularDataset
-from ..utils.preprocessor import Preprocessor
-
-
-
[docs]class MambularClassifier(BaseEstimator): - """ - A classifier that mimics scikit-learn's API using PyTorch Lightning and a custom architecture. - - This classifier is designed to work with tabular data and provides a flexible interface for specifying model - configurations and preprocessing steps. It integrates smoothly with scikit-learn's utilities, such as cross-validation - and grid search. - - Parameters - ---------- - # configuration parameters - lr : float, optional - Learning rate for the optimizer. Default is 1e-4. - lr_patience : int, optional - Number of epochs with no improvement on the validation loss to wait before reducing the learning rate. Default is 10. - weight_decay : float, optional - Weight decay (L2 penalty) coefficient. Default is 1e-6. - lr_factor : float, optional - Factor by which the learning rate will be reduced. Default is 0.1. - d_model : int, optional - Dimension of the model. Default is 64. - n_layers : int, optional - Number of layers. Default is 8. - expand_factor : int, optional - Expansion factor. Default is 2. - bias : bool, optional - Whether to use bias. Default is False. - d_conv : int, optional - Dimension of the convolution. Default is 16. - conv_bias : bool, optional - Whether to use bias in the convolution. Default is True. - dropout : float, optional - Dropout rate in the mamba blocks. Default is 0.05. - dt_rank : str, optional - Rank of the time dimension. Default is "auto". - d_state : int, optional - State dimension. Default is 16. - dt_scale : float, optional - Scale of the time dimension. Default is 1.0. - dt_init : str, optional - Initialization method for the time dimension. Default is "random". - dt_max : float, optional - Maximum value for the time dimension. Default is 0.1. - dt_min : float, optional - Minimum value for the time dimension. Default is 1e-3. - dt_init_floor : float, optional - Floor value for the time dimension initialization. Default is 1e-4. - norm : str, optional - Normalization method. Default is 'RMSNorm'. - activation : callable, optional - Activation function. Default is nn.SELU(). - num_embedding_activation : callable, optional - Activation function for numerical embeddings. Default is nn.Identity(). - head_layer_sizes : list, optional - Sizes of the layers in the head. Default is [64, 64, 32]. - head_dropout : float, optional - Dropout rate for the head. Default is 0.5. - head_skip_layers : bool, optional - Whether to use skip layers in the head. Default is False. - head_activation : callable, optional - Activation function for the head. Default is nn.SELU(). - head_use_batch_norm : bool, optional - Whether to use batch normalization in the head. Default is False. - - # Preprocessor Parameters - n_bins : int, optional - The number of bins to use for numerical feature binning. Default is 50. - numerical_preprocessing : str, optional - The preprocessing strategy for numerical features. Default is 'ple'. - use_decision_tree_bins : bool, optional - If True, uses decision tree regression/classification to determine optimal bin edges for numerical feature binning. Default is False. - binning_strategy : str, optional - Defines the strategy for binning numerical features. Default is 'uniform'. - task : str, optional - Indicates the type of machine learning task ('regression' or 'classification'). Default is 'regression'. - cat_cutoff: float or int, optional - Indicates the cutoff after which integer values are treated as categorical. If float, it's treated as a percentage. If int, it's the maximum number of unique values for a column to be considered categorical. Default is 3% - treat_all_integers_as_numerical : bool, optional - If True, all integer columns will be treated as numerical, regardless of their unique value count or proportion. Default is False - - - - Attributes - ---------- - config : MambularConfig - Configuration object that holds model-specific settings. - preprocessor : Preprocessor - Preprocessor object for handling feature preprocessing like normalization and encoding. - model : BaseMambularClassifier or None - The underlying PyTorch Lightning model, instantiated upon calling the `fit` method. - """ - - def __init__(self, **kwargs): - # Known config arguments - config_arg_names = [ - "lr", - "lr_patience", - "weight_decay", - "lr_factor", - "d_model", - "n_layers", - "expand_factor", - "bias", - "d_conv", - "conv_bias", - "dropout", - "dt_rank", - "d_state", - "dt_scale", - "dt_init", - "dt_max", - "dt_min", - "dt_init_floor", - "norm", - "activation", - "num_embedding_activation", - "head_layer_sizes", - "head_dropout", - "head_skip_layers", - "head_activation", - "head_use_batch_norm", - ] - - preprocessor_arg_names = [ - "n_bins", - "numerical_preprocessing", - "use_decision_tree_bins", - "binning_strategy", - "task", - "cat_cutoff", - "treat_all_integers_as_numerical", - ] - - self.config_kwargs = {k: v for k, v in kwargs.items() if k in config_arg_names} - self.config = DefaultMambularConfig(**self.config_kwargs) - - preprocessor_kwargs = { - k: v for k, v in kwargs.items() if k in preprocessor_arg_names - } - # Raise a warning if task is set to 'classification' - if preprocessor_kwargs.get("task") == "regression": - warnings.warn( - "The task in preprocessing binning is set to 'regression'. MambularClassifier is designed for classification tasks.", - UserWarning, - ) - - if "task" not in list(preprocessor_kwargs.keys()): - preprocessor_kwargs["task"] = "classification" - - self.preprocessor = Preprocessor(**preprocessor_kwargs) - self.model = None - -
[docs] def get_params(self, deep=True): - """ - Get parameters for this estimator. - - Parameters - ---------- - deep : bool, default=True - If True, will return the parameters for this estimator and contained subobjects that are estimators. - - - Returns - ------- - params : dict - Parameter names mapped to their values. - """ - - params = self.config_kwargs # Parameters used to initialize MambularConfig - - # If deep=True, include parameters from nested components like preprocessor - if deep: - # Assuming Preprocessor has a get_params method - preprocessor_params = { - "preprocessor__" + key: value - for key, value in self.preprocessor.get_params().items() - } - params.update(preprocessor_params) - - return params
- -
[docs] def set_params(self, **parameters): - """ - Set the parameters of this estimator. - - Parameters - ---------- - **parameters : dict - Estimator parameters. - - - Returns - ------- - self : object - Estimator instance. - """ - # Update config_kwargs with provided parameters - valid_config_keys = self.config_kwargs.keys() - config_updates = {k: v for k, v in parameters.items() if k in valid_config_keys} - self.config_kwargs.update(config_updates) - - # Update the config object - for key, value in config_updates.items(): - setattr(self.config, key, value) - - # Handle preprocessor parameters (prefixed with 'preprocessor__') - preprocessor_params = { - k.split("__")[1]: v - for k, v in parameters.items() - if k.startswith("preprocessor__") - } - if preprocessor_params: - # Assuming Preprocessor has a set_params method - self.preprocessor.set_params(**preprocessor_params) - - return self
- -
[docs] def split_data(self, X, y, val_size, random_state): - """ - Split the dataset into training and validation sets. - - Parameters - ---------- - X : array-like of shape (n_samples, n_features) - The input samples. - y : array-like of shape (n_samples,) - The target values. - val_size : float - The proportion of the dataset to include in the validation split. - random_state : int - Controls the shuffling applied to the data before applying the split. - - - Returns - ------- - X_train, X_val, y_train, y_val : arrays - The split datasets. - """ - X_train, X_val, y_train, y_val = train_test_split( - X, y, test_size=val_size, random_state=random_state - ) - - return X_train, X_val, y_train, y_val
- -
[docs] def preprocess_data(self, X_train, y_train, X_val, y_val, batch_size, shuffle): - """ - Preprocess the training and validation data and create corresponding DataLoaders. - - Parameters - ---------- - X_train : array-like of shape (n_samples, n_features) - The training input samples. - y_train : array-like of shape (n_samples,) - The training target values. - X_val : array-like of shape (n_samples, n_features) - The validation input samples. - y_val : array-like of shape (n_samples,) - The validation target values. - batch_size : int - Size of mini-batches for the DataLoader. - shuffle : bool - Whether to shuffle the training data before splitting into batches. - - - Returns - ------- - data_module : MambularDataModule - An instance of MambularDataModule containing training and validation DataLoaders. - """ - self.preprocessor.fit( - pd.concat([X_train, X_val], axis=0).reset_index(drop=True), - np.concatenate((y_train, y_val), axis=0), - ) - train_preprocessed_data = self.preprocessor.transform(X_train) - val_preprocessed_data = self.preprocessor.transform(X_val) - - # Update feature info based on the actual processed data - ( - self.cat_feature_info, - self.num_feature_info, - ) = self.preprocessor.get_feature_info() - - # Initialize lists for tensors - train_cat_tensors = [] - train_num_tensors = [] - val_cat_tensors = [] - val_num_tensors = [] - - # Populate tensors for categorical features, if present in processed data - for key in self.cat_feature_info: - cat_key = "cat_" + key # Assuming categorical keys are prefixed with 'cat_' - if cat_key in train_preprocessed_data: - train_cat_tensors.append( - torch.tensor(train_preprocessed_data[cat_key], dtype=torch.long) - ) - if cat_key in val_preprocessed_data: - val_cat_tensors.append( - torch.tensor(val_preprocessed_data[cat_key], dtype=torch.long) - ) - - binned_key = "num_" + key # for binned features - if binned_key in train_preprocessed_data: - train_cat_tensors.append( - torch.tensor(train_preprocessed_data[binned_key], dtype=torch.long) - ) - - if binned_key in val_preprocessed_data: - val_cat_tensors.append( - torch.tensor(val_preprocessed_data[binned_key], dtype=torch.long) - ) - - # Populate tensors for numerical features, if present in processed data - for key in self.num_feature_info: - num_key = "num_" + key # Assuming numerical keys are prefixed with 'num_' - if num_key in train_preprocessed_data: - train_num_tensors.append( - torch.tensor(train_preprocessed_data[num_key], dtype=torch.float32) - ) - if num_key in val_preprocessed_data: - val_num_tensors.append( - torch.tensor(val_preprocessed_data[num_key], dtype=torch.float32) - ) - - train_labels = torch.tensor(y_train, dtype=torch.long) - val_labels = torch.tensor(y_val, dtype=torch.long) - - # Create datasets - train_dataset = MambularDataset( - train_cat_tensors, train_num_tensors, train_labels, regression=False - ) - val_dataset = MambularDataset( - val_cat_tensors, val_num_tensors, val_labels, regression=False - ) - - # Create dataloaders - train_dataloader = DataLoader( - train_dataset, batch_size=batch_size, shuffle=shuffle - ) - val_dataloader = DataLoader(val_dataset, batch_size=batch_size) - - return MambularDataModule(train_dataloader, val_dataloader)
- -
[docs] def preprocess_test_data(self, X): - """ - Preprocesses the test data and creates tensors for categorical and numerical features. - - Parameters - ---------- - X : DataFrame or array-like, shape (n_samples, n_features) - Test feature set. - - - Returns - ------- - cat_tensors : list of Tensors - List of tensors for each categorical feature. - num_tensors : list of Tensors - List of tensors for each numerical feature. - """ - processed_data = self.preprocessor.transform(X) - - # Initialize lists for tensors - cat_tensors = [] - num_tensors = [] - - # Populate tensors for categorical features - for key in self.cat_feature_info: - cat_key = "cat_" + key # Assuming categorical keys are prefixed with 'cat_' - if cat_key in processed_data: - cat_tensors.append( - torch.tensor(processed_data[cat_key], dtype=torch.long) - ) - - binned_key = "num_" + key # for binned features - if binned_key in processed_data: - cat_tensors.append( - torch.tensor(processed_data[binned_key], dtype=torch.long) - ) - - # Populate tensors for numerical features - for key in self.num_feature_info: - num_key = "num_" + key # Assuming numerical keys are prefixed with 'num_' - if num_key in processed_data: - num_tensors.append( - torch.tensor(processed_data[num_key], dtype=torch.float32) - ) - - return cat_tensors, num_tensors
- -
[docs] def fit( - self, - X, - y, - val_size: float = 0.2, - X_val=None, - y_val=None, - max_epochs: int = 100, - random_state: int = 101, - batch_size: int = 128, - shuffle: bool = True, - patience: int = 15, - monitor: str = "val_loss", - mode: str = "min", - lr: float = 1e-4, - lr_patience: int = 10, - factor: float = 0.1, - weight_decay: float = 1e-06, - **trainer_kwargs - ): - """ - Fit the model to the given training data, optionally using a separate validation set. - - Parameters - ---------- - X : array-like or pd.DataFrame of shape (n_samples, n_features) - The training input samples. - y : array-like of shape (n_samples,) or (n_samples, n_outputs) - The target values (class labels in classification, real numbers in regression). - val_size : float, default=0.2 - The proportion of the dataset to include in the validation split if `X_val` is None. Ignored if `X_val` is provided. - X_val : array-like or pd.DataFrame of shape (n_samples, n_features), optional - The validation input samples. If provided, `X` and `y` are not split and this data is used for validation. - y_val : array-like of shape (n_samples,) or (n_samples, n_outputs), optional - The validation target values. Required if `X_val` is provided. - max_epochs : int, default=100 - Maximum number of epochs for training. - random_state : int, default=101 - Seed used by the random number generator for shuffling the data if `X_val` is not provided. - batch_size : int, default=64 - Number of samples per gradient update. - shuffle : bool, default=True - Whether to shuffle the training data before each epoch if `X_val` is not provided. - patience : int, default=10 - Number of epochs with no improvement after which training will be stopped if using early stopping. - monitor : str, default="val_loss" - Quantity to be monitored for early stopping. - mode : str, default="min" - One of {"min", "max"}. In "min" mode, training will stop when the quantity monitored has stopped decreasing; in "max" mode, it will stop when the quantity monitored has stopped increasing. - lr : float, default=1e-3 - Learning rate for the optimizer. - lr_patience : int, default=10 - Number of epochs with no improvement after which the learning rate will be reduced. - factor : float, default=0.75 - Factor by which the learning rate will be reduced. new_lr = lr * factor. - weight_decay : float, default=0.025 - Weight decay (L2 penalty) parameter. - **trainer_kwargs : dict - Additional keyword arguments to be passed to the PyTorch Lightning Trainer constructor. - - - Returns - ------- - self : object - The fitted estimator. - """ - - if not isinstance(X, pd.DataFrame): - X = pd.DataFrame(X) - if X_val: - if not isinstance(X_val, pd.DataFrame): - X_val = pd.DataFrame(X_val) - - num_classes = len(np.unique(y)) - - if not X_val: - X_train, X_val, y_train, y_val = self.split_data( - X, y, val_size, random_state - ) - - self.data_module = self.preprocess_data( - X_train, y_train, X_val, y_val, batch_size, shuffle - ) - - self.model = BaseMambularClassifier( - num_classes=num_classes, - config=self.config, - cat_feature_info=self.cat_feature_info, - num_feature_info=self.num_feature_info, - lr=lr, - lr_patience=lr_patience, - lr_factor=factor, - weight_decay=weight_decay, - ) - - early_stop_callback = EarlyStopping( - monitor=monitor, min_delta=0.00, patience=patience, verbose=False, mode=mode - ) - - checkpoint_callback = ModelCheckpoint( - monitor="val_loss", # Adjust according to your validation metric - mode="min", - save_top_k=1, - dirpath="model_checkpoints", # Specify the directory to save checkpoints - filename="best_model", - ) - - # Initialize the trainer and train the model - trainer = pl.Trainer( - max_epochs=max_epochs, - callbacks=[early_stop_callback, checkpoint_callback], - **trainer_kwargs - ) - trainer.fit(self.model, self.data_module) - - best_model_path = checkpoint_callback.best_model_path - if best_model_path: - checkpoint = torch.load(best_model_path) - self.model.load_state_dict(checkpoint["state_dict"]) - - return self
- -
[docs] def predict(self, X): - """ - Predict the class labels for the given input samples. - - Parameters - ---------- - X : array-like or pd.DataFrame of shape (n_samples, n_features) - The input samples to predict. - - - Returns - ------- - predictions : ndarray of shape (n_samples,) - Predicted class labels for each input sample. - - - Notes - ----- - The method preprocesses the input data using the same preprocessor used during training, - sets the model to evaluation mode, and then performs inference to predict the class labels. - The predictions are converted from a PyTorch tensor to a NumPy array before being returned. - - """ - - # Preprocess the data - if not isinstance(X, pd.DataFrame): - X = pd.DataFrame(X) - device = next(self.model.parameters()).device - cat_tensors, num_tensors = self.preprocess_test_data(X) - if isinstance(cat_tensors, list): - cat_tensors = [tensor.to(device) for tensor in cat_tensors] - else: - cat_tensors = cat_tensors.to(device) - - if isinstance(num_tensors, list): - num_tensors = [tensor.to(device) for tensor in num_tensors] - else: - num_tensors = num_tensors.to(device) - - # Set the model to evaluation mode - self.model.eval() - - # Perform inference - with torch.no_grad(): - logits = self.model(num_features=num_tensors, cat_features=cat_tensors) - - # Check the shape of the logits to determine binary or multi-class classification - if logits.shape[1] == 1: - # Binary classification - probabilities = torch.sigmoid(logits) - predictions = (probabilities > 0.5).long().squeeze() - else: - # Multi-class classification - probabilities = torch.softmax(logits, dim=1) - predictions = torch.argmax(probabilities, dim=1) - - # Convert predictions to NumPy array and return - return predictions.cpu().numpy()
- -
[docs] def predict_proba(self, X): - """ - Predict class probabilities for the given input samples. - - Parameters - ---------- - X : array-like or pd.DataFrame of shape (n_samples, n_features) - The input samples for which to predict class probabilities. - - - Notes - ----- - The method preprocesses the input data using the same preprocessor used during training, - sets the model to evaluation mode, and then performs inference to predict the class probabilities. - Softmax is applied to the logits to obtain probabilities, which are then converted from a PyTorch tensor - to a NumPy array before being returned. - - - Examples - -------- - >>> from sklearn.metrics import accuracy_score, precision_score, f1_score, roc_auc_score - >>> # Define the metrics you want to evaluate - >>> metrics = { - ... 'Accuracy': (accuracy_score, False), - ... 'Precision': (precision_score, False), - ... 'F1 Score': (f1_score, False), - ... 'AUC Score': (roc_auc_score, True) - ... } - >>> # Assuming 'X_test' and 'y_test' are your test dataset and labels - >>> # Evaluate using the specified metrics - >>> results = classifier.evaluate(X_test, y_test, metrics=metrics) - - - Returns - ------- - probabilities : ndarray of shape (n_samples, n_classes) - Predicted class probabilities for each input sample. - - """ - # Preprocess the data - if not isinstance(X, pd.DataFrame): - X = pd.DataFrame(X) - device = next(self.model.parameters()).device - cat_tensors, num_tensors = self.preprocess_test_data(X) - if isinstance(cat_tensors, list): - cat_tensors = [tensor.to(device) for tensor in cat_tensors] - else: - cat_tensors = cat_tensors.to(device) - - if isinstance(num_tensors, list): - num_tensors = [tensor.to(device) for tensor in num_tensors] - else: - num_tensors = num_tensors.to(device) - - # Set the model to evaluation mode - self.model.eval() - - # Perform inference - with torch.no_grad(): - logits = self.model(num_features=num_tensors, cat_features=cat_tensors) - if logits.shape[1] > 1: - probabilities = torch.softmax(logits, dim=1) - else: - probabilities = torch.sigmoid(logits) - - # Convert probabilities to NumPy array and return - return probabilities.cpu().numpy()
- -
[docs] def evaluate(self, X, y_true, metrics=None): - """ - Evaluate the model on the given data using specified metrics. - - Parameters - ---------- - X : array-like or pd.DataFrame of shape (n_samples, n_features) - The input samples to predict. - y_true : array-like of shape (n_samples,) - The true class labels against which to evaluate the predictions. - metrics : dict - A dictionary where keys are metric names and values are tuples containing the metric function - and a boolean indicating whether the metric requires probability scores (True) or class labels (False). - - - Returns - ------- - scores : dict - A dictionary with metric names as keys and their corresponding scores as values. - - - Notes - ----- - This method uses either the `predict` or `predict_proba` method depending on the metric requirements. - """ - # Ensure input is in the correct format - if metrics is None: - metrics = {"Accuracy": (accuracy_score, False)} - - if not isinstance(X, pd.DataFrame): - X = pd.DataFrame(X) - - # Initialize dictionary to store results - scores = {} - - # Generate class probabilities if any metric requires them - if any(use_proba for _, use_proba in metrics.values()): - probabilities = self.predict_proba(X) - - # Generate class labels if any metric requires them - if any(not use_proba for _, use_proba in metrics.values()): - predictions = self.predict(X) - - # Compute each metric - for metric_name, (metric_func, use_proba) in metrics.items(): - if use_proba: - scores[metric_name] = metric_func(y_true, probabilities) - else: - scores[metric_name] = metric_func(y_true, predictions) - - return scores
-
- -
- - - - - - -
- -
-
-
- -
- - - -
- - -
- - - -
-
-
- - - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/mambular/models/sklearn_distributional.html b/docs/_build/html/_modules/mambular/models/sklearn_distributional.html deleted file mode 100644 index e472d27..0000000 --- a/docs/_build/html/_modules/mambular/models/sklearn_distributional.html +++ /dev/null @@ -1,1037 +0,0 @@ - - - - - - - - - - - mambular.models.sklearn_distributional — mambular - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - -
-
-
-
-
- - - - -
-
- - - - - -
- - - - - - - - - - - - - -
- -
- - - -
- -
-
- -
-
- -
- -
- -
- - -
- -
- -
- - - - - - - - - - - - -
- -
- -
-
- - - -
-

- -
-
- -
-
-
- - - - -
- -

Source code for mambular.models.sklearn_distributional

-import lightning as pl
-import numpy as np
-import warnings
-import pandas as pd
-import properscoring as ps
-import torch
-from lightning.pytorch.callbacks import EarlyStopping, ModelCheckpoint
-from sklearn.base import BaseEstimator
-from sklearn.metrics import accuracy_score, mean_squared_error
-from sklearn.model_selection import train_test_split
-from torch.utils.data import DataLoader
-
-from ..base_models.distributional import BaseMambularLSS
-from ..utils.configs import DefaultMambularConfig
-from ..utils.dataset import MambularDataModule, MambularDataset
-from ..utils.distributional_metrics import (
-    beta_brier_score,
-    dirichlet_error,
-    gamma_deviance,
-    inverse_gamma_loss,
-    negative_binomial_deviance,
-    poisson_deviance,
-    student_t_loss,
-)
-from ..utils.preprocessor import Preprocessor
-
-
-
[docs]class MambularLSS(BaseEstimator): - """ - MambularLSS is a machine learning estimator that is designed for structured data, - incorporating both preprocessing and a deep learning model. The estimator - integrates configurable components for data preprocessing and the neural network model, - facilitating end-to-end training and prediction workflows. - - The initialization of this class separates configuration arguments for the model and - the preprocessor, allowing for flexible adjustment of parameters. - - Parameters - ---------- - # configuration parameters - lr : float, optional - Learning rate for the optimizer. Default is 1e-4. - lr_patience : int, optional - Number of epochs with no improvement on the validation loss to wait before reducing the learning rate. Default is 10. - weight_decay : float, optional - Weight decay (L2 penalty) coefficient. Default is 1e-6. - lr_factor : float, optional - Factor by which the learning rate will be reduced. Default is 0.1. - d_model : int, optional - Dimension of the model. Default is 64. - n_layers : int, optional - Number of layers. Default is 8. - expand_factor : int, optional - Expansion factor. Default is 2. - bias : bool, optional - Whether to use bias. Default is False. - d_conv : int, optional - Dimension of the convolution. Default is 16. - conv_bias : bool, optional - Whether to use bias in the convolution. Default is True. - dropout : float, optional - Dropout rate in the mamba blocks. Default is 0.05. - dt_rank : str, optional - Rank of the time dimension. Default is "auto". - d_state : int, optional - State dimension. Default is 16. - dt_scale : float, optional - Scale of the time dimension. Default is 1.0. - dt_init : str, optional - Initialization method for the time dimension. Default is "random". - dt_max : float, optional - Maximum value for the time dimension. Default is 0.1. - dt_min : float, optional - Minimum value for the time dimension. Default is 1e-3. - dt_init_floor : float, optional - Floor value for the time dimension initialization. Default is 1e-4. - norm : str, optional - Normalization method. Default is 'RMSNorm'. - activation : callable, optional - Activation function. Default is nn.SELU(). - num_embedding_activation : callable, optional - Activation function for numerical embeddings. Default is nn.Identity(). - head_layer_sizes : list, optional - Sizes of the layers in the head. Default is [64, 64, 32]. - head_dropout : float, optional - Dropout rate for the head. Default is 0.5. - head_skip_layers : bool, optional - Whether to use skip layers in the head. Default is False. - head_activation : callable, optional - Activation function for the head. Default is nn.SELU(). - head_use_batch_norm : bool, optional - Whether to use batch normalization in the head. Default is False. - - # Preprocessor Parameters - n_bins : int, optional - The number of bins to use for numerical feature binning. Default is 50. - numerical_preprocessing : str, optional - The preprocessing strategy for numerical features. Default is 'ple'. - use_decision_tree_bins : bool, optional - If True, uses decision tree regression/classification to determine optimal bin edges for numerical feature binning. Default is False. - binning_strategy : str, optional - Defines the strategy for binning numerical features. Default is 'uniform'. - task : str, optional - Indicates the type of machine learning task ('regression' or 'classification'). Default is 'regression'. - cat_cutoff: float or int, optional - Indicates the cutoff after which integer values are treated as categorical. If float, it's treated as a percentage. If int, it's the maximum number of unique values for a column to be considered categorical. Default is 3% - treat_all_integers_as_numerical : bool, optional - If True, all integer columns will be treated as numerical, regardless of their unique value count or proportion. Default is False - - - - Attributes - ---------- - config : MambularConfig - Configuration object that holds model-specific settings. - preprocessor : Preprocessor - Preprocessor object for handling feature preprocessing like normalization and encoding. - model : BaseMambularClassifier or None - The underlying PyTorch Lightning model, instantiated upon calling the `fit` method. - """ - - def __init__(self, **kwargs): - # Known config arguments - config_arg_names = [ - "lr", - "lr_patience", - "weight_decay", - "lr_factor", - "d_model", - "n_layers", - "expand_factor", - "bias", - "d_conv", - "conv_bias", - "dropout", - "dt_rank", - "d_state", - "dt_scale", - "dt_init", - "dt_max", - "dt_min", - "dt_init_floor", - "norm", - "activation", - "num_embedding_activation", - "head_layer_sizes", - "head_dropout", - "head_skip_layers", - "head_activation", - "head_use_batch_norm", - ] - - preprocessor_arg_names = [ - "n_bins", - "numerical_preprocessing", - "use_decision_tree_bins", - "binning_strategy", - "task", - "cat_cutoff", - "treat_all_integers_as_numerical", - ] - - self.config_kwargs = {k: v for k, v in kwargs.items() if k in config_arg_names} - self.config = DefaultMambularConfig(**self.config_kwargs) - - preprocessor_kwargs = { - k: v for k, v in kwargs.items() if k in preprocessor_arg_names - } - # Raise a warning if task is set to 'classification' - if preprocessor_kwargs.get("task") == "regression": - warnings.warn( - "The task in preprocessing binning is set to 'regression'. Make sure that this is correct for your distributional family ", - UserWarning, - ) - - self.preprocessor = Preprocessor(**preprocessor_kwargs) - self.model = None - -
[docs] def get_params(self, deep=True): - """ - Get parameters for this estimator, optionally including parameters from nested components - like the preprocessor. - - Parameters - ---------- - deep : bool, default=True - If True, return parameters of nested components. - - - Returns - ------- - dict - A dictionary mapping parameter names to their values. For nested components, - parameter names are prefixed accordingly (e.g., 'preprocessor__<param_name>'). - """ - - params = self.config_kwargs # Parameters used to initialize MambularConfig - - # If deep=True, include parameters from nested components like preprocessor - if deep: - # Assuming Preprocessor has a get_params method - preprocessor_params = { - "preprocessor__" + key: value - for key, value in self.preprocessor.get_params().items() - } - params.update(preprocessor_params) - - return params
- -
[docs] def set_params(self, **parameters): - """ - Set the parameters of this estimator, allowing for modifications to both the configuration - and preprocessor parameters. Parameters not recognized as configuration arguments are - assumed to be preprocessor arguments. - - Parameters - ---------- - **parameters: Arbitrary keyword arguments where keys are parameter names and values - are the new parameter values. - - - Returns - ------- - self: This instance with updated parameters. - """ - # Update config_kwargs with provided parameters - valid_config_keys = self.config_kwargs.keys() - config_updates = {k: v for k, v in parameters.items() if k in valid_config_keys} - self.config_kwargs.update(config_updates) - - # Update the config object - for key, value in config_updates.items(): - setattr(self.config, key, value) - - # Handle preprocessor parameters (prefixed with 'preprocessor__') - preprocessor_params = { - k.split("__")[1]: v - for k, v in parameters.items() - if k.startswith("preprocessor__") - } - if preprocessor_params: - # Assuming Preprocessor has a set_params method - self.preprocessor.set_params(**preprocessor_params) - - return self
- -
[docs] def split_data(self, X, y, val_size, random_state): - """ - Split the dataset into training and validation sets. - - Parameters - ---------- - X : array-like - Features of the dataset. - y : array-like - Target values. - val_size : float - The proportion of the dataset to include in the validation split. - random_state : int, optional - The seed used by the random number generator for reproducibility. - - - Returns - ------- - tuple - A tuple containing split datasets (X_train, X_val, y_train, y_val). - """ - X_train, X_val, y_train, y_val = train_test_split( - X, y, test_size=val_size, random_state=random_state - ) - - return X_train, X_val, y_train, y_val
- -
[docs] def preprocess_data(self, X_train, y_train, X_val, y_val, batch_size, shuffle): - """ - Preprocess the training and validation data, fit the preprocessor on the training data, - and transform both training and validation data. This method also initializes tensors - for categorical and numerical features and labels, and prepares DataLoader objects for - both datasets. - - Parameters - ---------- - X_train : array-like - Training features. - y_train : array-like - Training target values. - X_val : array-like - Validation features. - y_val : array-like - Validation target values. - batch_size : int - Batch size for DataLoader objects. - shuffle : bool - Whether to shuffle the training data in the DataLoader. - - - Returns - ------- - MambularDataModule - An object containing DataLoaders for training and validation datasets. - """ - self.preprocessor.fit( - pd.concat([X_train, X_val], axis=0).reset_index(drop=True), - np.concatenate((y_train, y_val), axis=0), - ) - train_preprocessed_data = self.preprocessor.transform(X_train) - val_preprocessed_data = self.preprocessor.transform(X_val) - - # Update feature info based on the actual processed data - ( - self.cat_feature_info, - self.num_feature_info, - ) = self.preprocessor.get_feature_info() - - # Initialize lists for tensors - train_cat_tensors = [] - train_num_tensors = [] - val_cat_tensors = [] - val_num_tensors = [] - - # Populate tensors for categorical features, if present in processed data - for key in self.cat_feature_info: - cat_key = "cat_" + key # Assuming categorical keys are prefixed with 'cat_' - if cat_key in train_preprocessed_data: - train_cat_tensors.append( - torch.tensor(train_preprocessed_data[cat_key], dtype=torch.long) - ) - if cat_key in val_preprocessed_data: - val_cat_tensors.append( - torch.tensor(val_preprocessed_data[cat_key], dtype=torch.long) - ) - - binned_key = "num_" + key # for binned features - if binned_key in train_preprocessed_data: - train_cat_tensors.append( - torch.tensor(train_preprocessed_data[binned_key], dtype=torch.long) - ) - - if binned_key in val_preprocessed_data: - val_cat_tensors.append( - torch.tensor(val_preprocessed_data[binned_key], dtype=torch.long) - ) - - # Populate tensors for numerical features, if present in processed data - for key in self.num_feature_info: - num_key = "num_" + key # Assuming numerical keys are prefixed with 'num_' - if num_key in train_preprocessed_data: - train_num_tensors.append( - torch.tensor(train_preprocessed_data[num_key], dtype=torch.float32) - ) - if num_key in val_preprocessed_data: - val_num_tensors.append( - torch.tensor(val_preprocessed_data[num_key], dtype=torch.float32) - ) - - train_labels = torch.tensor(y_train, dtype=torch.float32) - val_labels = torch.tensor(y_val, dtype=torch.float32) - - # Create datasets - train_dataset = MambularDataset( - train_cat_tensors, train_num_tensors, train_labels - ) - val_dataset = MambularDataset(val_cat_tensors, val_num_tensors, val_labels) - - # Create dataloaders - train_dataloader = DataLoader( - train_dataset, batch_size=batch_size, shuffle=shuffle - ) - val_dataloader = DataLoader(val_dataset, batch_size=batch_size) - - return MambularDataModule(train_dataloader, val_dataloader)
- -
[docs] def preprocess_test_data(self, X): - """ - Preprocess test data using the fitted preprocessor. This method prepares tensors for - categorical and numerical features based on the preprocessed test data. - - Parameters - ---------- - X : array-like - Test features to preprocess. - - - Returns - ------- - tuple - A tuple containing lists of tensors for categorical and numerical features. - """ - processed_data = self.preprocessor.transform(X) - - # Initialize lists for tensors - cat_tensors = [] - num_tensors = [] - - # Populate tensors for categorical features - for key in self.cat_feature_info: - cat_key = "cat_" + key # Assuming categorical keys are prefixed with 'cat_' - if cat_key in processed_data: - cat_tensors.append( - torch.tensor(processed_data[cat_key], dtype=torch.long) - ) - - binned_key = "num_" + key # for binned features - if binned_key in processed_data: - cat_tensors.append( - torch.tensor(processed_data[binned_key], dtype=torch.long) - ) - - # Populate tensors for numerical features - for key in self.num_feature_info: - num_key = "num_" + key # Assuming numerical keys are prefixed with 'num_' - if num_key in processed_data: - num_tensors.append( - torch.tensor(processed_data[num_key], dtype=torch.float32) - ) - - return cat_tensors, num_tensors
- -
[docs] def fit( - self, - X, - y, - family, - val_size: float = 0.2, - X_val=None, - y_val=None, - max_epochs: int = 100, - random_state: int = 101, - batch_size: int = 128, - shuffle: bool = True, - patience: int = 15, - monitor: str = "val_loss", - mode: str = "min", - lr: float = 1e-4, - lr_patience: int = 10, - factor: float = 0.1, - weight_decay: float = 1e-06, - **trainer_kwargs - ): - """ - Fits the model to the provided data, using the specified loss distribution family for the prediction task. - - Parameters - ---------- - X : DataFrame or array-like, shape (n_samples, n_features) - Training features. - y : array-like, shape (n_samples,) or (n_samples, n_targets) - Target values for training. - family : str - The name of the distribution family to use for the loss function. Examples include 'normal' for regression tasks. - val_size : float, default=0.2 - Proportion of the dataset to include in the validation split if `X_val` is None. - X_val : DataFrame or array-like, shape (n_samples, n_features), optional - Validation features. If provided, `X` and `y` are not split. - y_val : array-like, shape (n_samples,) or (n_samples, n_targets), optional - Validation target values. Required if `X_val` is provided. - max_epochs : int, default=100 - Maximum number of epochs for training. - random_state : int, default=101 - Seed used by the random number generator for shuffling the data. - batch_size : int, default=64 - Number of samples per gradient update. - shuffle : bool, default=True - Whether to shuffle the training data before each epoch. - patience : int, default=10 - Number of epochs with no improvement on the validation metric to wait before early stopping. - monitor : str, default="val_loss" - The metric to monitor for early stopping. - mode : str, default="min" - In 'min' mode, training will stop when the quantity monitored has stopped decreasing; - in 'max' mode, it will stop when the quantity monitored has stopped increasing. - lr : float, default=1e-3 - Learning rate for the optimizer. - lr_patience : int, default=10 - Number of epochs with no improvement on the validation metric to wait before reducing the learning rate. - factor : float, default=0.75 - Factor by which the learning rate will be reduced. - weight_decay : float, default=0.025 - Weight decay (L2 penalty) parameter. - **trainer_kwargs : dict - Additional keyword arguments for PyTorch Lightning's Trainer class. - - - Returns - ------- - self : object - The fitted estimator. - """ - if not isinstance(X, pd.DataFrame): - X = pd.DataFrame(X) - if X_val: - if not isinstance(X_val, pd.DataFrame): - X_val = pd.DataFrame(X_val) - - if not X_val: - X_train, X_val, y_train, y_val = self.split_data( - X, y, val_size, random_state - ) - - data_module = self.preprocess_data( - X_train, y_train, X_val, y_val, batch_size, shuffle - ) - - self.model = BaseMambularLSS( - family=family, - config=self.config, - cat_feature_info=self.cat_feature_info, - num_feature_info=self.num_feature_info, - lr=lr, - lr_patience=lr_patience, - lr_factor=factor, - weight_decay=weight_decay, - ) - - early_stop_callback = EarlyStopping( - monitor=monitor, min_delta=0.00, patience=patience, verbose=False, mode=mode - ) - - checkpoint_callback = ModelCheckpoint( - monitor="val_loss", - mode="min", - save_top_k=1, - dirpath="model_checkpoints", - filename="best_model", - ) - - # Initialize the trainer and train the model - trainer = pl.Trainer( - max_epochs=max_epochs, - callbacks=[early_stop_callback, checkpoint_callback], - **trainer_kwargs, - ) - trainer.fit(self.model, data_module) - - best_model_path = checkpoint_callback.best_model_path - if best_model_path: - checkpoint = torch.load(best_model_path) - self.model.load_state_dict(checkpoint["state_dict"]) - - return self
- -
[docs] def predict(self, X, raw=False): - """ - Predicts target values for the given input samples using the fitted model. - - Parameters - ---------- - X : DataFrame or array-like, shape (n_samples, n_features) - The input samples for which to predict target values. - - - Returns - ------- - predictions : ndarray, shape (n_samples,) or (n_samples, n_distributional_parameters) - The predicted target values. - """ - # Preprocess the data - if not isinstance(X, pd.DataFrame): - X = pd.DataFrame(X) - device = next(self.model.parameters()).device - cat_tensors, num_tensors = self.preprocess_test_data(X) - if isinstance(cat_tensors, list): - cat_tensors = [tensor.to(device) for tensor in cat_tensors] - else: - cat_tensors = cat_tensors.to(device) - - if isinstance(num_tensors, list): - num_tensors = [tensor.to(device) for tensor in num_tensors] - else: - num_tensors = num_tensors.to(device) - - # Set the model to evaluation mode - self.model.eval() - - # Perform inference - with torch.no_grad(): - predictions = self.model(num_features=num_tensors, cat_features=cat_tensors) - - if not raw: - return self.model.family(predictions).cpu().numpy() - - # Convert predictions to NumPy array and return - else: - return predictions.cpu().numpy()
- -
[docs] def evaluate(self, X, y_true, metrics=None, distribution_family=None): - """ - Evaluate the model on the given data using specified metrics tailored to the distribution type. - - Parameters - ---------- - X : DataFrame or array-like, shape (n_samples, n_features) - Input samples. - y_true : DataFrame or array-like, shape (n_samples,) or (n_samples, n_outputs) - True target values. - metrics : dict, optional - A dictionary where keys are metric names and values are the metric functions. - If None, default metrics based on the detected or specified distribution_family are used. - distribution_family : str, optional - Specifies the distribution family the model is predicting for. If None, it will attempt to infer based - on the model's settings. - - - Returns - ------- - scores : dict - A dictionary with metric names as keys and their corresponding scores as values. - """ - # Infer distribution family from model settings if not provided - if distribution_family is None: - distribution_family = getattr(self.model, "distribution_family", "normal") - - # Setup default metrics if none are provided - if metrics is None: - metrics = self.get_default_metrics(distribution_family) - - # Make predictions - predictions = self.predict(X, raw=False) - - # Initialize dictionary to store results - scores = {} - - # Compute each metric - for metric_name, metric_func in metrics.items(): - scores[metric_name] = metric_func(y_true, predictions) - - return scores
- -
[docs] def get_default_metrics(self, distribution_family): - """ - Provides default metrics based on the distribution family. - - Parameters - ---------- - distribution_family : str - The distribution family for which to provide default metrics. - - - Returns - ------- - metrics : dict - A dictionary of default metric functions. - """ - default_metrics = { - "normal": { - "MSE": lambda y, pred: mean_squared_error(y, pred[:, 0]), - "CRPS": lambda y, pred: np.mean( - [ - ps.crps_gaussian(y[i], mu=pred[i, 0], sig=np.sqrt(pred[i, 1])) - for i in range(len(y)) - ] - ), - }, - "poisson": {"Poisson Deviance": poisson_deviance}, - "gamma": {"Gamma Deviance": gamma_deviance}, - "beta": {"Brier Score": beta_brier_score}, - "dirichlet": {"Dirichlet Error": dirichlet_error}, - "studentt": {"Student-T Loss": student_t_loss}, - "negativebinom": {"Negative Binomial Deviance": negative_binomial_deviance}, - "inversegamma": {"Inverse Gamma Loss": inverse_gamma_loss}, - "categorical": {"Accuracy": accuracy_score}, - } - return default_metrics.get(distribution_family, {})
-
- -
- - - - - - -
- -
-
-
- -
- - - -
- - -
- - - -
-
-
- - - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/mambular/models/sklearn_embedding_classifier.html b/docs/_build/html/_modules/mambular/models/sklearn_embedding_classifier.html deleted file mode 100644 index d9b611c..0000000 --- a/docs/_build/html/_modules/mambular/models/sklearn_embedding_classifier.html +++ /dev/null @@ -1,1104 +0,0 @@ - - - - - - - - - - - mambular.models.sklearn_embedding_classifier — mambular - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - -
-
-
-
-
- - - - -
-
- - - - - -
- - - - - - - - - - - - - -
- -
- - - -
- -
-
- -
-
- -
- -
- -
- - -
- -
- -
- - - - - - - - - - - - -
- -
- -
-
- - - -
-

- -
-
- -
-
-
- - - - -
- -

Source code for mambular.models.sklearn_embedding_classifier

-import lightning as pl
-import numpy as np
-import pandas as pd
-import warnings
-
-import torch
-from lightning.pytorch.callbacks import EarlyStopping, ModelCheckpoint
-from sklearn.base import BaseEstimator
-from sklearn.decomposition import PCA
-from sklearn.metrics import accuracy_score
-from sklearn.model_selection import train_test_split
-from torch.utils.data import DataLoader
-
-from ..base_models.embedding_classifier import BaseEmbeddingMambularClassifier
-from ..utils.configs import DefaultMambularConfig
-from ..utils.dataset import EmbeddingMambularDataset, MambularDataModule
-from ..utils.preprocessor import Preprocessor
-
-
-
[docs]class EmbeddingMambularClassifier(BaseEstimator): - """ - Provides an scikit-learn-like interface for the ProteinMambularClassifier, making it compatible with - scikit-learn's utilities and workflow. This class encapsulates the PyTorch Lightning model, preprocessing, - and data loading, offering methods for fitting, predicting, and probability estimation in a manner akin - to scikit-learn's API. - - Parameters - ---------- - # configuration parameters - lr : float, optional - Learning rate for the optimizer. Default is 1e-4. - lr_patience : int, optional - Number of epochs with no improvement on the validation loss to wait before reducing the learning rate. Default is 10. - weight_decay : float, optional - Weight decay (L2 penalty) coefficient. Default is 1e-6. - lr_factor : float, optional - Factor by which the learning rate will be reduced. Default is 0.1. - d_model : int, optional - Dimension of the model. Default is 64. - n_layers : int, optional - Number of layers. Default is 8. - expand_factor : int, optional - Expansion factor. Default is 2. - bias : bool, optional - Whether to use bias. Default is False. - d_conv : int, optional - Dimension of the convolution. Default is 16. - conv_bias : bool, optional - Whether to use bias in the convolution. Default is True. - dropout : float, optional - Dropout rate in the mamba blocks. Default is 0.05. - dt_rank : str, optional - Rank of the time dimension. Default is "auto". - d_state : int, optional - State dimension. Default is 16. - dt_scale : float, optional - Scale of the time dimension. Default is 1.0. - dt_init : str, optional - Initialization method for the time dimension. Default is "random". - dt_max : float, optional - Maximum value for the time dimension. Default is 0.1. - dt_min : float, optional - Minimum value for the time dimension. Default is 1e-3. - dt_init_floor : float, optional - Floor value for the time dimension initialization. Default is 1e-4. - norm : str, optional - Normalization method. Default is 'RMSNorm'. - activation : callable, optional - Activation function. Default is nn.SELU(). - num_embedding_activation : callable, optional - Activation function for numerical embeddings. Default is nn.Identity(). - head_layer_sizes : list, optional - Sizes of the layers in the head. Default is [64, 64, 32]. - head_dropout : float, optional - Dropout rate for the head. Default is 0.5. - head_skip_layers : bool, optional - Whether to use skip layers in the head. Default is False. - head_activation : callable, optional - Activation function for the head. Default is nn.SELU(). - head_use_batch_norm : bool, optional - Whether to use batch normalization in the head. Default is False. - - # Preprocessor Parameters - n_bins : int, optional - The number of bins to use for numerical feature binning. Default is 50. - numerical_preprocessing : str, optional - The preprocessing strategy for numerical features. Default is 'ple'. - use_decision_tree_bins : bool, optional - If True, uses decision tree regression/classification to determine optimal bin edges for numerical feature binning. Default is False. - binning_strategy : str, optional - Defines the strategy for binning numerical features. Default is 'uniform'. - task : str, optional - Indicates the type of machine learning task ('regression' or 'classification'). Default is 'regression'. - cat_cutoff: float or int, optional - Indicates the cutoff after which integer values are treated as categorical. If float, it's treated as a percentage. If int, it's the maximum number of unique values for a column to be considered categorical. Default is 3% - treat_all_integers_as_numerical : bool, optional - If True, all integer columns will be treated as numerical, regardless of their unique value count or proportion. Default is False - - - Attributes - ---------- - config : MambularConfig - Configuration object containing model-specific parameters. - preprocessor : Preprocessor - Preprocessor object for data preprocessing steps. - model : BaseEmbeddingMambularRegressor - The neural network model, initialized after the `fit` method is called. - """ - - def __init__(self, **kwargs): - # Known config arguments - config_arg_names = [ - "lr", - "lr_patience", - "weight_decay", - "lr_factor", - "d_model", - "n_layers", - "expand_factor", - "bias", - "d_conv", - "conv_bias", - "dropout", - "dt_rank", - "d_state", - "dt_scale", - "dt_init", - "dt_max", - "dt_min", - "dt_init_floor", - "norm", - "activation", - "num_embedding_activation", - "head_layer_sizes", - "head_dropout", - "head_skip_layers", - "head_activation", - "head_use_batch_norm", - ] - - preprocessor_arg_names = [ - "n_bins", - "numerical_preprocessing", - "use_decision_tree_bins", - "binning_strategy", - "task", - "cat_cutoff", - "treat_all_integers_as_numerical", - ] - - self.config_kwargs = {k: v for k, v in kwargs.items() if k in config_arg_names} - self.config = DefaultMambularConfig(**self.config_kwargs) - - preprocessor_kwargs = { - k: v for k, v in kwargs.items() if k in preprocessor_arg_names - } - if "numerical_preprocessing" not in list(preprocessor_kwargs.keys()): - preprocessor_kwargs["numerical_preprocessing"] = "standardization" - - # Raise a warning if task is set to 'classification' - if preprocessor_kwargs.get("task") == "regression": - warnings.warn( - "The task is set to 'regression'. This model is designed for classification tasks.", - UserWarning, - ) - - if "task" not in list(preprocessor_kwargs.keys()): - preprocessor_kwargs["task"] = "classification" - - self.preprocessor = Preprocessor(**preprocessor_kwargs) - self.model = None - -
[docs] def get_params(self, deep=True): - """ - Get parameters for this estimator. - - Parameters - ---------- - deep : bool, default=True - If True, will return the parameters for this estimator and contained subobjects that are estimators. - - - Returns - ------- - params : dict - Parameter names mapped to their values. - """ - params = self.config_kwargs # Parameters used to initialize MambularConfig - - # If deep=True, include parameters from nested components like preprocessor - if deep: - # Assuming Preprocessor has a get_params method - preprocessor_params = { - "preprocessor__" + key: value - for key, value in self.preprocessor.get_params().items() - } - params.update(preprocessor_params) - - return params
- -
[docs] def set_params(self, **parameters): - """ - Set the parameters of this estimator. - - Parameters - ---------- - **parameters : dict - Estimator parameters. - - - Returns - ------- - self : object - Estimator instance. - """ - # Update config_kwargs with provided parameters - valid_config_keys = self.config_kwargs.keys() - config_updates = {k: v for k, v in parameters.items() if k in valid_config_keys} - self.config_kwargs.update(config_updates) - - # Update the config object - for key, value in config_updates.items(): - setattr(self.config, key, value) - - # Handle preprocessor parameters (prefixed with 'preprocessor__') - preprocessor_params = { - k.split("__")[1]: v - for k, v in parameters.items() - if k.startswith("preprocessor__") - } - if preprocessor_params: - # Assuming Preprocessor has a set_params method - self.preprocessor.set_params(**preprocessor_params) - - return self
- -
[docs] def split_data(self, X, y, val_size, random_state): - """ - Split the dataset into training and validation sets. - - Parameters - ---------- - X : array-like of shape (n_samples, n_features) - The input samples. - y : array-like of shape (n_samples,) - The target values. - val_size : float - The proportion of the dataset to include in the validation split. - random_state : int - Controls the shuffling applied to the data before applying the split. - - - Returns - ------- - X_train, X_val, y_train, y_val : arrays - The split datasets. - """ - X_train, X_val, y_train, y_val = train_test_split( - X, y, test_size=val_size, random_state=random_state - ) - - return X_train, X_val, y_train, y_val
- -
[docs] def preprocess_data(self, X_train, y_train, X_val, y_val, batch_size, shuffle): - """ - Preprocess the training and validation data and create corresponding DataLoaders. - - Parameters - ---------- - X_train : array-like of shape (n_samples, n_features) - The training input samples. - y_train : array-like of shape (n_samples,) - The training target values. - X_val : array-like of shape (n_samples, n_features) - The validation input samples. - y_val : array-like of shape (n_samples,) - The validation target values. - batch_size : int - Size of mini-batches for the DataLoader. - shuffle : bool - Whether to shuffle the training data before splitting into batches. - - - Returns - ------- - data_module : MambularDataModule - An instance of MambularDataModule containing training and validation DataLoaders. - """ - self.preprocessor.fit( - pd.concat([X_train, X_val], axis=0).reset_index(drop=True), - np.concatenate((y_train, y_val), axis=0), - ) - train_preprocessed_data = self.preprocessor.transform(X_train) - val_preprocessed_data = self.preprocessor.transform(X_val) - - # Update feature info based on the actual processed data - ( - self.cat_feature_info, - self.num_feature_info, - ) = self.preprocessor.get_feature_info() - - # Initialize lists for tensors - train_cat_tensors = [] - train_num_tensors = [] - val_cat_tensors = [] - val_num_tensors = [] - - # Populate tensors for categorical features, if present in processed data - for key in self.cat_feature_info: - cat_key = "cat_" + key # Assuming categorical keys are prefixed with 'cat_' - if cat_key in train_preprocessed_data: - train_cat_tensors.append( - torch.tensor(train_preprocessed_data[cat_key], dtype=torch.long) - ) - if cat_key in val_preprocessed_data: - val_cat_tensors.append( - torch.tensor(val_preprocessed_data[cat_key], dtype=torch.long) - ) - - binned_key = "num_" + key # for binned features - if binned_key in train_preprocessed_data: - train_cat_tensors.append( - torch.tensor(train_preprocessed_data[binned_key], dtype=torch.long) - ) - - if binned_key in val_preprocessed_data: - val_cat_tensors.append( - torch.tensor(val_preprocessed_data[binned_key], dtype=torch.long) - ) - - # Populate tensors for numerical features, if present in processed data - for key in self.num_feature_info: - num_key = "num_" + str( - key - ) # Assuming numerical keys are prefixed with 'num_' - if num_key in train_preprocessed_data: - train_num_tensors.append( - torch.tensor(train_preprocessed_data[num_key], dtype=torch.float32) - ) - if num_key in val_preprocessed_data: - val_num_tensors.append( - torch.tensor(val_preprocessed_data[num_key], dtype=torch.float32) - ) - - train_labels = torch.tensor(y_train, dtype=torch.long) - val_labels = torch.tensor(y_val, dtype=torch.long) - - # Create datasets - train_dataset = EmbeddingMambularDataset( - train_cat_tensors, train_num_tensors, train_labels, regression=False - ) - val_dataset = EmbeddingMambularDataset( - val_cat_tensors, val_num_tensors, val_labels, regression=False - ) - - # Create dataloaders - train_dataloader = DataLoader( - train_dataset, batch_size=batch_size, shuffle=shuffle - ) - val_dataloader = DataLoader(val_dataset, batch_size=batch_size) - - return MambularDataModule(train_dataloader, val_dataloader)
- -
[docs] def preprocess_test_data(self, X): - """ - Preprocesses the test data and creates tensors for categorical and numerical features. - - Parameters - ---------- - X : DataFrame or array-like, shape (n_samples, n_features) - Test feature set. - - - Returns - ------- - cat_tensors : list of Tensors - List of tensors for each categorical feature. - num_tensors : list of Tensors - List of tensors for each numerical feature. - """ - processed_data = self.preprocessor.transform(X) - - # Initialize lists for tensors - cat_tensors = [] - num_tensors = [] - - # Populate tensors for categorical features - for key in self.cat_feature_info: - cat_key = "cat_" + str( - key - ) # Assuming categorical keys are prefixed with 'cat_' - if cat_key in processed_data: - cat_tensors.append( - torch.tensor(processed_data[cat_key], dtype=torch.long) - ) - - binned_key = "num_" + str(key) # for binned features - if binned_key in processed_data: - cat_tensors.append( - torch.tensor(processed_data[binned_key], dtype=torch.long) - ) - - # Populate tensors for numerical features - for key in self.num_feature_info: - num_key = "num_" + str( - key - ) # Assuming numerical keys are prefixed with 'num_' - if num_key in processed_data: - num_tensors.append( - torch.tensor(processed_data[num_key], dtype=torch.float32) - ) - - return cat_tensors, num_tensors
- -
[docs] def fit( - self, - X, - y, - val_size=0.2, - X_val=None, - y_val=None, - max_epochs=100, - random_state=101, - batch_size=64, - shuffle=True, - patience=10, - monitor="val_loss", - mode="min", - lr=1e-3, - lr_patience=10, - factor=0.75, - weight_decay=0.025, - raw_embeddings=False, - seq_size=20, - pca=False, - reduced_dims=16, - **trainer_kwargs - ): - """ - Fits the model to the given dataset. - - Parameters - ---------- - X : pandas DataFrame or array-like - Feature matrix for training. - y : array-like - Target vector. - val_size : float, optional - Fraction of the data to use for validation if X_val is None. - X_val : pandas DataFrame or array-like, optional - Feature matrix for validation. - y_val : array-like, optional - Target vector for validation. - max_epochs : int, default=100 - Maximum number of epochs for training. - random_state : int, optional - Seed for random number generators. - batch_size : int, default=32 - Size of batches for training and validation. - shuffle : bool, default=True - Whether to shuffle training data before each epoch. - patience : int, default=10 - Patience for early stopping based on val_loss. - monitor : str, default='val_loss' - Metric to monitor for early stopping. - mode : str, default='min' - Mode for early stopping ('min' or 'max'). - lr : float, default=0.001 - Learning rate for the optimizer. - lr_patience : int, default=5 - Patience for learning rate reduction. - factor : float, default=0.1 - Factor for learning rate reduction. - weight_decay : float, default=0.0 - Weight decay for the optimizer. - raw_embeddings : bool, default=False - Whether to use raw features or embeddings. - seq_size : int, optional - Sequence size for embeddings, relevant if raw_embeddings is False. - **trainer_kwargs : dict - Additional arguments for the PyTorch Lightning Trainer. - - - Returns - ------- - self : object - The fitted estimator. - """ - if not isinstance(X, pd.DataFrame): - X = pd.DataFrame(X) - if X_val: - if not isinstance(X_val, pd.DataFrame): - X_val = pd.DataFrame(X_val) - - # Apply PCA if indicated - if pca: - pca_transformer = PCA(n_components=reduced_dims) - X = pca_transformer.fit_transform( - X - ) # Fit and transform the PCA on the complete dataset - if X_val is not None: - X_val = pca_transformer.transform( - X_val - ) # Transform validation data with the same PCA model - - raw_embeddings = True - - if not X_val: - X_train, X_val, y_train, y_val = self.split_data( - X, y, val_size, random_state - ) - else: - X_train = X - y_train = y - - data_module = self.preprocess_data( - X_train, y_train, X_val, y_val, batch_size, shuffle - ) - - if raw_embeddings: - self.config.d_model = X.shape[1] - - num_classes = len(np.unique(y)) - - self.model = BaseEmbeddingMambularClassifier( - num_classes=num_classes, - config=self.config, - cat_feature_info=self.cat_feature_info, - num_feature_info=self.num_feature_info, - lr=lr, - lr_patience=lr_patience, - lr_factor=factor, - weight_decay=weight_decay, - raw_embeddings=raw_embeddings, - seq_size=seq_size, - ) - - early_stop_callback = EarlyStopping( - monitor=monitor, min_delta=0.00, patience=patience, verbose=False, mode=mode - ) - - checkpoint_callback = ModelCheckpoint( - monitor="val_loss", # Adjust according to your validation metric - mode="min", - save_top_k=1, - dirpath="model_checkpoints", # Specify the directory to save checkpoints - filename="best_model", - ) - - # Initialize the trainer and train the model - trainer = pl.Trainer( - max_epochs=max_epochs, - callbacks=[early_stop_callback, checkpoint_callback], - **trainer_kwargs - ) - trainer.fit(self.model, data_module) - - best_model_path = checkpoint_callback.best_model_path - if best_model_path: - checkpoint = torch.load(best_model_path) - self.model.load_state_dict(checkpoint["state_dict"]) - - return self
- -
[docs] def predict(self, X): - """ - Predict the class labels for the given input samples. - - Parameters - ---------- - X : array-like or pd.DataFrame of shape (n_samples, n_features) - The input samples to predict. - - - Returns - ------- - predictions : ndarray of shape (n_samples,) - Predicted class labels for each input sample. - - - Notes - ----- - The method preprocesses the input data using the same preprocessor used during training, - sets the model to evaluation mode, and then performs inference to predict the class labels. - The predictions are converted from a PyTorch tensor to a NumPy array before being returned. - """ - # Preprocess the data - if not isinstance(X, pd.DataFrame): - X = pd.DataFrame(X) - - if hasattr(self, "pca_transformer"): - X = pd.DataFrame(self.pca_transformer.transform(X)) - - cat_tensors, num_tensors = self.preprocess_test_data(X) - device = next(self.model.parameters()).device - cat_tensors, num_tensors = self.preprocess_test_data(X) - if isinstance(cat_tensors, list): - cat_tensors = [tensor.to(device) for tensor in cat_tensors] - else: - cat_tensors = cat_tensors.to(device) - - if isinstance(num_tensors, list): - num_tensors = [tensor.to(device) for tensor in num_tensors] - else: - num_tensors = num_tensors.to(device) - - # Set the model to evaluation mode - self.model.eval() - - # Perform inference - with torch.no_grad(): - logits = self.model(num_features=num_tensors, cat_features=cat_tensors) - - # Check the shape of the logits to determine binary or multi-class classification - if logits.shape[1] == 1: - # Binary classification - probabilities = torch.sigmoid(logits) - predictions = (probabilities > 0.5).long().squeeze() - else: - # Multi-class classification - probabilities = torch.softmax(logits, dim=1) - predictions = torch.argmax(probabilities, dim=1) - - # Convert predictions to NumPy array and return - return predictions.cpu().numpy()
- -
[docs] def predict_proba(self, X): - """ - Predict class probabilities for the given input samples. - - Parameters - ---------- - X : array-like or pd.DataFrame of shape (n_samples, n_features) - The input samples for which to predict class probabilities. - - - Returns - ------- - probabilities : ndarray of shape (n_samples, n_classes) - Predicted class probabilities for each input sample. - - - Notes - ----- - The method preprocesses the input data using the same preprocessor used during training, - sets the model to evaluation mode, and then performs inference to predict the class probabilities. - Softmax is applied to the logits to obtain probabilities, which are then converted from a PyTorch tensor - to a NumPy array before being returned. - """ - # Preprocess the data - if not isinstance(X, pd.DataFrame): - X = pd.DataFrame(X) - cat_tensors, num_tensors = self.preprocess_test_data(X) - device = next(self.model.parameters()).device - cat_tensors, num_tensors = self.preprocess_test_data(X) - if isinstance(cat_tensors, list): - cat_tensors = [tensor.to(device) for tensor in cat_tensors] - else: - cat_tensors = cat_tensors.to(device) - - if isinstance(num_tensors, list): - num_tensors = [tensor.to(device) for tensor in num_tensors] - else: - num_tensors = num_tensors.to(device) - - # Set the model to evaluation mode - self.model.eval() - - # Perform inference - with torch.no_grad(): - logits = self.model(num_features=num_tensors, cat_features=cat_tensors) - if logits.shape[1] > 1: - probabilities = torch.softmax(logits, dim=1) - else: - probabilities = torch.sigmoid(logits) - - # Convert probabilities to NumPy array and return - return probabilities.cpu().numpy()
- -
[docs] def evaluate(self, X, y_true, metrics=None): - """ - Evaluate the model on the given data using specified metrics. - - Parameters - ---------- - X : array-like or pd.DataFrame of shape (n_samples, n_features) - The input samples to predict. - y_true : array-like of shape (n_samples,) - The true class labels against which to evaluate the predictions. - metrics : dict - A dictionary where keys are metric names and values are tuples containing the metric function - and a boolean indicating whether the metric requires probability scores (True) or class labels (False). - - - Returns - ------- - scores : dict - A dictionary with metric names as keys and their corresponding scores as values. - - - Notes - ----- - This method uses either the `predict` or `predict_proba` method depending on the metric requirements. - """ - # Ensure input is in the correct format - if metrics is None: - metrics = {"Accuracy": (accuracy_score, False)} - - if not isinstance(X, pd.DataFrame): - X = pd.DataFrame(X) - - # Initialize dictionary to store results - scores = {} - - # Generate class probabilities if any metric requires them - if any(use_proba for _, use_proba in metrics.values()): - probabilities = self.predict_proba(X) - - # Generate class labels if any metric requires them - if any(not use_proba for _, use_proba in metrics.values()): - predictions = self.predict(X) - - # Compute each metric - for metric_name, (metric_func, use_proba) in metrics.items(): - if use_proba: - scores[metric_name] = metric_func(y_true, probabilities) - else: - scores[metric_name] = metric_func(y_true, predictions) - - return scores
-
- -
- - - - - - -
- -
-
-
- -
- - - -
- - -
- - - -
-
-
- - - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/mambular/models/sklearn_embedding_regressor.html b/docs/_build/html/_modules/mambular/models/sklearn_embedding_regressor.html deleted file mode 100644 index 2f01a97..0000000 --- a/docs/_build/html/_modules/mambular/models/sklearn_embedding_regressor.html +++ /dev/null @@ -1,1040 +0,0 @@ - - - - - - - - - - - mambular.models.sklearn_embedding_regressor — mambular - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - -
-
-
-
-
- - - - -
-
- - - - - -
- - - - - - - - - - - - - -
- -
- - - -
- -
-
- -
-
- -
- -
- -
- - -
- -
- -
- - - - - - - - - - - - -
- -
- -
-
- - - -
-

- -
-
- -
-
-
- - - - -
- -

Source code for mambular.models.sklearn_embedding_regressor

-import warnings
-
-import lightning as pl
-import numpy as np
-import pandas as pd
-import torch
-from lightning.pytorch.callbacks import EarlyStopping, ModelCheckpoint
-from sklearn.base import BaseEstimator
-from sklearn.decomposition import PCA
-from sklearn.metrics import mean_squared_error
-from sklearn.model_selection import train_test_split
-from torch.utils.data import DataLoader
-
-from ..base_models.embedding_regressor import BaseEmbeddingMambularRegressor
-from ..utils.configs import DefaultMambularConfig
-from ..utils.dataset import EmbeddingMambularDataset, MambularDataModule
-from ..utils.preprocessor import Preprocessor
-
-
-
[docs]class EmbeddingMambularRegressor(BaseEstimator): - """ - An sklearn-like interface for the ProteinMambularRegressor, making it compatible with sklearn's utilities - and workflows. This class wraps the PyTorch Lightning model and preprocessor, providing methods for fitting, - predicting, and setting/getting parameters in a way that mimics sklearn's API. - - Parameters - ---------- - # configuration parameters - lr : float, optional - Learning rate for the optimizer. Default is 1e-4. - lr_patience : int, optional - Number of epochs with no improvement on the validation loss to wait before reducing the learning rate. Default is 10. - weight_decay : float, optional - Weight decay (L2 penalty) coefficient. Default is 1e-6. - lr_factor : float, optional - Factor by which the learning rate will be reduced. Default is 0.1. - d_model : int, optional - Dimension of the model. Default is 64. - n_layers : int, optional - Number of layers. Default is 8. - expand_factor : int, optional - Expansion factor. Default is 2. - bias : bool, optional - Whether to use bias. Default is False. - d_conv : int, optional - Dimension of the convolution. Default is 16. - conv_bias : bool, optional - Whether to use bias in the convolution. Default is True. - dropout : float, optional - Dropout rate in the mamba blocks. Default is 0.05. - dt_rank : str, optional - Rank of the time dimension. Default is "auto". - d_state : int, optional - State dimension. Default is 16. - dt_scale : float, optional - Scale of the time dimension. Default is 1.0. - dt_init : str, optional - Initialization method for the time dimension. Default is "random". - dt_max : float, optional - Maximum value for the time dimension. Default is 0.1. - dt_min : float, optional - Minimum value for the time dimension. Default is 1e-3. - dt_init_floor : float, optional - Floor value for the time dimension initialization. Default is 1e-4. - norm : str, optional - Normalization method. Default is 'RMSNorm'. - activation : callable, optional - Activation function. Default is nn.SELU(). - num_embedding_activation : callable, optional - Activation function for numerical embeddings. Default is nn.Identity(). - head_layer_sizes : list, optional - Sizes of the layers in the head. Default is [64, 64, 32]. - head_dropout : float, optional - Dropout rate for the head. Default is 0.5. - head_skip_layers : bool, optional - Whether to use skip layers in the head. Default is False. - head_activation : callable, optional - Activation function for the head. Default is nn.SELU(). - head_use_batch_norm : bool, optional - Whether to use batch normalization in the head. Default is False. - - # Preprocessor Parameters - n_bins : int, optional - The number of bins to use for numerical feature binning. Default is 50. - numerical_preprocessing : str, optional - The preprocessing strategy for numerical features. Default is 'ple'. - use_decision_tree_bins : bool, optional - If True, uses decision tree regression/classification to determine optimal bin edges for numerical feature binning. Default is False. - binning_strategy : str, optional - Defines the strategy for binning numerical features. Default is 'uniform'. - task : str, optional - Indicates the type of machine learning task ('regression' or 'classification'). Default is 'regression'. - cat_cutoff: float or int, optional - Indicates the cutoff after which integer values are treated as categorical. If float, it's treated as a percentage. If int, it's the maximum number of unique values for a column to be considered categorical. Default is 3% - treat_all_integers_as_numerical : bool, optional - If True, all integer columns will be treated as numerical, regardless of their unique value count or proportion. Default is False - - - Attributes - ---------- - config : MambularConfig - Configuration object containing model-specific parameters. - preprocessor : Preprocessor - Preprocessor object for data preprocessing steps. - model : BaseEmbeddingMambularRegressor - The neural network model, initialized after the `fit` method is called. - """ - - def __init__(self, **kwargs): - # Known config arguments - config_arg_names = [ - "lr", - "lr_patience", - "weight_decay", - "lr_factor", - "d_model", - "n_layers", - "expand_factor", - "bias", - "d_conv", - "conv_bias", - "dropout", - "dt_rank", - "d_state", - "dt_scale", - "dt_init", - "dt_max", - "dt_min", - "dt_init_floor", - "norm", - "activation", - "num_embedding_activation", - "head_layer_sizes", - "head_dropout", - "head_skip_layers", - "head_activation", - "head_use_batch_norm", - ] - - preprocessor_arg_names = [ - "n_bins", - "numerical_preprocessing", - "use_decision_tree_bins", - "binning_strategy", - "task", - "cat_cutoff", - "treat_all_integers_as_numerical", - ] - - self.config_kwargs = {k: v for k, - v in kwargs.items() if k in config_arg_names} - self.config = DefaultMambularConfig(**self.config_kwargs) - - preprocessor_kwargs = { - k: v for k, v in kwargs.items() if k in preprocessor_arg_names - } - if "numerical_preprocessing" not in list(preprocessor_kwargs.keys()): - preprocessor_kwargs["numerical_preprocessing"] = "standardization" - - self.preprocessor = Preprocessor(**preprocessor_kwargs) - self.model = None - - # Raise a warning if task is set to 'classification' - if preprocessor_kwargs.get("task") == "classification": - warnings.warn( - "The task is set to 'classification'. MambularRegressor is designed for regression tasks.", - UserWarning, - ) - -
[docs] def get_params(self, deep=True): - """ - Get parameters for this estimator. Overrides the BaseEstimator method. - - Parameters - ---------- - deep : bool, default=True - If True, returns the parameters for this estimator and contained sub-objects that are estimators. - - Returns - ------- - params : dict - Parameter names mapped to their values. - """ - params = self.config_kwargs # Parameters used to initialize MambularConfig - - # If deep=True, include parameters from nested components like preprocessor - if deep: - # Assuming Preprocessor has a get_params method - preprocessor_params = { - "preprocessor__" + key: value - for key, value in self.preprocessor.get_params().items() - } - params.update(preprocessor_params) - - return params
- -
[docs] def set_params(self, **parameters): - """ - Set the parameters of this estimator. Overrides the BaseEstimator method. - - Parameters - ---------- - **parameters : dict - Estimator parameters to be set. - - - Returns - ------- - self : object - The instance with updated parameters. - """ - # Update config_kwargs with provided parameters - valid_config_keys = self.config_kwargs.keys() - config_updates = {k: v for k, - v in parameters.items() if k in valid_config_keys} - self.config_kwargs.update(config_updates) - - # Update the config object - for key, value in config_updates.items(): - setattr(self.config, key, value) - - # Handle preprocessor parameters (prefixed with 'preprocessor__') - preprocessor_params = { - k.split("__")[1]: v - for k, v in parameters.items() - if k.startswith("preprocessor__") - } - if preprocessor_params: - # Assuming Preprocessor has a set_params method - self.preprocessor.set_params(**preprocessor_params) - - return self
- -
[docs] def split_data(self, X, y, val_size, random_state): - """ - Splits the dataset into training and validation sets. - - Parameters - ---------- - X : array-like or DataFrame, shape (n_samples, n_features) - Input features. - y : array-like, shape (n_samples,) or (n_samples, n_targets) - Target values. - val_size : float - The proportion of the dataset to include in the validation split. - random_state : int - Controls the shuffling applied to the data before applying the split. - - - Returns - ------- - X_train, X_val, y_train, y_val : arrays - The split datasets. - """ - X_train, X_val, y_train, y_val = train_test_split( - X, y, test_size=val_size, random_state=random_state - ) - - return X_train, X_val, y_train, y_val
- -
[docs] def preprocess_data(self, X_train, y_train, X_val, y_val, batch_size, shuffle): - """ - Preprocesses the training and validation data, and creates DataLoaders for them. - - Parameters - ---------- - X_train : DataFrame or array-like, shape (n_samples_train, n_features) - Training feature set. - y_train : array-like, shape (n_samples_train,) - Training target values. - X_val : DataFrame or array-like, shape (n_samples_val, n_features) - Validation feature set. - y_val : array-like, shape (n_samples_val,) - Validation target values. - batch_size : int - Size of batches for the DataLoader. - shuffle : bool - Whether to shuffle the training data in the DataLoader. - - - Returns - ------- - data_module : MambularDataModule - An instance of MambularDataModule containing the training and validation DataLoaders. - """ - self.preprocessor.fit( - pd.concat([X_train, X_val], axis=0).reset_index(drop=True), - np.concatenate((y_train, y_val), axis=0), - ) - train_preprocessed_data = self.preprocessor.transform(X_train) - val_preprocessed_data = self.preprocessor.transform(X_val) - - # Update feature info based on the actual processed data - ( - self.cat_feature_info, - self.num_feature_info, - ) = self.preprocessor.get_feature_info() - - # Initialize lists for tensors - train_cat_tensors = [] - train_num_tensors = [] - val_cat_tensors = [] - val_num_tensors = [] - - # Populate tensors for categorical features, if present in processed data - for key in self.cat_feature_info: - cat_key = "cat_" + key # Assuming categorical keys are prefixed with 'cat_' - if cat_key in train_preprocessed_data: - train_cat_tensors.append( - torch.tensor( - train_preprocessed_data[cat_key], dtype=torch.long) - ) - if cat_key in val_preprocessed_data: - val_cat_tensors.append( - torch.tensor( - val_preprocessed_data[cat_key], dtype=torch.long) - ) - - binned_key = "num_" + key # for binned features - if binned_key in train_preprocessed_data: - train_cat_tensors.append( - torch.tensor( - train_preprocessed_data[binned_key], dtype=torch.long) - ) - - if binned_key in val_preprocessed_data: - val_cat_tensors.append( - torch.tensor( - val_preprocessed_data[binned_key], dtype=torch.long) - ) - - # Populate tensors for numerical features, if present in processed data - for key in self.num_feature_info: - num_key = "num_" + str( - key - ) # Assuming numerical keys are prefixed with 'num_' - if num_key in train_preprocessed_data: - train_num_tensors.append( - torch.tensor( - train_preprocessed_data[num_key], dtype=torch.float32) - ) - if num_key in val_preprocessed_data: - val_num_tensors.append( - torch.tensor( - val_preprocessed_data[num_key], dtype=torch.float32) - ) - - train_labels = torch.tensor(y_train, dtype=torch.float32) - val_labels = torch.tensor(y_val, dtype=torch.float32) - - # Create datasets - train_dataset = EmbeddingMambularDataset( - train_cat_tensors, train_num_tensors, train_labels - ) - val_dataset = EmbeddingMambularDataset( - val_cat_tensors, val_num_tensors, val_labels - ) - - # Create dataloaders - train_dataloader = DataLoader( - train_dataset, batch_size=batch_size, shuffle=shuffle - ) - val_dataloader = DataLoader(val_dataset, batch_size=batch_size) - - return MambularDataModule(train_dataloader, val_dataloader)
- -
[docs] def preprocess_test_data(self, X): - """ - Preprocesses the test data and creates tensors for categorical and numerical features. - - Parameters - ---------- - X : DataFrame or array-like, shape (n_samples, n_features) - Test feature set. - - - Returns - ------- - cat_tensors : list of Tensors - List of tensors for each categorical feature. - num_tensors : list of Tensors - List of tensors for each numerical feature. - """ - processed_data = self.preprocessor.transform(X) - - # Initialize lists for tensors - cat_tensors = [] - num_tensors = [] - - # Populate tensors for categorical features - for key in self.cat_feature_info: - cat_key = "cat_" + str( - key - ) # Assuming categorical keys are prefixed with 'cat_' - if cat_key in processed_data: - cat_tensors.append( - torch.tensor(processed_data[cat_key], dtype=torch.long) - ) - - binned_key = "num_" + str(key) # for binned features - if binned_key in processed_data: - cat_tensors.append( - torch.tensor(processed_data[binned_key], dtype=torch.long) - ) - - # Populate tensors for numerical features - for key in self.num_feature_info: - num_key = "num_" + str( - key - ) # Assuming numerical keys are prefixed with 'num_' - if num_key in processed_data: - num_tensors.append( - torch.tensor(processed_data[num_key], dtype=torch.float32) - ) - - return cat_tensors, num_tensors
- -
[docs] def fit( - self, - X, - y, - val_size=0.2, - X_val=None, - y_val=None, - max_epochs=100, - random_state=101, - batch_size=64, - shuffle=True, - patience=10, - monitor="val_loss", - mode="min", - lr=1e-3, - lr_patience=10, - factor=0.75, - weight_decay=0.025, - raw_embeddings=False, - seq_size=20, - pca=False, - **trainer_kwargs - ): - """ - Fits the ProteinMambularRegressor model to the training data. - - Parameters - ---------- - X : array-like or DataFrame - The training input samples. - y : array-like - The target values (class labels for classification, real numbers for regression). - val_size : float, optional - The proportion of the dataset to include in the validation split if `X_val` is not provided. - X_val : array-like or DataFrame, optional - The validation input samples. - y_val : array-like, optional - The validation target values. - max_epochs : int, optional - The maximum number of epochs for training. - random_state : int, optional - The seed used by the random number generator. - batch_size : int, optional - Size of the batches for training. - shuffle : bool, optional - Whether to shuffle the training data. - patience : int, optional - Patience for early stopping. - monitor : str, optional - Quantity to be monitored for early stopping. - mode : str, optional - One of {'auto', 'min', 'max'}. In 'min' mode, training will stop when the quantity monitored has stopped decreasing; - in 'max' mode, it will stop when the quantity monitored has stopped increasing. - lr : float, optional - Learning rate for the optimizer. - lr_patience : int, optional - Number of epochs with no improvement after which the learning rate will be reduced. - factor : float, optional - Factor by which the learning rate will be reduced. - weight_decay : float, optional - Weight decay coefficient for regularization in the optimizer. - raw_embeddings : bool, optional - Whether to use raw numerical features directly or to process them into embeddings. - seq_size : int, optional - The sequence size for processing numerical features when not using raw embeddings. - **trainer_kwargs : dict - Additional keyword arguments for the PyTorch Lightning Trainer. - - Returns - ------- - self : object - Returns an instance of self. - """ - - if not isinstance(X, pd.DataFrame): - X = pd.DataFrame(X) - if X_val: - if not isinstance(X_val, pd.DataFrame): - X_val = pd.DataFrame(X_val) - - # Apply PCA if indicated - if pca: - self.pca_transformer = PCA(n_components=seq_size) - X = pd.DataFrame( - self.pca_transformer.fit_transform(X) - ) # Fit and transform the PCA on the complete dataset - if X_val is not None: - X_val = pd.DataFrame( - self.pca_transformer.transform(X_val) - ) # Transform validation data with the same PCA model - - raw_embeddings = True - - if not X_val: - X_train, X_val, y_train, y_val = self.split_data( - X, y, val_size, random_state - ) - else: - X_train = X - y_train = y - - data_module = self.preprocess_data( - X_train, y_train, X_val, y_val, batch_size, shuffle - ) - - if raw_embeddings: - self.config.d_model = X.shape[1] - - self.model = BaseEmbeddingMambularRegressor( - config=self.config, - cat_feature_info=self.cat_feature_info, - num_feature_info=self.num_feature_info, - lr=lr, - lr_patience=lr_patience, - lr_factor=factor, - weight_decay=weight_decay, - raw_embeddings=raw_embeddings, - seq_size=seq_size, - ) - - early_stop_callback = EarlyStopping( - monitor=monitor, min_delta=0.00, patience=patience, verbose=False, mode=mode - ) - - checkpoint_callback = ModelCheckpoint( - monitor="val_loss", # Adjust according to your validation metric - mode="min", - save_top_k=1, - dirpath="model_checkpoints", # Specify the directory to save checkpoints - filename="best_model", - ) - - # Initialize the trainer and train the model - trainer = pl.Trainer( - max_epochs=max_epochs, - callbacks=[early_stop_callback, checkpoint_callback], - **trainer_kwargs - ) - trainer.fit(self.model, data_module) - - best_model_path = checkpoint_callback.best_model_path - if best_model_path: - checkpoint = torch.load(best_model_path) - self.model.load_state_dict(checkpoint["state_dict"]) - - return self
- -
[docs] def predict(self, X): - """ - Predicts target values for the given input samples. - - Parameters - ---------- - X : DataFrame or array-like, shape (n_samples, n_features) - The input samples for which to predict target values. - - - Returns - ------- - predictions : ndarray, shape (n_samples,) or (n_samples, n_outputs) - The predicted target values. - """ - # Preprocess the data - if not isinstance(X, pd.DataFrame): - X = pd.DataFrame(X) - - if hasattr(self, "pca_transformer"): - X = pd.DataFrame(self.pca_transformer.transform(X)) - - device = next(self.model.parameters()).device - cat_tensors, num_tensors = self.preprocess_test_data(X) - if isinstance(cat_tensors, list): - cat_tensors = [tensor.to(device) for tensor in cat_tensors] - else: - cat_tensors = cat_tensors.to(device) - - if isinstance(num_tensors, list): - num_tensors = [tensor.to(device) for tensor in num_tensors] - else: - num_tensors = num_tensors.to(device) - - # Set the model to evaluation mode - self.model.eval() - - # Perform inference - with torch.no_grad(): - predictions = self.model( - num_features=num_tensors, cat_features=cat_tensors) - - # Convert predictions to NumPy array and return - return predictions.cpu().numpy()
- -
[docs] def evaluate(self, X, y_true, metrics=None): - """ - Evaluate the model on the given data using specified metrics. - - Parameters - ---------- - X : array-like or pd.DataFrame of shape (n_samples, n_features) - The input samples to predict. - y_true : array-like of shape (n_samples,) or (n_samples, n_outputs) - The true target values against which to evaluate the predictions. - metrics : dict - A dictionary where keys are metric names and values are the metric functions. - - - Notes - ----- - This method uses the `predict` method to generate predictions and computes each metric. - - - Examples - -------- - >>> from sklearn.metrics import mean_squared_error, r2_score - >>> regressor = EmbeddingMambularRegressor() - >>> regressor.fit(X_train, y_train) - >>> metrics = { - ... 'Mean Squared Error': mean_squared_error, - ... 'R2 Score': r2_score - ... } - >>> # Assuming 'X_test' and 'y_test' are your test dataset and labels - >>> # Evaluate using the specified metrics - >>> results = regressor.evaluate(X_test, y_test, metrics=metrics) - - - Returns - ------- - scores : dict - A dictionary with metric names as keys and their corresponding scores as values. - - """ - if metrics is None: - metrics = {"Mean Squared Error": mean_squared_error} - - # Ensure input is in the correct format - if not isinstance(X, pd.DataFrame): - X = pd.DataFrame(X) - - # Generate predictions using the trained model - predictions = self.predict(X) - - # Initialize dictionary to store results - scores = {} - - # Compute each metric - for metric_name, metric_func in metrics.items(): - scores[metric_name] = metric_func(y_true, predictions) - - return scores
-
- -
- - - - - - -
- -
-
-
- -
- - - -
- - -
- - - -
-
-
- - - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/mambular/models/sklearn_regressor.html b/docs/_build/html/_modules/mambular/models/sklearn_regressor.html deleted file mode 100644 index 7f1c396..0000000 --- a/docs/_build/html/_modules/mambular/models/sklearn_regressor.html +++ /dev/null @@ -1,984 +0,0 @@ - - - - - - - - - - - mambular.models.sklearn_regressor — mambular - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - -
-
-
-
-
- - - - -
-
- - - - - -
- - - - - - - - - - - - - -
- -
- - - -
- -
-
- -
-
- -
- -
- -
- - -
- -
- -
- - - - - - - - - - - - -
- -
- -
-
- - - -
-

- -
-
- -
-
-
- - - - -
- -

Source code for mambular.models.sklearn_regressor

-import lightning as pl
-import pandas as pd
-import torch
-from lightning.pytorch.callbacks import EarlyStopping, ModelCheckpoint
-from sklearn.base import BaseEstimator
-from sklearn.metrics import mean_squared_error
-from sklearn.model_selection import train_test_split
-from torch.utils.data import DataLoader
-import warnings
-import numpy as np
-from ..base_models.regressor import BaseMambularRegressor
-from ..utils.dataset import MambularDataModule, MambularDataset
-from ..utils.preprocessor import Preprocessor
-from ..utils.configs import DefaultMambularConfig
-
-
-
[docs]class MambularRegressor(BaseEstimator): - """ - A regressor implemented using PyTorch Lightning that follows the scikit-learn API conventions. - This class is designed to work with tabular data, offering a straightforward way to specify - model configurations and preprocessing steps. It integrates seamlessly with scikit-learn's tools - such as cross-validation and grid search. - - Parameters - ---------- - # configuration parameters - lr : float, optional - Learning rate for the optimizer. Default is 1e-4. - lr_patience : int, optional - Number of epochs with no improvement on the validation loss to wait before reducing the learning rate. Default is 10. - weight_decay : float, optional - Weight decay (L2 penalty) coefficient. Default is 1e-6. - lr_factor : float, optional - Factor by which the learning rate will be reduced. Default is 0.1. - d_model : int, optional - Dimension of the model. Default is 64. - n_layers : int, optional - Number of layers. Default is 8. - expand_factor : int, optional - Expansion factor. Default is 2. - bias : bool, optional - Whether to use bias. Default is False. - d_conv : int, optional - Dimension of the convolution. Default is 16. - conv_bias : bool, optional - Whether to use bias in the convolution. Default is True. - dropout : float, optional - Dropout rate in the mamba blocks. Default is 0.05. - dt_rank : str, optional - Rank of the time dimension. Default is "auto". - d_state : int, optional - State dimension. Default is 16. - dt_scale : float, optional - Scale of the time dimension. Default is 1.0. - dt_init : str, optional - Initialization method for the time dimension. Default is "random". - dt_max : float, optional - Maximum value for the time dimension. Default is 0.1. - dt_min : float, optional - Minimum value for the time dimension. Default is 1e-3. - dt_init_floor : float, optional - Floor value for the time dimension initialization. Default is 1e-4. - norm : str, optional - Normalization method. Default is 'RMSNorm'. - activation : callable, optional - Activation function. Default is nn.SELU(). - num_embedding_activation : callable, optional - Activation function for numerical embeddings. Default is nn.Identity(). - head_layer_sizes : list, optional - Sizes of the layers in the head. Default is [64, 64, 32]. - head_dropout : float, optional - Dropout rate for the head. Default is 0.5. - head_skip_layers : bool, optional - Whether to use skip layers in the head. Default is False. - head_activation : callable, optional - Activation function for the head. Default is nn.SELU(). - head_use_batch_norm : bool, optional - Whether to use batch normalization in the head. Default is False. - - # Preprocessor Parameters - n_bins : int, optional - The number of bins to use for numerical feature binning. Default is 50. - numerical_preprocessing : str, optional - The preprocessing strategy for numerical features. Default is 'ple'. - use_decision_tree_bins : bool, optional - If True, uses decision tree regression/classification to determine optimal bin edges for numerical feature binning. Default is False. - binning_strategy : str, optional - Defines the strategy for binning numerical features. Default is 'uniform'. - task : str, optional - Indicates the type of machine learning task ('regression' or 'classification'). Default is 'regression'. - cat_cutoff: float or int, optional - Indicates the cutoff after which integer values are treated as categorical. If float, it's treated as a percentage. If int, it's the maximum number of unique values for a column to be considered categorical. Default is 3% - treat_all_integers_as_numerical : bool, optional - If True, all integer columns will be treated as numerical, regardless of their unique value count or proportion. Default is False - - - - Attributes - ---------- - config : DefaultConfig - An object storing the configuration settings for the model. - preprocessor : Preprocessor - An object responsible for preprocessing the input data, such as encoding categorical variables and scaling numerical features. - model : BaseMambularRegressor or None - The underlying regression model, which is a PyTorch Lightning module. It is instantiated when the `fit` method is called. - """ - - def __init__(self, **kwargs): - # Known config arguments - config_arg_names = [ - "lr", - "lr_patience", - "weight_decay", - "lr_factor", - "d_model", - "n_layers", - "expand_factor", - "bias", - "d_conv", - "conv_bias", - "dropout", - "dt_rank", - "d_state", - "dt_scale", - "dt_init", - "dt_max", - "dt_min", - "dt_init_floor", - "norm", - "activation", - "num_embedding_activation", - "head_layer_sizes", - "head_dropout", - "head_skip_layers", - "head_activation", - "head_use_batch_norm", - ] - - preprocessor_arg_names = [ - "n_bins", - "numerical_preprocessing", - "use_decision_tree_bins", - "binning_strategy", - "task", - "cat_cutoff", - "treat_all_integers_as_numerical", - ] - - self.config_kwargs = {k: v for k, v in kwargs.items() if k in config_arg_names} - self.config = DefaultMambularConfig(**self.config_kwargs) - - preprocessor_kwargs = { - k: v for k, v in kwargs.items() if k in preprocessor_arg_names - } - - self.preprocessor = Preprocessor(**preprocessor_kwargs) - self.model = None - - # Raise a warning if task is set to 'classification' - if preprocessor_kwargs.get("task") == "classification": - warnings.warn( - "The task is set to 'classification'. MambularRegressor is designed for regression tasks.", - UserWarning, - ) - -
[docs] def get_params(self, deep=True): - """ - Get parameters for this estimator. Overrides the BaseEstimator method. - - Parameters - ---------- - deep : bool, default=True - If True, returns the parameters for this estimator and contained sub-objects that are estimators. - - Returns - ------- - params : dict - Parameter names mapped to their values. - """ - params = self.config_kwargs # Parameters used to initialize DefaultConfig - - # If deep=True, include parameters from nested components like preprocessor - if deep: - # Assuming Preprocessor has a get_params method - preprocessor_params = { - "preprocessor__" + key: value - for key, value in self.preprocessor.get_params().items() - } - params.update(preprocessor_params) - - return params
- -
[docs] def set_params(self, **parameters): - """ - Set the parameters of this estimator. Overrides the BaseEstimator method. - - Parameters - ---------- - **parameters : dict - Estimator parameters to be set. - - Returns - ------- - self : object - The instance with updated parameters. - """ - # Update config_kwargs with provided parameters - valid_config_keys = self.config_kwargs.keys() - config_updates = {k: v for k, v in parameters.items() if k in valid_config_keys} - self.config_kwargs.update(config_updates) - - # Update the config object - for key, value in config_updates.items(): - setattr(self.config, key, value) - - # Handle preprocessor parameters (prefixed with 'preprocessor__') - preprocessor_params = { - k.split("__")[1]: v - for k, v in parameters.items() - if k.startswith("preprocessor__") - } - if preprocessor_params: - # Assuming Preprocessor has a set_params method - self.preprocessor.set_params(**preprocessor_params) - - return self
- -
[docs] def split_data(self, X, y, val_size, random_state): - """ - Splits the dataset into training and validation sets. - - Parameters - ---------- - X : array-like or DataFrame, shape (n_samples, n_features) - Input features. - y : array-like, shape (n_samples,) or (n_samples, n_targets) - Target values. - val_size : float - The proportion of the dataset to include in the validation split. - random_state : int - Controls the shuffling applied to the data before applying the split. - - - Returns - ------- - X_train, X_val, y_train, y_val : arrays - The split datasets. - """ - X_train, X_val, y_train, y_val = train_test_split( - X, y, test_size=val_size, random_state=random_state - ) - - return X_train, X_val, y_train, y_val
- -
[docs] def preprocess_data(self, X_train, y_train, X_val, y_val, batch_size, shuffle): - """ - Preprocesses the training and validation data, and creates DataLoaders for them. - - Parameters - ---------- - X_train : DataFrame or array-like, shape (n_samples_train, n_features) - Training feature set. - y_train : array-like, shape (n_samples_train,) - Training target values. - X_val : DataFrame or array-like, shape (n_samples_val, n_features) - Validation feature set. - y_val : array-like, shape (n_samples_val,) - Validation target values. - batch_size : int - Size of batches for the DataLoader. - shuffle : bool - Whether to shuffle the training data in the DataLoader. - - - Returns - ------- - data_module : MambularDataModule - An instance of MambularDataModule containing the training and validation DataLoaders. - """ - self.preprocessor.fit( - pd.concat([X_train, X_val], axis=0).reset_index(drop=True), - np.concatenate((y_train, y_val), axis=0), - ) - train_preprocessed_data = self.preprocessor.transform(X_train) - val_preprocessed_data = self.preprocessor.transform(X_val) - - # Update feature info based on the actual processed data - ( - self.cat_feature_info, - self.num_feature_info, - ) = self.preprocessor.get_feature_info() - - # Initialize lists for tensors - train_cat_tensors = [] - train_num_tensors = [] - val_cat_tensors = [] - val_num_tensors = [] - - # Populate tensors for categorical features, if present in processed data - for key in self.cat_feature_info: - cat_key = "cat_" + key # Assuming categorical keys are prefixed with 'cat_' - if cat_key in train_preprocessed_data: - train_cat_tensors.append( - torch.tensor(train_preprocessed_data[cat_key], dtype=torch.long) - ) - if cat_key in val_preprocessed_data: - val_cat_tensors.append( - torch.tensor(val_preprocessed_data[cat_key], dtype=torch.long) - ) - - binned_key = "num_" + key # for binned features - if binned_key in train_preprocessed_data: - train_cat_tensors.append( - torch.tensor(train_preprocessed_data[binned_key], dtype=torch.long) - ) - - if binned_key in val_preprocessed_data: - val_cat_tensors.append( - torch.tensor(val_preprocessed_data[binned_key], dtype=torch.long) - ) - - # Populate tensors for numerical features, if present in processed data - for key in self.num_feature_info: - num_key = "num_" + key # Assuming numerical keys are prefixed with 'num_' - if num_key in train_preprocessed_data: - train_num_tensors.append( - torch.tensor(train_preprocessed_data[num_key], dtype=torch.float32) - ) - if num_key in val_preprocessed_data: - val_num_tensors.append( - torch.tensor(val_preprocessed_data[num_key], dtype=torch.float32) - ) - - train_labels = torch.tensor(y_train, dtype=torch.float32) - val_labels = torch.tensor(y_val, dtype=torch.float32) - - # Create datasets - train_dataset = MambularDataset( - train_cat_tensors, train_num_tensors, train_labels - ) - val_dataset = MambularDataset(val_cat_tensors, val_num_tensors, val_labels) - - # Create dataloaders - train_dataloader = DataLoader( - train_dataset, batch_size=batch_size, shuffle=shuffle - ) - val_dataloader = DataLoader(val_dataset, batch_size=batch_size) - - return MambularDataModule(train_dataloader, val_dataloader)
- -
[docs] def preprocess_test_data(self, X): - """ - Preprocesses the test data and creates tensors for categorical and numerical features. - - Parameters - ---------- - X : DataFrame or array-like, shape (n_samples, n_features) - Test feature set. - - - Returns - ------- - cat_tensors : list of Tensors - List of tensors for each categorical feature. - num_tensors : list of Tensors - List of tensors for each numerical feature. - """ - processed_data = self.preprocessor.transform(X) - - # Initialize lists for tensors - cat_tensors = [] - num_tensors = [] - - # Populate tensors for categorical features - for key in self.cat_feature_info: - cat_key = "cat_" + key # Assuming categorical keys are prefixed with 'cat_' - if cat_key in processed_data: - cat_tensors.append( - torch.tensor(processed_data[cat_key], dtype=torch.long) - ) - - binned_key = "num_" + key # for binned features - if binned_key in processed_data: - cat_tensors.append( - torch.tensor(processed_data[binned_key], dtype=torch.long) - ) - - # Populate tensors for numerical features - for key in self.num_feature_info: - num_key = "num_" + key # Assuming numerical keys are prefixed with 'num_' - if num_key in processed_data: - num_tensors.append( - torch.tensor(processed_data[num_key], dtype=torch.float32) - ) - - return cat_tensors, num_tensors
- -
[docs] def fit( - self, - X, - y, - val_size: float = 0.2, - X_val=None, - y_val=None, - max_epochs: int = 100, - random_state: int = 101, - batch_size: int = 128, - shuffle: bool = True, - patience: int = 15, - monitor: str = "val_loss", - mode: str = "min", - lr: float = 1e-4, - lr_patience: int = 10, - factor: float = 0.1, - weight_decay: float = 1e-06, - **trainer_kwargs - ): - """ - Trains the regression model using the provided training data. Optionally, a separate validation set can be used. - - Parameters - ---------- - X : DataFrame or array-like, shape (n_samples, n_features) - The training input samples. - y : array-like, shape (n_samples,) or (n_samples, n_targets) - The target values (real numbers). - val_size : float, default=0.2 - The proportion of the dataset to include in the validation split if `X_val` is None. Ignored if `X_val` is provided. - X_val : DataFrame or array-like, shape (n_samples, n_features), optional - The validation input samples. If provided, `X` and `y` are not split and this data is used for validation. - y_val : array-like, shape (n_samples,) or (n_samples, n_targets), optional - The validation target values. Required if `X_val` is provided. - max_epochs : int, default=100 - Maximum number of epochs for training. - random_state : int, default=101 - Controls the shuffling applied to the data before applying the split. - batch_size : int, default=64 - Number of samples per gradient update. - shuffle : bool, default=True - Whether to shuffle the training data before each epoch. - patience : int, default=10 - Number of epochs with no improvement on the validation loss to wait before early stopping. - monitor : str, default="val_loss" - The metric to monitor for early stopping. - mode : str, default="min" - Whether the monitored metric should be minimized (`min`) or maximized (`max`). - lr : float, default=1e-3 - Learning rate for the optimizer. - lr_patience : int, default=10 - Number of epochs with no improvement on the validation loss to wait before reducing the learning rate. - factor : float, default=0.1 - Factor by which the learning rate will be reduced. - weight_decay : float, default=0.025 - Weight decay (L2 penalty) coefficient. - **trainer_kwargs : Additional keyword arguments for PyTorch Lightning's Trainer class. - - - Returns - ------- - self : object - The fitted regressor. - """ - if not isinstance(X, pd.DataFrame): - X = pd.DataFrame(X) - if X_val: - if not isinstance(X_val, pd.DataFrame): - X_val = pd.DataFrame(X_val) - - if not X_val: - X_train, X_val, y_train, y_val = self.split_data( - X, y, val_size, random_state - ) - - self.data_module = self.preprocess_data( - X_train, y_train, X_val, y_val, batch_size, shuffle - ) - - self.model = BaseMambularRegressor( - config=self.config, - cat_feature_info=self.cat_feature_info, - num_feature_info=self.num_feature_info, - lr=lr, - lr_patience=lr_patience, - lr_factor=factor, - weight_decay=weight_decay, - ) - - early_stop_callback = EarlyStopping( - monitor=monitor, min_delta=0.00, patience=patience, verbose=False, mode=mode - ) - - checkpoint_callback = ModelCheckpoint( - monitor="val_loss", # Adjust according to your validation metric - mode="min", - save_top_k=1, - dirpath="model_checkpoints", # Specify the directory to save checkpoints - filename="best_model", - ) - - # Initialize the trainer and train the model - trainer = pl.Trainer( - max_epochs=max_epochs, - callbacks=[early_stop_callback, checkpoint_callback], - **trainer_kwargs - ) - trainer.fit(self.model, self.data_module) - - best_model_path = checkpoint_callback.best_model_path - if best_model_path: - checkpoint = torch.load(best_model_path) - self.model.load_state_dict(checkpoint["state_dict"]) - - return self
- -
[docs] def predict(self, X): - """ - Predicts target values for the given input samples. - - Parameters - ---------- - X : DataFrame or array-like, shape (n_samples, n_features) - The input samples for which to predict target values. - - - Returns - ------- - predictions : ndarray, shape (n_samples,) or (n_samples, n_outputs) - The predicted target values. - """ - # Preprocess the data - if not isinstance(X, pd.DataFrame): - X = pd.DataFrame(X) - device = next(self.model.parameters()).device - cat_tensors, num_tensors = self.preprocess_test_data(X) - if isinstance(cat_tensors, list): - cat_tensors = [tensor.to(device) for tensor in cat_tensors] - else: - cat_tensors = cat_tensors.to(device) - - if isinstance(num_tensors, list): - num_tensors = [tensor.to(device) for tensor in num_tensors] - else: - num_tensors = num_tensors.to(device) - - # Set the model to evaluation mode - self.model.eval() - - # Perform inference - with torch.no_grad(): - predictions = self.model(num_features=num_tensors, cat_features=cat_tensors) - - # Convert predictions to NumPy array and return - return predictions.cpu().numpy()
- -
[docs] def evaluate(self, X, y_true, metrics=None): - """ - Evaluate the model on the given data using specified metrics. - - Parameters - ---------- - X : array-like or pd.DataFrame of shape (n_samples, n_features) - The input samples to predict. - y_true : array-like of shape (n_samples,) or (n_samples, n_outputs) - The true target values against which to evaluate the predictions. - metrics : dict - A dictionary where keys are metric names and values are the metric functions. - - - Notes - ----- - This method uses the `predict` method to generate predictions and computes each metric. - - - Examples - -------- - >>> from sklearn.metrics import mean_squared_error, r2_score - >>> from sklearn.model_selection import train_test_split - >>> from mambular.models import MambularRegressor - >>> metrics = { - ... 'Mean Squared Error': mean_squared_error, - ... 'R2 Score': r2_score - ... } - >>> # Assuming 'X_test' and 'y_test' are your test dataset and labels - >>> # Evaluate using the specified metrics - >>> results = regressor.evaluate(X_test, y_test, metrics=metrics) - - - Returns - ------- - scores : dict - A dictionary with metric names as keys and their corresponding scores as values. - """ - if metrics is None: - metrics = {"Mean Squared Error": mean_squared_error} - - # Ensure input is in the correct format - if not isinstance(X, pd.DataFrame): - X = pd.DataFrame(X) - - # Generate predictions using the trained model - predictions = self.predict(X) - - # Initialize dictionary to store results - scores = {} - - # Compute each metric - for metric_name, metric_func in metrics.items(): - scores[metric_name] = metric_func(y_true, predictions) - - return scores
-
- -
- - - - - - -
- -
-
-
- -
- - - -
- - -
- - - -
-
-
- - - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/mambular/utils/preprocessor.html b/docs/_build/html/_modules/mambular/utils/preprocessor.html deleted file mode 100644 index aaf064a..0000000 --- a/docs/_build/html/_modules/mambular/utils/preprocessor.html +++ /dev/null @@ -1,836 +0,0 @@ - - - - - - - - - - - mambular.utils.preprocessor — mambular - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - -
-
-
-
-
- - - - -
-
- - - - - -
- - - - - - - - - - - - - -
- -
- - - -
- -
-
- -
-
- -
- -
- -
- - -
- -
- -
- - - - - - - - - - - - -
- -
- -
-
- - - -
-

- -
-
- -
-
-
- - - - -
- -

Source code for mambular.utils.preprocessor

-import numpy as np
-import pandas as pd
-from sklearn.compose import ColumnTransformer
-from sklearn.exceptions import NotFittedError
-from sklearn.impute import SimpleImputer
-from sklearn.pipeline import Pipeline
-from sklearn.preprocessing import KBinsDiscretizer, MinMaxScaler, StandardScaler
-from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
-
-from .ple_encoding import PLE
-from .prepro_utils import ContinuousOrdinalEncoder, CustomBinner, OneHotFromOrdinal
-
-
-
[docs]class Preprocessor: - """ - A comprehensive preprocessor for structured data, capable of handling both numerical and categorical features. - It supports various preprocessing strategies for numerical data, including binning, one-hot encoding, - standardization, and normalization. Categorical features can be transformed using continuous ordinal encoding. - Additionally, it allows for the use of decision tree-derived bin edges for numerical feature binning. - - The class is designed to work seamlessly with pandas DataFrames, facilitating easy integration into - machine learning pipelines. - - Parameters - ---------- - n_bins (int): The number of bins to use for numerical feature binning. This parameter is relevant - only if `numerical_preprocessing` is set to 'binning' or 'one_hot'. - numerical_preprocessing (str): The preprocessing strategy for numerical features. Valid options are - 'binning', 'one_hot', 'standardization', and 'normalization'. - use_decision_tree_bins (bool): If True, uses decision tree regression/classification to determine - optimal bin edges for numerical feature binning. This parameter is - relevant only if `numerical_preprocessing` is set to 'binning' or 'one_hot'. - binning_strategy (str): Defines the strategy for binning numerical features. Options include 'uniform', - 'quantile', or other sklearn-compatible strategies. - task (str): Indicates the type of machine learning task ('regression' or 'classification'). This can - influence certain preprocessing behaviors, especially when using decision tree-based binning. - binning_strategy (str): Defines the strategy for binning numerical features. Options include 'uniform', - 'quantile', or other sklearn-compatible strategies. - task (str): Indicates the type of machine learning task ('regression' or 'classification'). This can - influence certain preprocessing behaviors, especially when using decision tree-based binning. - cat_cutoff (float or int): Indicates the cutoff after which integer values are treated as categorical. - If float, it's treated as a percentage. If int, it's the maximum number of - unique values for a column to be considered categorical. - treat_all_integers_as_numerical (bool): If True, all integer columns will be treated as numerical, regardless - of their unique value count or proportion. - - - Attributes - ---------- - column_transformer (ColumnTransformer): An instance of sklearn's ColumnTransformer that holds the - configured preprocessing pipelines for different feature types. - fitted (bool): Indicates whether the preprocessor has been fitted to the data. - - """ - - def __init__( - self, - n_bins=50, - numerical_preprocessing="ple", - use_decision_tree_bins=False, - binning_strategy="uniform", - task="regression", - cat_cutoff=0.03, - treat_all_integers_as_numerical=False, - ): - self.n_bins = n_bins - self.numerical_preprocessing = numerical_preprocessing.lower() - if self.numerical_preprocessing not in [ - "ple", - "binning", - "one_hot", - "standardization", - "normalization", - ]: - raise ValueError( - "Invalid numerical_preprocessing value. Supported values are 'ple', 'binning', 'one_hot', 'standardization', and 'normalization'." - ) - self.numerical_preprocessing = numerical_preprocessing.lower() - if self.numerical_preprocessing not in [ - "ple", - "binning", - "one_hot", - "standardization", - "normalization", - ]: - raise ValueError( - "Invalid numerical_preprocessing value. Supported values are 'ple', 'binning', 'one_hot', 'standardization', and 'normalization'." - ) - self.use_decision_tree_bins = use_decision_tree_bins - self.column_transformer = None - self.fitted = False - self.binning_strategy = binning_strategy - self.task = task - self.cat_cutoff = cat_cutoff - self.treat_all_integers_as_numerical = treat_all_integers_as_numerical - - def set_params(self, **params): - for key, value in params.items(): - setattr(self, key, value) - return self - - def _detect_column_types(self, X): - """ - Identifies and separates the features in the dataset into numerical and categorical types based on the data type - and the proportion of unique values. - - Parameters - ---------- - X (DataFrame or dict): The input dataset, where the features are columns in a DataFrame or keys in a dict. - - - Returns - ------- - tuple: A tuple containing two lists, the first with the names of numerical features and the second with the names of categorical features. - """ - categorical_features = [] - numerical_features = [] - - if isinstance(X, dict): - X = pd.DataFrame(X) - - for col in X.columns: - num_unique_values = X[col].nunique() - total_samples = len(X[col]) - - if self.treat_all_integers_as_numerical and X[col].dtype.kind == "i": - numerical_features.append(col) - else: - if isinstance(self.cat_cutoff, float): - cutoff_condition = ( - num_unique_values / total_samples - ) < self.cat_cutoff - elif isinstance(self.cat_cutoff, int): - cutoff_condition = num_unique_values < self.cat_cutoff - else: - raise ValueError( - "cat_cutoff should be either a float or an integer." - ) - - if X[col].dtype.kind not in "iufc" or ( - X[col].dtype.kind == "i" and cutoff_condition - ): - categorical_features.append(col) - else: - numerical_features.append(col) - - return numerical_features, categorical_features - -
[docs] def fit(self, X, y=None): - """ - Fits the preprocessor to the data by identifying feature types and configuring the appropriate transformations for each feature. - It sets up a column transformer with a pipeline of transformations for numerical and categorical features based on the specified preprocessing strategy. - - Parameters - ---------- - X (DataFrame or dict): The input dataset to fit the preprocessor on. - y (array-like, optional): The target variable. Required if `use_decision_tree_bins` is True for determining optimal bin edges using decision trees. - - - Returns - ------- - self: The fitted Preprocessor instance. - """ - if isinstance(X, dict): - X = pd.DataFrame(X) - - numerical_features, categorical_features = self._detect_column_types(X) - transformers = [] - - if numerical_features: - for feature in numerical_features: - numeric_transformer_steps = [ - ("imputer", SimpleImputer(strategy="mean")) - ] - - if self.numerical_preprocessing in ["binning", "one_hot"]: - bins = ( - self._get_decision_tree_bins(X[[feature]], y, [feature]) - if self.use_decision_tree_bins - else self.n_bins - ) - if isinstance(bins, int): - numeric_transformer_steps.extend( - [ - ( - "discretizer", - KBinsDiscretizer( - n_bins=bins - if isinstance(bins, int) - else len(bins) - 1, - encode="ordinal", - strategy=self.binning_strategy, - subsample=200_000 if len(X) > 200_000 else None, - ), - ), - ] - ) - else: - numeric_transformer_steps.extend( - [ - ( - "discretizer", - CustomBinner(bins=bins), - ), - ] - ) - - if self.numerical_preprocessing == "one_hot": - numeric_transformer_steps.extend( - [ - ("onehot_from_ordinal", OneHotFromOrdinal()), - ] - ) - - elif self.numerical_preprocessing == "standardization": - numeric_transformer_steps.append(("scaler", StandardScaler())) - - elif self.numerical_preprocessing == "normalization": - numeric_transformer_steps.append(("normalizer", MinMaxScaler())) - - elif self.numerical_preprocessing == "ple": - numeric_transformer_steps.append(("normalizer", MinMaxScaler())) - numeric_transformer_steps.append( - ("ple", PLE(n_bins=self.n_bins, task=self.task)) - ) - - elif self.numerical_preprocessing == "ple": - numeric_transformer_steps.append(("normalizer", MinMaxScaler())) - numeric_transformer_steps.append( - ("ple", PLE(n_bins=self.n_bins, task=self.task)) - ) - - numeric_transformer = Pipeline(numeric_transformer_steps) - - transformers.append((f"num_{feature}", numeric_transformer, [feature])) - - if categorical_features: - for feature in categorical_features: - # Create a pipeline for each categorical feature - categorical_transformer = Pipeline( - [ - ("imputer", SimpleImputer(strategy="most_frequent")), - ( - "continuous_ordinal", - ContinuousOrdinalEncoder(), - ), - ] - ) - # Append the transformer for the current categorical feature - transformers.append( - (f"cat_{feature}", categorical_transformer, [feature]) - ) - - self.column_transformer = ColumnTransformer( - transformers=transformers, remainder="passthrough" - ) - self.column_transformer.fit(X, y) - - self.fitted = True
- - def _get_decision_tree_bins(self, X, y, numerical_features): - """ - Uses decision tree models to determine optimal bin edges for numerical feature binning. This method is used when `use_decision_tree_bins` is True. - - Parameters - ---------- - X (DataFrame): The input dataset containing only the numerical features for which the bin edges are to be determined. - y (array-like): The target variable for training the decision tree models. - numerical_features (list of str): The names of the numerical features for which the bin edges are to be determined. - - - Returns - ------- - list: A list of arrays, where each array contains the bin edges determined by the decision tree for a numerical feature. - """ - bins = [] - for feature in numerical_features: - tree_model = ( - DecisionTreeClassifier(max_depth=3) - if y.dtype.kind in "bi" - else DecisionTreeRegressor(max_depth=3) - ) - tree_model.fit(X[[feature]], y) - thresholds = tree_model.tree_.threshold[tree_model.tree_.feature != -2] - bin_edges = np.sort(np.unique(thresholds)) - - bins.append( - np.concatenate(([X[feature].min()], bin_edges, [X[feature].max()])) - ) - return bins - -
[docs] def transform(self, X): - """ - Transforms the input data using the preconfigured column transformer and converts the output into a dictionary - format with keys corresponding to transformed feature names and values as arrays of transformed data. - - This method converts the sparse or dense matrix returned by the column transformer into a more accessible - dictionary format, where each key-value pair represents a feature and its transformed data. - Transforms the input data using the preconfigured column transformer and converts the output into a dictionary - format with keys corresponding to transformed feature names and values as arrays of transformed data. - - This method converts the sparse or dense matrix returned by the column transformer into a more accessible - dictionary format, where each key-value pair represents a feature and its transformed data. - - Parameters - ---------- - X (DataFrame): The input data to be transformed. - X (DataFrame): The input data to be transformed. - - - Returns - ------- - dict: A dictionary where keys are the names of the features (as per the transformations defined in the - column transformer) and the values are numpy arrays of the transformed data. - """ - if not self.fitted: - raise NotFittedError( - "The preprocessor must be fitted before transforming new data. Use .fit or .fit_transform" - ) - transformed_X = self.column_transformer.transform(X) - - # Now let's convert this into a dictionary of arrays, one per column - transformed_dict = self._split_transformed_output(X, transformed_X) - return transformed_dict
- - def _split_transformed_output(self, X, transformed_X): - """ - Splits the transformed data array into a dictionary where keys correspond to the original column names or - feature groups and values are the transformed data for those columns. - - This helper method is utilized within `transform` to segregate the transformed data based on the - specification in the column transformer, assigning each transformed section to its corresponding feature name. - - Parameters - ---------- - X (DataFrame): The original input data, used for determining shapes and transformations. - transformed_X (numpy array): The transformed data as a numpy array, outputted by the column transformer. - - - Returns - ------- - dict: A dictionary mapping each transformation's name to its respective numpy array of transformed data. - The type of each array (int or float) is determined based on the type of transformation applied. - """ - start = 0 - transformed_dict = {} - for ( - name, - transformer, - columns, - ) in self.column_transformer.transformers_: - if transformer != "drop": - end = start + transformer.transform(X[[columns[0]]]).shape[1] - dtype = int if "cat" in name else float - transformed_dict[name] = transformed_X[:, start:end].astype(dtype) - start = end - - return transformed_dict - -
[docs] def fit_transform(self, X, y=None): - """ - Fits the preprocessor to the data and then transforms the data using the fitted preprocessing pipelines. This is a convenience method that combines `fit` and `transform`. - - Parameters - ---------- - X (DataFrame or dict): The input dataset to fit the preprocessor on and then transform. - y (array-like, optional): The target variable. Required if `use_decision_tree_bins` is True. - - - Returns - ------- - dict: A dictionary with the transformed data, where keys are the base feature names and values are the transformed features as arrays. - """ - self.fit(X, y) - self.fitted = True - return self.transform(X)
- -
[docs] def get_feature_info(self): - """ - Retrieves information about how features are encoded within the model's preprocessor. - This method identifies the type of encoding applied to each feature, categorizing them into binned or ordinal - encodings and other types of encodings (e.g., one-hot encoding after discretization). - - This method should only be called after the preprocessor has been fitted, as it relies on the structure and - configuration of the `column_transformer` attribute. - - - Raises - ------ - RuntimeError: If the `column_transformer` is not yet fitted, indicating that the preprocessor must be - fitted before invoking this method. - - - Returns - ------- - tuple of (dict, dict): - - The first dictionary maps feature names to their respective number of bins or categories if they are - processed using discretization or ordinal encoding. - - The second dictionary includes feature names with other encoding details, such as the dimension of - features after encoding transformations (e.g., one-hot encoding dimensions). - - """ - binned_or_ordinal_info = {} - other_encoding_info = {} - - if not self.column_transformer: - raise RuntimeError("The preprocessor has not been fitted yet.") - - for ( - name, - transformer_pipeline, - columns, - ) in self.column_transformer.transformers_: - steps = [step[0] for step in transformer_pipeline.steps] - - for feature_name in columns: - # Handle features processed with discretization - if "discretizer" in steps: - step = transformer_pipeline.named_steps["discretizer"] - n_bins = step.n_bins_[0] if hasattr(step, "n_bins_") else None - - # Check if discretization is followed by one-hot encoding - if "onehot_from_ordinal" in steps: - # Classify as other encoding due to the expanded feature dimensions from one-hot encoding - other_encoding_info[ - feature_name - ] = n_bins # Number of bins before one-hot encoding - print( - f"Numerical Feature (Discretized & One-Hot Encoded): {feature_name}, Number of bins before one-hot encoding: {n_bins}" - ) - else: - # Only discretization without subsequent one-hot encoding - binned_or_ordinal_info[feature_name] = n_bins - print( - f"Numerical Feature (Binned): {feature_name}, Number of bins: {n_bins}" - ) - - # Handle features processed with continuous ordinal encoding - elif "continuous_ordinal" in steps: - step = transformer_pipeline.named_steps["continuous_ordinal"] - n_categories = len(step.mapping_[columns.index(feature_name)]) - binned_or_ordinal_info[feature_name] = n_categories - print( - f"Categorical Feature (Ordinal Encoded): {feature_name}, Number of unique categories: {n_categories}" - ) - - # Handle other numerical feature encodings - else: - last_step = transformer_pipeline.steps[-1][1] - if hasattr(last_step, "transform"): - transformed_feature = last_step.transform( - np.zeros((1, len(columns))) - ) - other_encoding_info[feature_name] = transformed_feature.shape[1] - print( - f"Feature: {feature_name} (Other Encoding), Encoded feature dimension: {transformed_feature.shape[1]}" - f"Feature: {feature_name} (Other Encoding), Encoded feature dimension: {transformed_feature.shape[1]}" - ) - - print("-" * 50) - - return binned_or_ordinal_info, other_encoding_info
-
- -
- - - - - - -
- -
-
-
- -
- - - -
- - -
- - - -
-
-
- - - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_sources/api/base_models/BaseModels.rst b/docs/_build/html/_sources/api/base_models/BaseModels.rst deleted file mode 100644 index 40ed26a..0000000 --- a/docs/_build/html/_sources/api/base_models/BaseModels.rst +++ /dev/null @@ -1,22 +0,0 @@ -mambular.base_models -==================== - -.. autoclass:: mambular.base_models.BaseMambularClassifier - :members: - :no-inherited-members: - -.. autoclass:: mambular.base_models.BaseMambularLSS - :members: - :no-inherited-members: - -.. autoclass:: mambular.base_models.BaseEmbeddingMambularClassifier - :members: - :no-inherited-members: - -.. autoclass:: mambular.base_models.BaseEmbeddingMambularRegressor - :members: - :no-inherited-members: - -.. autoclass:: mambular.base_models.BaseMambularRegressor - :members: - :no-inherited-members: diff --git a/docs/_build/html/_sources/api/base_models/index.rst b/docs/_build/html/_sources/api/base_models/index.rst deleted file mode 100644 index 26c038f..0000000 --- a/docs/_build/html/_sources/api/base_models/index.rst +++ /dev/null @@ -1,27 +0,0 @@ -.. -*- mode: rst -*- - -.. currentmodule:: mambular.base_models - -BaseModels -========== - -This module provides base classes for the Mambular models. - -========================================= ======================================================================================================= -Modules Description -========================================= ======================================================================================================= -:class:`BaseMambularClassifier` Multi-class and binary classification tasks. -:class:`BaseMambularLSS` Various statistical distribution families for different types of regression and classification tasks. -:class:`BaseEmbeddingMambularClassifier` Specialized classification module for complex protein sequence data. -:class:`BaseEmbeddingMambularRegressor` Specialized regression module for complex protein sequence data. -:class:`BaseMambularRegressor` Regression tasks. -========================================= ======================================================================================================= - - -.. toctree:: - :maxdepth: 1 - - BaseModels - - - diff --git a/docs/_build/html/_sources/api/models/Models.rst b/docs/_build/html/_sources/api/models/Models.rst deleted file mode 100644 index 583fa95..0000000 --- a/docs/_build/html/_sources/api/models/Models.rst +++ /dev/null @@ -1,17 +0,0 @@ -mambular.models -=============== - -.. autoclass:: mambular.models.MambularClassifier - :members: - -.. autoclass:: mambular.models.MambularLSS - :members: - -.. autoclass:: mambular.models.EmbeddingMambularClassifier - :members: - -.. autoclass:: mambular.models.EmbeddingMambularRegressor - :members: - -.. autoclass:: mambular.models.MambularRegressor - :members: diff --git a/docs/_build/html/_sources/api/models/index.rst b/docs/_build/html/_sources/api/models/index.rst deleted file mode 100644 index d01fddc..0000000 --- a/docs/_build/html/_sources/api/models/index.rst +++ /dev/null @@ -1,24 +0,0 @@ -.. -*- mode: rst -*- - -.. currentmodule:: mambular.models - -Models -====== - -This module provides classes for the Mambular models that adhere to scikit-learn's `BaseEstimator` interface. - -======================================= ======================================================================================================= -Modules Description -======================================= ======================================================================================================= -:class:`MambularClassifier` Multi-class and binary classification tasks. -:class:`MambularLSS` Various statistical distribution families for different types of regression and classification tasks. -:class:`EmbeddingMambularClassifier` Specialized classification module for complex protein sequence data. -:class:`EmbeddingMambularRegressor` Specialized regression module for complex protein sequence data. -:class:`MambularRegressor` Regression tasks. -======================================= ======================================================================================================= - -.. toctree:: - :maxdepth: 1 - - Models - diff --git a/docs/_build/html/_sources/api/utils/Preprocessor.rst b/docs/_build/html/_sources/api/utils/Preprocessor.rst deleted file mode 100644 index 1cc8f33..0000000 --- a/docs/_build/html/_sources/api/utils/Preprocessor.rst +++ /dev/null @@ -1,5 +0,0 @@ -mambular.utils -============== - -.. autoclass:: mambular.utils.Preprocessor - :members: diff --git a/docs/_build/html/_sources/codeofconduct.md b/docs/_build/html/_sources/codeofconduct.md deleted file mode 100644 index d7aeca4..0000000 --- a/docs/_build/html/_sources/codeofconduct.md +++ /dev/null @@ -1,19 +0,0 @@ -# Code of Conduct - -- **Purpose**: The purpose of this Code of Conduct is to establish a welcoming and inclusive community around the `Mambular` project. We want to foster an environment where everyone feels respected, valued, and able to contribute to the project. - -- **Openness and Respect**: We strive to create an open and respectful community where everyone can freely express their opinions and ideas. We encourage constructive discussions and debates, but we will not tolerate any form of harassment, discrimination, or disrespectful behavior. - -- **Inclusive Language**: We are committed to using inclusive language that reflects the diversity of our community. We avoid using language that could be perceived as offensive, derogatory, or exclusionary towards any individual or group. - -- **Collaboration and Support**: We encourage collaboration and support among community members. We value the contributions of all members, regardless of their level of expertise or background. We are here to learn from each other and help each other grow. - -- **Reporting and Addressing Issues**: If you witness or experience any violations of this Code of Conduct, please report it to the project maintainers or administrators. All reports will be kept confidential, and appropriate actions will be taken to address the issue. We are committed to resolving conflicts and maintaining a healthy and safe community. - -- **Consequences for Violations**: Anyone who engages in behavior that violates this Code of Conduct may be temporarily or permanently banned from participating in the project. - -- **Community Guidelines**: In addition to this Code of Conduct, community members are expected to follow any specific guidelines and rules set forth by the project maintainers. These guidelines may include rules regarding contributions, issue reporting, and communication channels. - -- **Enforcement**: The project maintainers are responsible for enforcing this Code of Conduct. They have the right and authority to interpret and enforce the rules, and their decisions are final. - -Remember, this Code of Conduct applies to all aspects of the project, including but not limited to code contributions, discussions, documentation, and interactions within the community. diff --git a/docs/_build/html/_sources/development.md b/docs/_build/html/_sources/development.md deleted file mode 100644 index 884c046..0000000 --- a/docs/_build/html/_sources/development.md +++ /dev/null @@ -1,70 +0,0 @@ - -## Contribute - -Thank you for considering contributing to our Python package! We appreciate your time and effort in helping us improve our project. Please take a moment to review the following guidelines to ensure a smooth and efficient contribution process. - -### Code of Conduct - -We kindly request all contributors to adhere to our Code of Conduct when participating in this project. It outlines our expectations for respectful and inclusive behavior within the community. - -### Setting Up Development Environment - -To set up the development environment for this Python package, follow these steps: - -1. Clone the repository to your local machine using the command: - -``` -git clone https://github.com/basf/mamba-tabular -``` -2. Install the required dependencies by running: - -``` -pip install -r requirements.txt -``` - -If you need to update the documentation, please install the dependencies requried for documentation: - -``` -pip install -r docs/requirements_docs.txt -``` - -**Note:** You can also set up a virtual environment to isolate your development environment. - -### How to Contribute - -1. Create a new branch from the `develop` branch for your contributions. Please use descriptive and concise branch names. -2. Make your desired changes or additions to the codebase. -3. Ensure that your code adheres to [PEP8](https://peps.python.org/pep-0008/) coding style guidelines. -4. Write appropriate tests for your changes, ensuring that they pass. - - `make test` -5. Update the documentation and examples, if necessary. -6. Build the html documentation and verify if it works as expected. We have used Sphinx for documentation, you could build the documents as follows: - - `cd src/docs` - - `make clean` - - `make html` -7. Verify the html documents created under `docs/_build/html` directory. `index.html` file is the main file which contains link to all other files and doctree. - -8. Commit your changes with a clear and concise commit message. -9. Submit a pull request from your branch to the development branch of the original repository. -10. Wait for the maintainers to review your pull request. Address any feedback or comments if required. -11. Once approved, your changes will be merged into the main codebase. - -### Submitting Contributions - -When submitting your contributions, please ensure the following: - -- Include a clear and concise description of the changes made in your pull request. -- Reference any relevant issues or feature requests in the pull request description. -- Make sure your code follows the project's coding style and conventions. -- Include appropriate tests that cover your changes, ensuring they pass successfully. -- Update the documentation if necessary to reflect the changes made. -- Ensure that your pull request has a single, logical focus. - -### Issue Tracker - -If you encounter any bugs, have feature requests, or need assistance, please visit our [Issue Tracker](https://github.com/basf/mamba-tabular/issues). Make sure to search for existing issues before creating a new one. - -### License - -By contributing to this project, you agree that your contributions will be licensed under the LICENSE of the project. -Please note that the above guidelines are subject to change, and the project maintainers hold the right to reject or request modifications to any contributions. Thank you for your understanding and support in making this project better! diff --git a/docs/_build/html/_sources/examples/classification.md b/docs/_build/html/_sources/examples/classification.md deleted file mode 100644 index 994cef7..0000000 --- a/docs/_build/html/_sources/examples/classification.md +++ /dev/null @@ -1,62 +0,0 @@ -# Classification - -This example demonstrates how use Classification module from the `mambular` package. - -```python -import numpy as np -import pandas as pd -from sklearn.model_selection import train_test_split -from mambular.models import MambularClassifier -# Set random seed for reproducibility -np.random.seed(0) -``` - -Let's generate some random data to use for classification. - -```python -# Number of samples -n_samples = 1000 -n_features = 5 -``` - -Generate random features - -```python -X = np.random.randn(n_samples, n_features) -coefficients = np.random.randn(n_features) -``` - -Generate target variable - -```python -y = np.dot(X, coefficients) + np.random.randn(n_samples) -## Convert y to multiclass by categorizing into quartiles -y = pd.qcut(y, 4, labels=False) -``` - -Create a DataFrame to store the data - -```python -data = pd.DataFrame(X, columns=[f"feature_{i}" for i in range(n_features)]) -data["target"] = y -``` - -Split data into features and target variable -```python -X = data.drop(columns=["target"]) -y = data["target"].values - -X_train, X_test, y_train, y_test = train_test_split( - X, y, test_size=0.2, random_state=42 -) -``` - -Instantiate the classifier and fit the model on training data -```python -classifier = MambularClassifier() - -# Fit the model on training data -classifier.fit(X_train, y_train, max_epochs=10) - -print(classifier.evaluate(X_test, y_test)) -``` diff --git a/docs/_build/html/_sources/examples/distributional.rst b/docs/_build/html/_sources/examples/distributional.rst deleted file mode 100644 index 52ecf0e..0000000 --- a/docs/_build/html/_sources/examples/distributional.rst +++ /dev/null @@ -1,11 +0,0 @@ -.. _dist_example: - -Distributional -============== - -This example demonstrates how use Distributional from the `mambular` package. - - -.. literalinclude:: ../../examples/example_distributional.py - :language: python - :linenos: \ No newline at end of file diff --git a/docs/_build/html/_sources/examples/embedding.rst b/docs/_build/html/_sources/examples/embedding.rst deleted file mode 100644 index c838585..0000000 --- a/docs/_build/html/_sources/examples/embedding.rst +++ /dev/null @@ -1,11 +0,0 @@ -.. _embedding_example: - -Embedding -========= - -This example demonstrates how use Embedding from the `mambular` package. - - -.. literalinclude:: ../../examples/example_embedding_regression.py - :language: python - :linenos: \ No newline at end of file diff --git a/docs/_build/html/_sources/examples/regression.rst b/docs/_build/html/_sources/examples/regression.rst deleted file mode 100644 index 00c671a..0000000 --- a/docs/_build/html/_sources/examples/regression.rst +++ /dev/null @@ -1,11 +0,0 @@ -.. _regression_example: - -Regression -========== - -This example demonstrates how use Regression module from the `mambular` package. - - -.. literalinclude:: ../../examples/example_regression.py - :language: python - :linenos: \ No newline at end of file diff --git a/docs/_build/html/_sources/homepage.md b/docs/_build/html/_sources/homepage.md deleted file mode 100644 index d4abce8..0000000 --- a/docs/_build/html/_sources/homepage.md +++ /dev/null @@ -1,131 +0,0 @@ -# Mambular: Tabular Deep Learning with Mamba Architectures - -Mambular is a Python package that brings the power of Mamba architectures to tabular data, offering a suite of deep learning models for regression, classification, and distributional regression tasks. Designed with ease of use in mind, Mambular models adhere to scikit-learn's `BaseEstimator` interface, making them highly compatible with the familiar scikit-learn ecosystem. This means you can fit, predict, and evaluate using Mambular models just as you would with any traditional scikit-learn model, but with the added performance and flexibility of deep learning. - -## Features - -- **Comprehensive Model Suite**: Includes modules for regression (`MambularRegressor`), classification (`MambularClassifier`), and distributional regression (`MambularLSS`), catering to a wide range of tabular data tasks. -- **State-of-the-Art Architectures**: Leverages the Mamba architecture, known for its effectiveness in handling sequential and time-series data within a state-space modeling framework, adapted here for tabular data. -- **Seamless Integration**: Designed to work effortlessly with scikit-learn, allowing for easy inclusion in existing machine learning pipelines, cross-validation, and hyperparameter tuning workflows. -- **Extensive Preprocessing**: Comes with a powerful preprocessing module that supports a broad array of data transformation techniques, ensuring that your data is optimally prepared for model training. -- **Sklearn-like API**: The familiar scikit-learn `fit`, `predict`, and `predict_proba` methods mean minimal learning curve for those already accustomed to scikit-learn. -- **PyTorch Lightning Under the Hood**: Built on top of PyTorch Lightning, Mambular models benefit from streamlined training processes, easy customization, and advanced features like distributed training and 16-bit precision. - - -## Preprocessing - -Mambular simplifies the preprocessing stage of model development with a comprehensive set of techniques to prepare your data for Mamba architectures. Our preprocessing module is designed to be both powerful and easy to use, offering a variety of options to efficiently transform your tabular data. - -### Data Type Detection and Transformation - -Mambular automatically identifies the type of each feature in your dataset and applies the most appropriate transformations for numerical and categorical variables. This includes: - -- **Ordinal Encoding**: Categorical features are seamlessly transformed into numerical values, preserving their inherent order and making them model-ready. -- **One-Hot Encoding**: For nominal data, Mambular employs one-hot encoding to capture the presence or absence of categories without imposing ordinality. -- **Binning**: Numerical features can be discretized into bins, a useful technique for handling continuous variables in certain modeling contexts. -- **Decision Tree Binning**: Optionally, Mambular can use decision trees to find the optimal binning strategy for numerical features, enhancing model interpretability and performance. -- **Normalization**: Mambular can easily handle numerical features without specifically turning them into categorical features. Standard preprocessing steps such as normalization per feature are possible -- **Standardization**: Similarly, Standardization instead of Normalization can be used. -- **PLE**: Periodic Linear Encodings for numerical features can enhance performance for tabular DL methods. - - -### Handling Missing Values - -Our preprocessing pipeline effectively handles missing data by using mean imputation for numerical features and mode imputation for categorical features. This ensures that your models receive complete data inputs without needing manual intervention. -Additionally, Mambular can manage unknown categorical values during inference by incorporating classical tokens in categorical preprocessing. - - -## Fit a Model -Fitting a model in mambular is as simple as it gets. All models in mambular are sklearn BaseEstimators. Thus the `.fit` method is implemented for all of them. Additionally, this allows for using all other sklearn inherent methods such as their built in hyperparameter optimization tools. - -```python -from mambular.models import MambularClassifier -# Initialize and fit your model -model = MambularClassifier( - d_model=64, - n_layers=8, - numerical_preprocessing="ple", - n_bins=50 -) - -# X can be a dataframe or something that can be easily transformed into a pd.DataFrame as a np.array -model.fit(X, y, max_epochs=150, lr=1e-04) -``` - -Predictions are also easily obtained: -```python -# simple predictions -preds = model.predict(X) - -# Predict probabilities -preds = model.predict_proba(X) -``` - - -## Distributional Regression with MambularLSS - -Mambular introduces a cutting-edge approach to distributional regression through its `MambularLSS` module, empowering users to model the full distribution of a response variable, not just its mean. This method is particularly valuable in scenarios where understanding the variability, skewness, or kurtosis of the response distribution is as crucial as predicting its central tendency. - -### Key Features of MambularLSS: - -- **Full Distribution Modeling**: Unlike traditional regression models that predict a single value (e.g., the mean), `MambularLSS` models the entire distribution of the response variable. This allows for more informative predictions, including quantiles, variance, and higher moments. -- **Customizable Distribution Types**: `MambularLSS` supports a variety of distribution families (e.g., Gaussian, Poisson, Binomial), making it adaptable to different types of response variables, from continuous to count data. -- **Location, Scale, Shape Parameters**: The model predicts parameters corresponding to the location, scale, and shape of the distribution, offering a nuanced understanding of the data's underlying distributional characteristics. -- **Enhanced Predictive Uncertainty**: By modeling the full distribution, `MambularLSS` provides richer information on predictive uncertainty, enabling more robust decision-making processes in uncertain environments. - - -### Available Distribution Classes: - -`MambularLSS` offers a wide range of distribution classes to cater to various statistical modeling needs. The available distribution classes include: - -- `normal`: Normal Distribution for modeling continuous data with a symmetric distribution around the mean. -- `poisson`: Poisson Distribution for modeling count data that for instance represent the number of events occurring within a fixed interval. -- `gamma`: Gamma Distribution for modeling continuous data that is skewed and bounded at zero, often used for waiting times. -- `beta`: Beta Distribution for modeling data that is bounded between 0 and 1, useful for proportions and percentages. -- `dirichlet`: Dirichlet Distribution for modeling multivariate data where individual components are correlated, and the sum is constrained to 1. -- `studentt`: Student's T-Distribution for modeling data with heavier tails than the normal distribution, useful when the sample size is small. -- `negativebinom`: Negative Binomial Distribution for modeling count data with over-dispersion relative to the Poisson distribution. -- `inversegamma`: Inverse Gamma Distribution, often used as a prior distribution in Bayesian inference for scale parameters. -- `categorical`: Categorical Distribution for modeling categorical data with more than two categories. - -These distribution classes allow `MambularLSS` to flexibly model a wide variety of data types and distributions, providing users with the tools needed to capture the full complexity of their data. - - -### Getting Started with MambularLSS: - -To integrate distributional regression into your workflow with `MambularLSS`, start by initializing the model with your desired configuration, similar to other Mambular models: - -```python -from mambular.models import MambularLSS - -# Initialize the MambularLSS model -model = MambularLSS( - dropout=0.2, - d_model=64, - n_layers=8, -) - -# Fit the model to your data -model.fit( - X, - y, - max_epochs=150, - lr=1e-04, - patience=10, - family="normal" # define your distribution - ) - -``` - -## Citing Mambular - -If you find this project useful in your research or in scientific publication, please consider citing it in your references. - -```BibTeX -@software{mambular2024, - title={Mambular: Tabular Deep Learning with Mamba Architectures}, - author={Anton Frederik Thielmann, Manish Kumar, Christoph Weisser, Benjamin Saefken, Soheila Samiee}, - url = {https://github.com/basf/mamba-tabular}, - year={2024} -} -``` diff --git a/docs/_build/html/_sources/index.rst b/docs/_build/html/_sources/index.rst deleted file mode 100644 index 1db69bf..0000000 --- a/docs/_build/html/_sources/index.rst +++ /dev/null @@ -1,45 +0,0 @@ -.. mamba-tabular documentation master file, created by - sphinx-quickstart on Mon May 6 16:16:57 2024. - You can adapt this file completely to your liking, but it should at least - contain the root `toctree` directive. - -.. mdinclude:: homepage.md - -.. toctree:: - :name: Getting Started - :caption: Getting Started - :maxdepth: 2 - :hidden: - - installation - -.. toctree:: - :name: Examples - :caption: Examples - :maxdepth: 2 - :hidden: - - examples/classification - examples/regression - examples/embedding - examples/distributional - -.. toctree:: - :name: API Reference - :caption: API Reference - :maxdepth: 2 - :hidden: - - api/models/index - api/base_models/index - api/utils/index - - -.. toctree:: - :name: Developer Guide - :caption: Developer Guide - :maxdepth: 1 - - codeofconduct - development - release diff --git a/docs/_build/html/_sources/installation.md b/docs/_build/html/_sources/installation.md deleted file mode 100644 index e808a43..0000000 --- a/docs/_build/html/_sources/installation.md +++ /dev/null @@ -1,16 +0,0 @@ -## Installation - -Please follow the steps below for installing `mambular`. - -### Install from the source: - -```bash -cd mamba-tabular -pip install . -``` - -Note: Make sure you in the same directory where `setup.py` file resides. - -### Installation from PyPi: - -**Note:**This package is so far not available in PyPi, expected to release soon! diff --git a/docs/_build/html/_sources/release.md b/docs/_build/html/_sources/release.md deleted file mode 100644 index 71f6eac..0000000 --- a/docs/_build/html/_sources/release.md +++ /dev/null @@ -1,47 +0,0 @@ -# Build and release - -The document outlines the steps to build and release the `mambular` package. At this point, it is assumed that the development and testing of the package have been completed successfully. - -## 1. Test documentation -It is expected from the contributor to update the documentation as an when required along side the change in source code. Please use the below process to test the documentation: - -```sh -cd mambular/docs/ - -make doctest -``` -Fix any docstring related issue, then proceed with next steps. - -## 2. Version update -The package version is mantained in `mambular/__version__.py` file. Increment the version according to the changes such as patch, minor, major or all. - -## 3. Release -We use git flow for the package release. - -```sh -git flow release start -``` -- A new branch is created from the `develop` branch. This new branch is named according to the convention `release/`. For example, if you run `git flow release start 1.0.0`, the new branch will be `release/1.0.0`. -- The current working branch switches to the newly created release branch. This means any new commits will be added to the release branch, not the `develop` branch. -- This new branch is used to finalize the release. You can perform tasks such as version number bumps, documentation updates, and final testing. - -Once you are satisfied with changes, use the below command to finish the release. -```sh - git flow release finish -``` - -- It will Merges the release branch into `main` (or `master`). -- Tags the release with the version number. -- Merges the release branch back into `develop`. -- Deletes the release branch. - -Finally, push the commits and tags to origin. - -```sh -git push origin --tags -``` - - - - - diff --git a/docs/_build/html/_static/_sphinx_javascript_frameworks_compat.js b/docs/_build/html/_static/_sphinx_javascript_frameworks_compat.js deleted file mode 100644 index 8141580..0000000 --- a/docs/_build/html/_static/_sphinx_javascript_frameworks_compat.js +++ /dev/null @@ -1,123 +0,0 @@ -/* Compatability shim for jQuery and underscores.js. - * - * Copyright Sphinx contributors - * Released under the two clause BSD licence - */ - -/** - * small helper function to urldecode strings - * - * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent#Decoding_query_parameters_from_a_URL - */ -jQuery.urldecode = function(x) { - if (!x) { - return x - } - return decodeURIComponent(x.replace(/\+/g, ' ')); -}; - -/** - * small helper function to urlencode strings - */ -jQuery.urlencode = encodeURIComponent; - -/** - * This function returns the parsed url parameters of the - * current request. Multiple values per key are supported, - * it will always return arrays of strings for the value parts. - */ -jQuery.getQueryParameters = function(s) { - if (typeof s === 'undefined') - s = document.location.search; - var parts = s.substr(s.indexOf('?') + 1).split('&'); - var result = {}; - for (var i = 0; i < parts.length; i++) { - var tmp = parts[i].split('=', 2); - var key = jQuery.urldecode(tmp[0]); - var value = jQuery.urldecode(tmp[1]); - if (key in result) - result[key].push(value); - else - result[key] = [value]; - } - return result; -}; - -/** - * highlight a given string on a jquery object by wrapping it in - * span elements with the given class name. - */ -jQuery.fn.highlightText = function(text, className) { - function highlight(node, addItems) { - if (node.nodeType === 3) { - var val = node.nodeValue; - var pos = val.toLowerCase().indexOf(text); - if (pos >= 0 && - !jQuery(node.parentNode).hasClass(className) && - !jQuery(node.parentNode).hasClass("nohighlight")) { - var span; - var isInSVG = jQuery(node).closest("body, svg, foreignObject").is("svg"); - if (isInSVG) { - span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); - } else { - span = document.createElement("span"); - span.className = className; - } - span.appendChild(document.createTextNode(val.substr(pos, text.length))); - node.parentNode.insertBefore(span, node.parentNode.insertBefore( - document.createTextNode(val.substr(pos + text.length)), - node.nextSibling)); - node.nodeValue = val.substr(0, pos); - if (isInSVG) { - var rect = document.createElementNS("http://www.w3.org/2000/svg", "rect"); - var bbox = node.parentElement.getBBox(); - rect.x.baseVal.value = bbox.x; - rect.y.baseVal.value = bbox.y; - rect.width.baseVal.value = bbox.width; - rect.height.baseVal.value = bbox.height; - rect.setAttribute('class', className); - addItems.push({ - "parent": node.parentNode, - "target": rect}); - } - } - } - else if (!jQuery(node).is("button, select, textarea")) { - jQuery.each(node.childNodes, function() { - highlight(this, addItems); - }); - } - } - var addItems = []; - var result = this.each(function() { - highlight(this, addItems); - }); - for (var i = 0; i < addItems.length; ++i) { - jQuery(addItems[i].parent).before(addItems[i].target); - } - return result; -}; - -/* - * backward compatibility for jQuery.browser - * This will be supported until firefox bug is fixed. - */ -if (!jQuery.browser) { - jQuery.uaMatch = function(ua) { - ua = ua.toLowerCase(); - - var match = /(chrome)[ \/]([\w.]+)/.exec(ua) || - /(webkit)[ \/]([\w.]+)/.exec(ua) || - /(opera)(?:.*version|)[ \/]([\w.]+)/.exec(ua) || - /(msie) ([\w.]+)/.exec(ua) || - ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) || - []; - - return { - browser: match[ 1 ] || "", - version: match[ 2 ] || "0" - }; - }; - jQuery.browser = {}; - jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true; -} diff --git a/docs/_build/html/_static/basic.css b/docs/_build/html/_static/basic.css deleted file mode 100644 index 6157296..0000000 --- a/docs/_build/html/_static/basic.css +++ /dev/null @@ -1,903 +0,0 @@ -/* - * basic.css - * ~~~~~~~~~ - * - * Sphinx stylesheet -- basic theme. - * - * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. - * :license: BSD, see LICENSE for details. - * - */ - -/* -- main layout ----------------------------------------------------------- */ - -div.clearer { - clear: both; -} - -div.section::after { - display: block; - content: ''; - clear: left; -} - -/* -- relbar ---------------------------------------------------------------- */ - -div.related { - width: 100%; - font-size: 90%; -} - -div.related h3 { - display: none; -} - -div.related ul { - margin: 0; - padding: 0 0 0 10px; - list-style: none; -} - -div.related li { - display: inline; -} - -div.related li.right { - float: right; - margin-right: 5px; -} - -/* -- sidebar --------------------------------------------------------------- */ - -div.sphinxsidebarwrapper { - padding: 10px 5px 0 10px; -} - -div.sphinxsidebar { - float: left; - width: 270px; - margin-left: -100%; - font-size: 90%; - word-wrap: break-word; - overflow-wrap : break-word; -} - -div.sphinxsidebar ul { - list-style: none; -} - -div.sphinxsidebar ul ul, -div.sphinxsidebar ul.want-points { - margin-left: 20px; - list-style: square; -} - -div.sphinxsidebar ul ul { - margin-top: 0; - margin-bottom: 0; -} - -div.sphinxsidebar form { - margin-top: 10px; -} - -div.sphinxsidebar input { - border: 1px solid #98dbcc; - font-family: sans-serif; - font-size: 1em; -} - -div.sphinxsidebar #searchbox form.search { - overflow: hidden; -} - -div.sphinxsidebar #searchbox input[type="text"] { - float: left; - width: 80%; - padding: 0.25em; - box-sizing: border-box; -} - -div.sphinxsidebar #searchbox input[type="submit"] { - float: left; - width: 20%; - border-left: none; - padding: 0.25em; - box-sizing: border-box; -} - - -img { - border: 0; - max-width: 100%; -} - -/* -- search page ----------------------------------------------------------- */ - -ul.search { - margin: 10px 0 0 20px; - padding: 0; -} - -ul.search li { - padding: 5px 0 5px 20px; - background-image: url(file.png); - background-repeat: no-repeat; - background-position: 0 7px; -} - -ul.search li a { - font-weight: bold; -} - -ul.search li p.context { - color: #888; - margin: 2px 0 0 30px; - text-align: left; -} - -ul.keywordmatches li.goodmatch a { - font-weight: bold; -} - -/* -- index page ------------------------------------------------------------ */ - -table.contentstable { - width: 90%; - margin-left: auto; - margin-right: auto; -} - -table.contentstable p.biglink { - line-height: 150%; -} - -a.biglink { - font-size: 1.3em; -} - -span.linkdescr { - font-style: italic; - padding-top: 5px; - font-size: 90%; -} - -/* -- general index --------------------------------------------------------- */ - -table.indextable { - width: 100%; -} - -table.indextable td { - text-align: left; - vertical-align: top; -} - -table.indextable ul { - margin-top: 0; - margin-bottom: 0; - list-style-type: none; -} - -table.indextable > tbody > tr > td > ul { - padding-left: 0em; -} - -table.indextable tr.pcap { - height: 10px; -} - -table.indextable tr.cap { - margin-top: 10px; - background-color: #f2f2f2; -} - -img.toggler { - margin-right: 3px; - margin-top: 3px; - cursor: pointer; -} - -div.modindex-jumpbox { - border-top: 1px solid #ddd; - border-bottom: 1px solid #ddd; - margin: 1em 0 1em 0; - padding: 0.4em; -} - -div.genindex-jumpbox { - border-top: 1px solid #ddd; - border-bottom: 1px solid #ddd; - margin: 1em 0 1em 0; - padding: 0.4em; -} - -/* -- domain module index --------------------------------------------------- */ - -table.modindextable td { - padding: 2px; - border-collapse: collapse; -} - -/* -- general body styles --------------------------------------------------- */ - -div.body { - min-width: 360px; - max-width: 800px; -} - -div.body p, div.body dd, div.body li, div.body blockquote { - -moz-hyphens: auto; - -ms-hyphens: auto; - -webkit-hyphens: auto; - hyphens: auto; -} - -a.headerlink { - visibility: hidden; -} - -h1:hover > a.headerlink, -h2:hover > a.headerlink, -h3:hover > a.headerlink, -h4:hover > a.headerlink, -h5:hover > a.headerlink, -h6:hover > a.headerlink, -dt:hover > a.headerlink, -caption:hover > a.headerlink, -p.caption:hover > a.headerlink, -div.code-block-caption:hover > a.headerlink { - visibility: visible; -} - -div.body p.caption { - text-align: inherit; -} - -div.body td { - text-align: left; -} - -.first { - margin-top: 0 !important; -} - -p.rubric { - margin-top: 30px; - font-weight: bold; -} - -img.align-left, figure.align-left, .figure.align-left, object.align-left { - clear: left; - float: left; - margin-right: 1em; -} - -img.align-right, figure.align-right, .figure.align-right, object.align-right { - clear: right; - float: right; - margin-left: 1em; -} - -img.align-center, figure.align-center, .figure.align-center, object.align-center { - display: block; - margin-left: auto; - margin-right: auto; -} - -img.align-default, figure.align-default, .figure.align-default { - display: block; - margin-left: auto; - margin-right: auto; -} - -.align-left { - text-align: left; -} - -.align-center { - text-align: center; -} - -.align-default { - text-align: center; -} - -.align-right { - text-align: right; -} - -/* -- sidebars -------------------------------------------------------------- */ - -div.sidebar, -aside.sidebar { - margin: 0 0 0.5em 1em; - border: 1px solid #ddb; - padding: 7px; - background-color: #ffe; - width: 40%; - float: right; - clear: right; - overflow-x: auto; -} - -p.sidebar-title { - font-weight: bold; -} - -nav.contents, -aside.topic, -div.admonition, div.topic, blockquote { - clear: left; -} - -/* -- topics ---------------------------------------------------------------- */ - -nav.contents, -aside.topic, -div.topic { - border: 1px solid #ccc; - padding: 7px; - margin: 10px 0 10px 0; -} - -p.topic-title { - font-size: 1.1em; - font-weight: bold; - margin-top: 10px; -} - -/* -- admonitions ----------------------------------------------------------- */ - -div.admonition { - margin-top: 10px; - margin-bottom: 10px; - padding: 7px; -} - -div.admonition dt { - font-weight: bold; -} - -p.admonition-title { - margin: 0px 10px 5px 0px; - font-weight: bold; -} - -div.body p.centered { - text-align: center; - margin-top: 25px; -} - -/* -- content of sidebars/topics/admonitions -------------------------------- */ - -div.sidebar > :last-child, -aside.sidebar > :last-child, -nav.contents > :last-child, -aside.topic > :last-child, -div.topic > :last-child, -div.admonition > :last-child { - margin-bottom: 0; -} - -div.sidebar::after, -aside.sidebar::after, -nav.contents::after, -aside.topic::after, -div.topic::after, -div.admonition::after, -blockquote::after { - display: block; - content: ''; - clear: both; -} - -/* -- tables ---------------------------------------------------------------- */ - -table.docutils { - margin-top: 10px; - margin-bottom: 10px; - border: 0; - border-collapse: collapse; -} - -table.align-center { - margin-left: auto; - margin-right: auto; -} - -table.align-default { - margin-left: auto; - margin-right: auto; -} - -table caption span.caption-number { - font-style: italic; -} - -table caption span.caption-text { -} - -table.docutils td, table.docutils th { - padding: 1px 8px 1px 5px; - border-top: 0; - border-left: 0; - border-right: 0; - border-bottom: 1px solid #aaa; -} - -th { - text-align: left; - padding-right: 5px; -} - -table.citation { - border-left: solid 1px gray; - margin-left: 1px; -} - -table.citation td { - border-bottom: none; -} - -th > :first-child, -td > :first-child { - margin-top: 0px; -} - -th > :last-child, -td > :last-child { - margin-bottom: 0px; -} - -/* -- figures --------------------------------------------------------------- */ - -div.figure, figure { - margin: 0.5em; - padding: 0.5em; -} - -div.figure p.caption, figcaption { - padding: 0.3em; -} - -div.figure p.caption span.caption-number, -figcaption span.caption-number { - font-style: italic; -} - -div.figure p.caption span.caption-text, -figcaption span.caption-text { -} - -/* -- field list styles ----------------------------------------------------- */ - -table.field-list td, table.field-list th { - border: 0 !important; -} - -.field-list ul { - margin: 0; - padding-left: 1em; -} - -.field-list p { - margin: 0; -} - -.field-name { - -moz-hyphens: manual; - -ms-hyphens: manual; - -webkit-hyphens: manual; - hyphens: manual; -} - -/* -- hlist styles ---------------------------------------------------------- */ - -table.hlist { - margin: 1em 0; -} - -table.hlist td { - vertical-align: top; -} - -/* -- object description styles --------------------------------------------- */ - -.sig { - font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; -} - -.sig-name, code.descname { - background-color: transparent; - font-weight: bold; -} - -.sig-name { - font-size: 1.1em; -} - -code.descname { - font-size: 1.2em; -} - -.sig-prename, code.descclassname { - background-color: transparent; -} - -.optional { - font-size: 1.3em; -} - -.sig-paren { - font-size: larger; -} - -.sig-param.n { - font-style: italic; -} - -/* C++ specific styling */ - -.sig-inline.c-texpr, -.sig-inline.cpp-texpr { - font-family: unset; -} - -.sig.c .k, .sig.c .kt, -.sig.cpp .k, .sig.cpp .kt { - color: #0033B3; -} - -.sig.c .m, -.sig.cpp .m { - color: #1750EB; -} - -.sig.c .s, .sig.c .sc, -.sig.cpp .s, .sig.cpp .sc { - color: #067D17; -} - - -/* -- other body styles ----------------------------------------------------- */ - -ol.arabic { - list-style: decimal; -} - -ol.loweralpha { - list-style: lower-alpha; -} - -ol.upperalpha { - list-style: upper-alpha; -} - -ol.lowerroman { - list-style: lower-roman; -} - -ol.upperroman { - list-style: upper-roman; -} - -:not(li) > ol > li:first-child > :first-child, -:not(li) > ul > li:first-child > :first-child { - margin-top: 0px; -} - -:not(li) > ol > li:last-child > :last-child, -:not(li) > ul > li:last-child > :last-child { - margin-bottom: 0px; -} - -ol.simple ol p, -ol.simple ul p, -ul.simple ol p, -ul.simple ul p { - margin-top: 0; -} - -ol.simple > li:not(:first-child) > p, -ul.simple > li:not(:first-child) > p { - margin-top: 0; -} - -ol.simple p, -ul.simple p { - margin-bottom: 0; -} - -aside.footnote > span, -div.citation > span { - float: left; -} -aside.footnote > span:last-of-type, -div.citation > span:last-of-type { - padding-right: 0.5em; -} -aside.footnote > p { - margin-left: 2em; -} -div.citation > p { - margin-left: 4em; -} -aside.footnote > p:last-of-type, -div.citation > p:last-of-type { - margin-bottom: 0em; -} -aside.footnote > p:last-of-type:after, -div.citation > p:last-of-type:after { - content: ""; - clear: both; -} - -dl.field-list { - display: grid; - grid-template-columns: fit-content(30%) auto; -} - -dl.field-list > dt { - font-weight: bold; - word-break: break-word; - padding-left: 0.5em; - padding-right: 5px; -} - -dl.field-list > dd { - padding-left: 0.5em; - margin-top: 0em; - margin-left: 0em; - margin-bottom: 0em; -} - -dl { - margin-bottom: 15px; -} - -dd > :first-child { - margin-top: 0px; -} - -dd ul, dd table { - margin-bottom: 10px; -} - -dd { - margin-top: 3px; - margin-bottom: 10px; - margin-left: 30px; -} - -dl > dd:last-child, -dl > dd:last-child > :last-child { - margin-bottom: 0; -} - -dt:target, span.highlighted { - background-color: #fbe54e; -} - -rect.highlighted { - fill: #fbe54e; -} - -dl.glossary dt { - font-weight: bold; - font-size: 1.1em; -} - -.versionmodified { - font-style: italic; -} - -.system-message { - background-color: #fda; - padding: 5px; - border: 3px solid red; -} - -.footnote:target { - background-color: #ffa; -} - -.line-block { - display: block; - margin-top: 1em; - margin-bottom: 1em; -} - -.line-block .line-block { - margin-top: 0; - margin-bottom: 0; - margin-left: 1.5em; -} - -.guilabel, .menuselection { - font-family: sans-serif; -} - -.accelerator { - text-decoration: underline; -} - -.classifier { - font-style: oblique; -} - -.classifier:before { - font-style: normal; - margin: 0 0.5em; - content: ":"; - display: inline-block; -} - -abbr, acronym { - border-bottom: dotted 1px; - cursor: help; -} - -/* -- code displays --------------------------------------------------------- */ - -pre { - overflow: auto; - overflow-y: hidden; /* fixes display issues on Chrome browsers */ -} - -pre, div[class*="highlight-"] { - clear: both; -} - -span.pre { - -moz-hyphens: none; - -ms-hyphens: none; - -webkit-hyphens: none; - hyphens: none; - white-space: nowrap; -} - -div[class*="highlight-"] { - margin: 1em 0; -} - -td.linenos pre { - border: 0; - background-color: transparent; - color: #aaa; -} - -table.highlighttable { - display: block; -} - -table.highlighttable tbody { - display: block; -} - -table.highlighttable tr { - display: flex; -} - -table.highlighttable td { - margin: 0; - padding: 0; -} - -table.highlighttable td.linenos { - padding-right: 0.5em; -} - -table.highlighttable td.code { - flex: 1; - overflow: hidden; -} - -.highlight .hll { - display: block; -} - -div.highlight pre, -table.highlighttable pre { - margin: 0; -} - -div.code-block-caption + div { - margin-top: 0; -} - -div.code-block-caption { - margin-top: 1em; - padding: 2px 5px; - font-size: small; -} - -div.code-block-caption code { - background-color: transparent; -} - -table.highlighttable td.linenos, -span.linenos, -div.highlight span.gp { /* gp: Generic.Prompt */ - user-select: none; - -webkit-user-select: text; /* Safari fallback only */ - -webkit-user-select: none; /* Chrome/Safari */ - -moz-user-select: none; /* Firefox */ - -ms-user-select: none; /* IE10+ */ -} - -div.code-block-caption span.caption-number { - padding: 0.1em 0.3em; - font-style: italic; -} - -div.code-block-caption span.caption-text { -} - -div.literal-block-wrapper { - margin: 1em 0; -} - -code.xref, a code { - background-color: transparent; - font-weight: bold; -} - -h1 code, h2 code, h3 code, h4 code, h5 code, h6 code { - background-color: transparent; -} - -.viewcode-link { - float: right; -} - -.viewcode-back { - float: right; - font-family: sans-serif; -} - -div.viewcode-block:target { - margin: -1px -10px; - padding: 0 10px; -} - -/* -- math display ---------------------------------------------------------- */ - -img.math { - vertical-align: middle; -} - -div.body div.math p { - text-align: center; -} - -span.eqno { - float: right; -} - -span.eqno a.headerlink { - position: absolute; - z-index: 1; -} - -div.math:hover a.headerlink { - visibility: visible; -} - -/* -- printout stylesheet --------------------------------------------------- */ - -@media print { - div.document, - div.documentwrapper, - div.bodywrapper { - margin: 0 !important; - width: 100%; - } - - div.sphinxsidebar, - div.related, - div.footer, - #top-link { - display: none; - } -} \ No newline at end of file diff --git a/docs/_build/html/_static/check-solid.svg b/docs/_build/html/_static/check-solid.svg deleted file mode 100644 index 92fad4b..0000000 --- a/docs/_build/html/_static/check-solid.svg +++ /dev/null @@ -1,4 +0,0 @@ - - - - diff --git a/docs/_build/html/_static/clipboard.min.js b/docs/_build/html/_static/clipboard.min.js deleted file mode 100644 index 54b3c46..0000000 --- a/docs/_build/html/_static/clipboard.min.js +++ /dev/null @@ -1,7 +0,0 @@ -/*! - * clipboard.js v2.0.8 - * https://clipboardjs.com/ - * - * Licensed MIT © Zeno Rocha - */ -!function(t,e){"object"==typeof exports&&"object"==typeof module?module.exports=e():"function"==typeof define&&define.amd?define([],e):"object"==typeof exports?exports.ClipboardJS=e():t.ClipboardJS=e()}(this,function(){return n={686:function(t,e,n){"use strict";n.d(e,{default:function(){return o}});var e=n(279),i=n.n(e),e=n(370),u=n.n(e),e=n(817),c=n.n(e);function a(t){try{return document.execCommand(t)}catch(t){return}}var f=function(t){t=c()(t);return a("cut"),t};var l=function(t){var e,n,o,r=1 - - - - diff --git a/docs/_build/html/_static/copybutton.css b/docs/_build/html/_static/copybutton.css deleted file mode 100644 index f1916ec..0000000 --- a/docs/_build/html/_static/copybutton.css +++ /dev/null @@ -1,94 +0,0 @@ -/* Copy buttons */ -button.copybtn { - position: absolute; - display: flex; - top: .3em; - right: .3em; - width: 1.7em; - height: 1.7em; - opacity: 0; - transition: opacity 0.3s, border .3s, background-color .3s; - user-select: none; - padding: 0; - border: none; - outline: none; - border-radius: 0.4em; - /* The colors that GitHub uses */ - border: #1b1f2426 1px solid; - background-color: #f6f8fa; - color: #57606a; -} - -button.copybtn.success { - border-color: #22863a; - color: #22863a; -} - -button.copybtn svg { - stroke: currentColor; - width: 1.5em; - height: 1.5em; - padding: 0.1em; -} - -div.highlight { - position: relative; -} - -/* Show the copybutton */ -.highlight:hover button.copybtn, button.copybtn.success { - opacity: 1; -} - -.highlight button.copybtn:hover { - background-color: rgb(235, 235, 235); -} - -.highlight button.copybtn:active { - background-color: rgb(187, 187, 187); -} - -/** - * A minimal CSS-only tooltip copied from: - * https://codepen.io/mildrenben/pen/rVBrpK - * - * To use, write HTML like the following: - * - *

Short

- */ - .o-tooltip--left { - position: relative; - } - - .o-tooltip--left:after { - opacity: 0; - visibility: hidden; - position: absolute; - content: attr(data-tooltip); - padding: .2em; - font-size: .8em; - left: -.2em; - background: grey; - color: white; - white-space: nowrap; - z-index: 2; - border-radius: 2px; - transform: translateX(-102%) translateY(0); - transition: opacity 0.2s cubic-bezier(0.64, 0.09, 0.08, 1), transform 0.2s cubic-bezier(0.64, 0.09, 0.08, 1); -} - -.o-tooltip--left:hover:after { - display: block; - opacity: 1; - visibility: visible; - transform: translateX(-100%) translateY(0); - transition: opacity 0.2s cubic-bezier(0.64, 0.09, 0.08, 1), transform 0.2s cubic-bezier(0.64, 0.09, 0.08, 1); - transition-delay: .5s; -} - -/* By default the copy button shouldn't show up when printing a page */ -@media print { - button.copybtn { - display: none; - } -} diff --git a/docs/_build/html/_static/copybutton.js b/docs/_build/html/_static/copybutton.js deleted file mode 100644 index 2ea7ff3..0000000 --- a/docs/_build/html/_static/copybutton.js +++ /dev/null @@ -1,248 +0,0 @@ -// Localization support -const messages = { - 'en': { - 'copy': 'Copy', - 'copy_to_clipboard': 'Copy to clipboard', - 'copy_success': 'Copied!', - 'copy_failure': 'Failed to copy', - }, - 'es' : { - 'copy': 'Copiar', - 'copy_to_clipboard': 'Copiar al portapapeles', - 'copy_success': '¡Copiado!', - 'copy_failure': 'Error al copiar', - }, - 'de' : { - 'copy': 'Kopieren', - 'copy_to_clipboard': 'In die Zwischenablage kopieren', - 'copy_success': 'Kopiert!', - 'copy_failure': 'Fehler beim Kopieren', - }, - 'fr' : { - 'copy': 'Copier', - 'copy_to_clipboard': 'Copier dans le presse-papier', - 'copy_success': 'Copié !', - 'copy_failure': 'Échec de la copie', - }, - 'ru': { - 'copy': 'Скопировать', - 'copy_to_clipboard': 'Скопировать в буфер', - 'copy_success': 'Скопировано!', - 'copy_failure': 'Не удалось скопировать', - }, - 'zh-CN': { - 'copy': '复制', - 'copy_to_clipboard': '复制到剪贴板', - 'copy_success': '复制成功!', - 'copy_failure': '复制失败', - }, - 'it' : { - 'copy': 'Copiare', - 'copy_to_clipboard': 'Copiato negli appunti', - 'copy_success': 'Copiato!', - 'copy_failure': 'Errore durante la copia', - } -} - -let locale = 'en' -if( document.documentElement.lang !== undefined - && messages[document.documentElement.lang] !== undefined ) { - locale = document.documentElement.lang -} - -let doc_url_root = DOCUMENTATION_OPTIONS.URL_ROOT; -if (doc_url_root == '#') { - doc_url_root = ''; -} - -/** - * SVG files for our copy buttons - */ -let iconCheck = ` - ${messages[locale]['copy_success']} - - -` - -// If the user specified their own SVG use that, otherwise use the default -let iconCopy = ``; -if (!iconCopy) { - iconCopy = ` - ${messages[locale]['copy_to_clipboard']} - - - -` -} - -/** - * Set up copy/paste for code blocks - */ - -const runWhenDOMLoaded = cb => { - if (document.readyState != 'loading') { - cb() - } else if (document.addEventListener) { - document.addEventListener('DOMContentLoaded', cb) - } else { - document.attachEvent('onreadystatechange', function() { - if (document.readyState == 'complete') cb() - }) - } -} - -const codeCellId = index => `codecell${index}` - -// Clears selected text since ClipboardJS will select the text when copying -const clearSelection = () => { - if (window.getSelection) { - window.getSelection().removeAllRanges() - } else if (document.selection) { - document.selection.empty() - } -} - -// Changes tooltip text for a moment, then changes it back -// We want the timeout of our `success` class to be a bit shorter than the -// tooltip and icon change, so that we can hide the icon before changing back. -var timeoutIcon = 2000; -var timeoutSuccessClass = 1500; - -const temporarilyChangeTooltip = (el, oldText, newText) => { - el.setAttribute('data-tooltip', newText) - el.classList.add('success') - // Remove success a little bit sooner than we change the tooltip - // So that we can use CSS to hide the copybutton first - setTimeout(() => el.classList.remove('success'), timeoutSuccessClass) - setTimeout(() => el.setAttribute('data-tooltip', oldText), timeoutIcon) -} - -// Changes the copy button icon for two seconds, then changes it back -const temporarilyChangeIcon = (el) => { - el.innerHTML = iconCheck; - setTimeout(() => {el.innerHTML = iconCopy}, timeoutIcon) -} - -const addCopyButtonToCodeCells = () => { - // If ClipboardJS hasn't loaded, wait a bit and try again. This - // happens because we load ClipboardJS asynchronously. - if (window.ClipboardJS === undefined) { - setTimeout(addCopyButtonToCodeCells, 250) - return - } - - // Add copybuttons to all of our code cells - const COPYBUTTON_SELECTOR = 'div.highlight pre'; - const codeCells = document.querySelectorAll(COPYBUTTON_SELECTOR) - codeCells.forEach((codeCell, index) => { - const id = codeCellId(index) - codeCell.setAttribute('id', id) - - const clipboardButton = id => - `` - codeCell.insertAdjacentHTML('afterend', clipboardButton(id)) - }) - -function escapeRegExp(string) { - return string.replace(/[.*+?^${}()|[\]\\]/g, '\\$&'); // $& means the whole matched string -} - -/** - * Removes excluded text from a Node. - * - * @param {Node} target Node to filter. - * @param {string} exclude CSS selector of nodes to exclude. - * @returns {DOMString} Text from `target` with text removed. - */ -function filterText(target, exclude) { - const clone = target.cloneNode(true); // clone as to not modify the live DOM - if (exclude) { - // remove excluded nodes - clone.querySelectorAll(exclude).forEach(node => node.remove()); - } - return clone.innerText; -} - -// Callback when a copy button is clicked. Will be passed the node that was clicked -// should then grab the text and replace pieces of text that shouldn't be used in output -function formatCopyText(textContent, copybuttonPromptText, isRegexp = false, onlyCopyPromptLines = true, removePrompts = true, copyEmptyLines = true, lineContinuationChar = "", hereDocDelim = "") { - var regexp; - var match; - - // Do we check for line continuation characters and "HERE-documents"? - var useLineCont = !!lineContinuationChar - var useHereDoc = !!hereDocDelim - - // create regexp to capture prompt and remaining line - if (isRegexp) { - regexp = new RegExp('^(' + copybuttonPromptText + ')(.*)') - } else { - regexp = new RegExp('^(' + escapeRegExp(copybuttonPromptText) + ')(.*)') - } - - const outputLines = []; - var promptFound = false; - var gotLineCont = false; - var gotHereDoc = false; - const lineGotPrompt = []; - for (const line of textContent.split('\n')) { - match = line.match(regexp) - if (match || gotLineCont || gotHereDoc) { - promptFound = regexp.test(line) - lineGotPrompt.push(promptFound) - if (removePrompts && promptFound) { - outputLines.push(match[2]) - } else { - outputLines.push(line) - } - gotLineCont = line.endsWith(lineContinuationChar) & useLineCont - if (line.includes(hereDocDelim) & useHereDoc) - gotHereDoc = !gotHereDoc - } else if (!onlyCopyPromptLines) { - outputLines.push(line) - } else if (copyEmptyLines && line.trim() === '') { - outputLines.push(line) - } - } - - // If no lines with the prompt were found then just use original lines - if (lineGotPrompt.some(v => v === true)) { - textContent = outputLines.join('\n'); - } - - // Remove a trailing newline to avoid auto-running when pasting - if (textContent.endsWith("\n")) { - textContent = textContent.slice(0, -1) - } - return textContent -} - - -var copyTargetText = (trigger) => { - var target = document.querySelector(trigger.attributes['data-clipboard-target'].value); - - // get filtered text - let exclude = '.linenos'; - - let text = filterText(target, exclude); - return formatCopyText(text, '', false, true, true, true, '', '') -} - - // Initialize with a callback so we can modify the text before copy - const clipboard = new ClipboardJS('.copybtn', {text: copyTargetText}) - - // Update UI with error/success messages - clipboard.on('success', event => { - clearSelection() - temporarilyChangeTooltip(event.trigger, messages[locale]['copy'], messages[locale]['copy_success']) - temporarilyChangeIcon(event.trigger) - }) - - clipboard.on('error', event => { - temporarilyChangeTooltip(event.trigger, messages[locale]['copy'], messages[locale]['copy_failure']) - }) -} - -runWhenDOMLoaded(addCopyButtonToCodeCells) \ No newline at end of file diff --git a/docs/_build/html/_static/copybutton_funcs.js b/docs/_build/html/_static/copybutton_funcs.js deleted file mode 100644 index dbe1aaa..0000000 --- a/docs/_build/html/_static/copybutton_funcs.js +++ /dev/null @@ -1,73 +0,0 @@ -function escapeRegExp(string) { - return string.replace(/[.*+?^${}()|[\]\\]/g, '\\$&'); // $& means the whole matched string -} - -/** - * Removes excluded text from a Node. - * - * @param {Node} target Node to filter. - * @param {string} exclude CSS selector of nodes to exclude. - * @returns {DOMString} Text from `target` with text removed. - */ -export function filterText(target, exclude) { - const clone = target.cloneNode(true); // clone as to not modify the live DOM - if (exclude) { - // remove excluded nodes - clone.querySelectorAll(exclude).forEach(node => node.remove()); - } - return clone.innerText; -} - -// Callback when a copy button is clicked. Will be passed the node that was clicked -// should then grab the text and replace pieces of text that shouldn't be used in output -export function formatCopyText(textContent, copybuttonPromptText, isRegexp = false, onlyCopyPromptLines = true, removePrompts = true, copyEmptyLines = true, lineContinuationChar = "", hereDocDelim = "") { - var regexp; - var match; - - // Do we check for line continuation characters and "HERE-documents"? - var useLineCont = !!lineContinuationChar - var useHereDoc = !!hereDocDelim - - // create regexp to capture prompt and remaining line - if (isRegexp) { - regexp = new RegExp('^(' + copybuttonPromptText + ')(.*)') - } else { - regexp = new RegExp('^(' + escapeRegExp(copybuttonPromptText) + ')(.*)') - } - - const outputLines = []; - var promptFound = false; - var gotLineCont = false; - var gotHereDoc = false; - const lineGotPrompt = []; - for (const line of textContent.split('\n')) { - match = line.match(regexp) - if (match || gotLineCont || gotHereDoc) { - promptFound = regexp.test(line) - lineGotPrompt.push(promptFound) - if (removePrompts && promptFound) { - outputLines.push(match[2]) - } else { - outputLines.push(line) - } - gotLineCont = line.endsWith(lineContinuationChar) & useLineCont - if (line.includes(hereDocDelim) & useHereDoc) - gotHereDoc = !gotHereDoc - } else if (!onlyCopyPromptLines) { - outputLines.push(line) - } else if (copyEmptyLines && line.trim() === '') { - outputLines.push(line) - } - } - - // If no lines with the prompt were found then just use original lines - if (lineGotPrompt.some(v => v === true)) { - textContent = outputLines.join('\n'); - } - - // Remove a trailing newline to avoid auto-running when pasting - if (textContent.endsWith("\n")) { - textContent = textContent.slice(0, -1) - } - return textContent -} diff --git a/docs/_build/html/_static/doctools.js b/docs/_build/html/_static/doctools.js deleted file mode 100644 index d06a71d..0000000 --- a/docs/_build/html/_static/doctools.js +++ /dev/null @@ -1,156 +0,0 @@ -/* - * doctools.js - * ~~~~~~~~~~~ - * - * Base JavaScript utilities for all Sphinx HTML documentation. - * - * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. - * :license: BSD, see LICENSE for details. - * - */ -"use strict"; - -const BLACKLISTED_KEY_CONTROL_ELEMENTS = new Set([ - "TEXTAREA", - "INPUT", - "SELECT", - "BUTTON", -]); - -const _ready = (callback) => { - if (document.readyState !== "loading") { - callback(); - } else { - document.addEventListener("DOMContentLoaded", callback); - } -}; - -/** - * Small JavaScript module for the documentation. - */ -const Documentation = { - init: () => { - Documentation.initDomainIndexTable(); - Documentation.initOnKeyListeners(); - }, - - /** - * i18n support - */ - TRANSLATIONS: {}, - PLURAL_EXPR: (n) => (n === 1 ? 0 : 1), - LOCALE: "unknown", - - // gettext and ngettext don't access this so that the functions - // can safely bound to a different name (_ = Documentation.gettext) - gettext: (string) => { - const translated = Documentation.TRANSLATIONS[string]; - switch (typeof translated) { - case "undefined": - return string; // no translation - case "string": - return translated; // translation exists - default: - return translated[0]; // (singular, plural) translation tuple exists - } - }, - - ngettext: (singular, plural, n) => { - const translated = Documentation.TRANSLATIONS[singular]; - if (typeof translated !== "undefined") - return translated[Documentation.PLURAL_EXPR(n)]; - return n === 1 ? singular : plural; - }, - - addTranslations: (catalog) => { - Object.assign(Documentation.TRANSLATIONS, catalog.messages); - Documentation.PLURAL_EXPR = new Function( - "n", - `return (${catalog.plural_expr})` - ); - Documentation.LOCALE = catalog.locale; - }, - - /** - * helper function to focus on search bar - */ - focusSearchBar: () => { - document.querySelectorAll("input[name=q]")[0]?.focus(); - }, - - /** - * Initialise the domain index toggle buttons - */ - initDomainIndexTable: () => { - const toggler = (el) => { - const idNumber = el.id.substr(7); - const toggledRows = document.querySelectorAll(`tr.cg-${idNumber}`); - if (el.src.substr(-9) === "minus.png") { - el.src = `${el.src.substr(0, el.src.length - 9)}plus.png`; - toggledRows.forEach((el) => (el.style.display = "none")); - } else { - el.src = `${el.src.substr(0, el.src.length - 8)}minus.png`; - toggledRows.forEach((el) => (el.style.display = "")); - } - }; - - const togglerElements = document.querySelectorAll("img.toggler"); - togglerElements.forEach((el) => - el.addEventListener("click", (event) => toggler(event.currentTarget)) - ); - togglerElements.forEach((el) => (el.style.display = "")); - if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) togglerElements.forEach(toggler); - }, - - initOnKeyListeners: () => { - // only install a listener if it is really needed - if ( - !DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS && - !DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS - ) - return; - - document.addEventListener("keydown", (event) => { - // bail for input elements - if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; - // bail with special keys - if (event.altKey || event.ctrlKey || event.metaKey) return; - - if (!event.shiftKey) { - switch (event.key) { - case "ArrowLeft": - if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; - - const prevLink = document.querySelector('link[rel="prev"]'); - if (prevLink && prevLink.href) { - window.location.href = prevLink.href; - event.preventDefault(); - } - break; - case "ArrowRight": - if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; - - const nextLink = document.querySelector('link[rel="next"]'); - if (nextLink && nextLink.href) { - window.location.href = nextLink.href; - event.preventDefault(); - } - break; - } - } - - // some keyboard layouts may need Shift to get / - switch (event.key) { - case "/": - if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break; - Documentation.focusSearchBar(); - event.preventDefault(); - } - }); - }, -}; - -// quick alias for translations -const _ = Documentation.gettext; - -_ready(Documentation.init); diff --git a/docs/_build/html/_static/documentation_options.js b/docs/_build/html/_static/documentation_options.js deleted file mode 100644 index 133c7f5..0000000 --- a/docs/_build/html/_static/documentation_options.js +++ /dev/null @@ -1,14 +0,0 @@ -var DOCUMENTATION_OPTIONS = { - URL_ROOT: document.getElementById("documentation_options").getAttribute('data-url_root'), - VERSION: '0.1.4', - LANGUAGE: 'en', - COLLAPSE_INDEX: false, - BUILDER: 'html', - FILE_SUFFIX: '.html', - LINK_SUFFIX: '.html', - HAS_SOURCE: true, - SOURCELINK_SUFFIX: '', - NAVIGATION_WITH_KEYS: false, - SHOW_SEARCH_SUMMARY: true, - ENABLE_SEARCH_SHORTCUTS: true, -}; \ No newline at end of file diff --git a/docs/_build/html/_static/file.png b/docs/_build/html/_static/file.png deleted file mode 100644 index a858a41..0000000 Binary files a/docs/_build/html/_static/file.png and /dev/null differ diff --git a/docs/_build/html/_static/images/logo_binder.svg b/docs/_build/html/_static/images/logo_binder.svg deleted file mode 100644 index 45fecf7..0000000 --- a/docs/_build/html/_static/images/logo_binder.svg +++ /dev/null @@ -1,19 +0,0 @@ - - - - -logo - - - - - - - - diff --git a/docs/_build/html/_static/images/logo_colab.png b/docs/_build/html/_static/images/logo_colab.png deleted file mode 100644 index b7560ec..0000000 Binary files a/docs/_build/html/_static/images/logo_colab.png and /dev/null differ diff --git a/docs/_build/html/_static/images/logo_deepnote.svg b/docs/_build/html/_static/images/logo_deepnote.svg deleted file mode 100644 index fa77ebf..0000000 --- a/docs/_build/html/_static/images/logo_deepnote.svg +++ /dev/null @@ -1 +0,0 @@ - diff --git a/docs/_build/html/_static/images/logo_jupyterhub.svg b/docs/_build/html/_static/images/logo_jupyterhub.svg deleted file mode 100644 index 60cfe9f..0000000 --- a/docs/_build/html/_static/images/logo_jupyterhub.svg +++ /dev/null @@ -1 +0,0 @@ -logo_jupyterhubHub diff --git a/docs/_build/html/_static/jquery.js b/docs/_build/html/_static/jquery.js deleted file mode 100644 index c4c6022..0000000 --- a/docs/_build/html/_static/jquery.js +++ /dev/null @@ -1,2 +0,0 @@ -/*! jQuery v3.6.0 | (c) OpenJS Foundation and other contributors | jquery.org/license */ -!function(e,t){"use strict";"object"==typeof module&&"object"==typeof module.exports?module.exports=e.document?t(e,!0):function(e){if(!e.document)throw new Error("jQuery requires a window with a document");return t(e)}:t(e)}("undefined"!=typeof window?window:this,function(C,e){"use strict";var t=[],r=Object.getPrototypeOf,s=t.slice,g=t.flat?function(e){return t.flat.call(e)}:function(e){return t.concat.apply([],e)},u=t.push,i=t.indexOf,n={},o=n.toString,v=n.hasOwnProperty,a=v.toString,l=a.call(Object),y={},m=function(e){return"function"==typeof e&&"number"!=typeof e.nodeType&&"function"!=typeof e.item},x=function(e){return null!=e&&e===e.window},E=C.document,c={type:!0,src:!0,nonce:!0,noModule:!0};function b(e,t,n){var r,i,o=(n=n||E).createElement("script");if(o.text=e,t)for(r in c)(i=t[r]||t.getAttribute&&t.getAttribute(r))&&o.setAttribute(r,i);n.head.appendChild(o).parentNode.removeChild(o)}function w(e){return null==e?e+"":"object"==typeof e||"function"==typeof e?n[o.call(e)]||"object":typeof e}var f="3.6.0",S=function(e,t){return new S.fn.init(e,t)};function p(e){var t=!!e&&"length"in e&&e.length,n=w(e);return!m(e)&&!x(e)&&("array"===n||0===t||"number"==typeof t&&0+~]|"+M+")"+M+"*"),U=new RegExp(M+"|>"),X=new RegExp(F),V=new RegExp("^"+I+"$"),G={ID:new RegExp("^#("+I+")"),CLASS:new RegExp("^\\.("+I+")"),TAG:new RegExp("^("+I+"|[*])"),ATTR:new RegExp("^"+W),PSEUDO:new RegExp("^"+F),CHILD:new RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\("+M+"*(even|odd|(([+-]|)(\\d*)n|)"+M+"*(?:([+-]|)"+M+"*(\\d+)|))"+M+"*\\)|)","i"),bool:new RegExp("^(?:"+R+")$","i"),needsContext:new RegExp("^"+M+"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\("+M+"*((?:-\\d)?\\d*)"+M+"*\\)|)(?=[^-]|$)","i")},Y=/HTML$/i,Q=/^(?:input|select|textarea|button)$/i,J=/^h\d$/i,K=/^[^{]+\{\s*\[native \w/,Z=/^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,ee=/[+~]/,te=new RegExp("\\\\[\\da-fA-F]{1,6}"+M+"?|\\\\([^\\r\\n\\f])","g"),ne=function(e,t){var n="0x"+e.slice(1)-65536;return t||(n<0?String.fromCharCode(n+65536):String.fromCharCode(n>>10|55296,1023&n|56320))},re=/([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g,ie=function(e,t){return t?"\0"===e?"\ufffd":e.slice(0,-1)+"\\"+e.charCodeAt(e.length-1).toString(16)+" ":"\\"+e},oe=function(){T()},ae=be(function(e){return!0===e.disabled&&"fieldset"===e.nodeName.toLowerCase()},{dir:"parentNode",next:"legend"});try{H.apply(t=O.call(p.childNodes),p.childNodes),t[p.childNodes.length].nodeType}catch(e){H={apply:t.length?function(e,t){L.apply(e,O.call(t))}:function(e,t){var n=e.length,r=0;while(e[n++]=t[r++]);e.length=n-1}}}function se(t,e,n,r){var i,o,a,s,u,l,c,f=e&&e.ownerDocument,p=e?e.nodeType:9;if(n=n||[],"string"!=typeof t||!t||1!==p&&9!==p&&11!==p)return n;if(!r&&(T(e),e=e||C,E)){if(11!==p&&(u=Z.exec(t)))if(i=u[1]){if(9===p){if(!(a=e.getElementById(i)))return n;if(a.id===i)return n.push(a),n}else if(f&&(a=f.getElementById(i))&&y(e,a)&&a.id===i)return n.push(a),n}else{if(u[2])return H.apply(n,e.getElementsByTagName(t)),n;if((i=u[3])&&d.getElementsByClassName&&e.getElementsByClassName)return H.apply(n,e.getElementsByClassName(i)),n}if(d.qsa&&!N[t+" "]&&(!v||!v.test(t))&&(1!==p||"object"!==e.nodeName.toLowerCase())){if(c=t,f=e,1===p&&(U.test(t)||z.test(t))){(f=ee.test(t)&&ye(e.parentNode)||e)===e&&d.scope||((s=e.getAttribute("id"))?s=s.replace(re,ie):e.setAttribute("id",s=S)),o=(l=h(t)).length;while(o--)l[o]=(s?"#"+s:":scope")+" "+xe(l[o]);c=l.join(",")}try{return H.apply(n,f.querySelectorAll(c)),n}catch(e){N(t,!0)}finally{s===S&&e.removeAttribute("id")}}}return g(t.replace($,"$1"),e,n,r)}function ue(){var r=[];return function e(t,n){return r.push(t+" ")>b.cacheLength&&delete e[r.shift()],e[t+" "]=n}}function le(e){return e[S]=!0,e}function ce(e){var t=C.createElement("fieldset");try{return!!e(t)}catch(e){return!1}finally{t.parentNode&&t.parentNode.removeChild(t),t=null}}function fe(e,t){var n=e.split("|"),r=n.length;while(r--)b.attrHandle[n[r]]=t}function pe(e,t){var n=t&&e,r=n&&1===e.nodeType&&1===t.nodeType&&e.sourceIndex-t.sourceIndex;if(r)return r;if(n)while(n=n.nextSibling)if(n===t)return-1;return e?1:-1}function de(t){return function(e){return"input"===e.nodeName.toLowerCase()&&e.type===t}}function he(n){return function(e){var t=e.nodeName.toLowerCase();return("input"===t||"button"===t)&&e.type===n}}function ge(t){return function(e){return"form"in e?e.parentNode&&!1===e.disabled?"label"in e?"label"in e.parentNode?e.parentNode.disabled===t:e.disabled===t:e.isDisabled===t||e.isDisabled!==!t&&ae(e)===t:e.disabled===t:"label"in e&&e.disabled===t}}function ve(a){return le(function(o){return o=+o,le(function(e,t){var n,r=a([],e.length,o),i=r.length;while(i--)e[n=r[i]]&&(e[n]=!(t[n]=e[n]))})})}function ye(e){return e&&"undefined"!=typeof e.getElementsByTagName&&e}for(e in d=se.support={},i=se.isXML=function(e){var t=e&&e.namespaceURI,n=e&&(e.ownerDocument||e).documentElement;return!Y.test(t||n&&n.nodeName||"HTML")},T=se.setDocument=function(e){var t,n,r=e?e.ownerDocument||e:p;return r!=C&&9===r.nodeType&&r.documentElement&&(a=(C=r).documentElement,E=!i(C),p!=C&&(n=C.defaultView)&&n.top!==n&&(n.addEventListener?n.addEventListener("unload",oe,!1):n.attachEvent&&n.attachEvent("onunload",oe)),d.scope=ce(function(e){return a.appendChild(e).appendChild(C.createElement("div")),"undefined"!=typeof e.querySelectorAll&&!e.querySelectorAll(":scope fieldset div").length}),d.attributes=ce(function(e){return e.className="i",!e.getAttribute("className")}),d.getElementsByTagName=ce(function(e){return e.appendChild(C.createComment("")),!e.getElementsByTagName("*").length}),d.getElementsByClassName=K.test(C.getElementsByClassName),d.getById=ce(function(e){return a.appendChild(e).id=S,!C.getElementsByName||!C.getElementsByName(S).length}),d.getById?(b.filter.ID=function(e){var t=e.replace(te,ne);return function(e){return e.getAttribute("id")===t}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n=t.getElementById(e);return n?[n]:[]}}):(b.filter.ID=function(e){var n=e.replace(te,ne);return function(e){var t="undefined"!=typeof e.getAttributeNode&&e.getAttributeNode("id");return t&&t.value===n}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n,r,i,o=t.getElementById(e);if(o){if((n=o.getAttributeNode("id"))&&n.value===e)return[o];i=t.getElementsByName(e),r=0;while(o=i[r++])if((n=o.getAttributeNode("id"))&&n.value===e)return[o]}return[]}}),b.find.TAG=d.getElementsByTagName?function(e,t){return"undefined"!=typeof t.getElementsByTagName?t.getElementsByTagName(e):d.qsa?t.querySelectorAll(e):void 0}:function(e,t){var n,r=[],i=0,o=t.getElementsByTagName(e);if("*"===e){while(n=o[i++])1===n.nodeType&&r.push(n);return r}return o},b.find.CLASS=d.getElementsByClassName&&function(e,t){if("undefined"!=typeof t.getElementsByClassName&&E)return t.getElementsByClassName(e)},s=[],v=[],(d.qsa=K.test(C.querySelectorAll))&&(ce(function(e){var t;a.appendChild(e).innerHTML="",e.querySelectorAll("[msallowcapture^='']").length&&v.push("[*^$]="+M+"*(?:''|\"\")"),e.querySelectorAll("[selected]").length||v.push("\\["+M+"*(?:value|"+R+")"),e.querySelectorAll("[id~="+S+"-]").length||v.push("~="),(t=C.createElement("input")).setAttribute("name",""),e.appendChild(t),e.querySelectorAll("[name='']").length||v.push("\\["+M+"*name"+M+"*="+M+"*(?:''|\"\")"),e.querySelectorAll(":checked").length||v.push(":checked"),e.querySelectorAll("a#"+S+"+*").length||v.push(".#.+[+~]"),e.querySelectorAll("\\\f"),v.push("[\\r\\n\\f]")}),ce(function(e){e.innerHTML="";var t=C.createElement("input");t.setAttribute("type","hidden"),e.appendChild(t).setAttribute("name","D"),e.querySelectorAll("[name=d]").length&&v.push("name"+M+"*[*^$|!~]?="),2!==e.querySelectorAll(":enabled").length&&v.push(":enabled",":disabled"),a.appendChild(e).disabled=!0,2!==e.querySelectorAll(":disabled").length&&v.push(":enabled",":disabled"),e.querySelectorAll("*,:x"),v.push(",.*:")})),(d.matchesSelector=K.test(c=a.matches||a.webkitMatchesSelector||a.mozMatchesSelector||a.oMatchesSelector||a.msMatchesSelector))&&ce(function(e){d.disconnectedMatch=c.call(e,"*"),c.call(e,"[s!='']:x"),s.push("!=",F)}),v=v.length&&new RegExp(v.join("|")),s=s.length&&new RegExp(s.join("|")),t=K.test(a.compareDocumentPosition),y=t||K.test(a.contains)?function(e,t){var n=9===e.nodeType?e.documentElement:e,r=t&&t.parentNode;return e===r||!(!r||1!==r.nodeType||!(n.contains?n.contains(r):e.compareDocumentPosition&&16&e.compareDocumentPosition(r)))}:function(e,t){if(t)while(t=t.parentNode)if(t===e)return!0;return!1},j=t?function(e,t){if(e===t)return l=!0,0;var n=!e.compareDocumentPosition-!t.compareDocumentPosition;return n||(1&(n=(e.ownerDocument||e)==(t.ownerDocument||t)?e.compareDocumentPosition(t):1)||!d.sortDetached&&t.compareDocumentPosition(e)===n?e==C||e.ownerDocument==p&&y(p,e)?-1:t==C||t.ownerDocument==p&&y(p,t)?1:u?P(u,e)-P(u,t):0:4&n?-1:1)}:function(e,t){if(e===t)return l=!0,0;var n,r=0,i=e.parentNode,o=t.parentNode,a=[e],s=[t];if(!i||!o)return e==C?-1:t==C?1:i?-1:o?1:u?P(u,e)-P(u,t):0;if(i===o)return pe(e,t);n=e;while(n=n.parentNode)a.unshift(n);n=t;while(n=n.parentNode)s.unshift(n);while(a[r]===s[r])r++;return r?pe(a[r],s[r]):a[r]==p?-1:s[r]==p?1:0}),C},se.matches=function(e,t){return se(e,null,null,t)},se.matchesSelector=function(e,t){if(T(e),d.matchesSelector&&E&&!N[t+" "]&&(!s||!s.test(t))&&(!v||!v.test(t)))try{var n=c.call(e,t);if(n||d.disconnectedMatch||e.document&&11!==e.document.nodeType)return n}catch(e){N(t,!0)}return 0":{dir:"parentNode",first:!0}," ":{dir:"parentNode"},"+":{dir:"previousSibling",first:!0},"~":{dir:"previousSibling"}},preFilter:{ATTR:function(e){return e[1]=e[1].replace(te,ne),e[3]=(e[3]||e[4]||e[5]||"").replace(te,ne),"~="===e[2]&&(e[3]=" "+e[3]+" "),e.slice(0,4)},CHILD:function(e){return e[1]=e[1].toLowerCase(),"nth"===e[1].slice(0,3)?(e[3]||se.error(e[0]),e[4]=+(e[4]?e[5]+(e[6]||1):2*("even"===e[3]||"odd"===e[3])),e[5]=+(e[7]+e[8]||"odd"===e[3])):e[3]&&se.error(e[0]),e},PSEUDO:function(e){var t,n=!e[6]&&e[2];return G.CHILD.test(e[0])?null:(e[3]?e[2]=e[4]||e[5]||"":n&&X.test(n)&&(t=h(n,!0))&&(t=n.indexOf(")",n.length-t)-n.length)&&(e[0]=e[0].slice(0,t),e[2]=n.slice(0,t)),e.slice(0,3))}},filter:{TAG:function(e){var t=e.replace(te,ne).toLowerCase();return"*"===e?function(){return!0}:function(e){return e.nodeName&&e.nodeName.toLowerCase()===t}},CLASS:function(e){var t=m[e+" "];return t||(t=new RegExp("(^|"+M+")"+e+"("+M+"|$)"))&&m(e,function(e){return t.test("string"==typeof e.className&&e.className||"undefined"!=typeof e.getAttribute&&e.getAttribute("class")||"")})},ATTR:function(n,r,i){return function(e){var t=se.attr(e,n);return null==t?"!="===r:!r||(t+="","="===r?t===i:"!="===r?t!==i:"^="===r?i&&0===t.indexOf(i):"*="===r?i&&-1:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i;function j(e,n,r){return m(n)?S.grep(e,function(e,t){return!!n.call(e,t,e)!==r}):n.nodeType?S.grep(e,function(e){return e===n!==r}):"string"!=typeof n?S.grep(e,function(e){return-1)[^>]*|#([\w-]+))$/;(S.fn.init=function(e,t,n){var r,i;if(!e)return this;if(n=n||D,"string"==typeof e){if(!(r="<"===e[0]&&">"===e[e.length-1]&&3<=e.length?[null,e,null]:q.exec(e))||!r[1]&&t)return!t||t.jquery?(t||n).find(e):this.constructor(t).find(e);if(r[1]){if(t=t instanceof S?t[0]:t,S.merge(this,S.parseHTML(r[1],t&&t.nodeType?t.ownerDocument||t:E,!0)),N.test(r[1])&&S.isPlainObject(t))for(r in t)m(this[r])?this[r](t[r]):this.attr(r,t[r]);return this}return(i=E.getElementById(r[2]))&&(this[0]=i,this.length=1),this}return e.nodeType?(this[0]=e,this.length=1,this):m(e)?void 0!==n.ready?n.ready(e):e(S):S.makeArray(e,this)}).prototype=S.fn,D=S(E);var L=/^(?:parents|prev(?:Until|All))/,H={children:!0,contents:!0,next:!0,prev:!0};function O(e,t){while((e=e[t])&&1!==e.nodeType);return e}S.fn.extend({has:function(e){var t=S(e,this),n=t.length;return this.filter(function(){for(var e=0;e\x20\t\r\n\f]*)/i,he=/^$|^module$|\/(?:java|ecma)script/i;ce=E.createDocumentFragment().appendChild(E.createElement("div")),(fe=E.createElement("input")).setAttribute("type","radio"),fe.setAttribute("checked","checked"),fe.setAttribute("name","t"),ce.appendChild(fe),y.checkClone=ce.cloneNode(!0).cloneNode(!0).lastChild.checked,ce.innerHTML="",y.noCloneChecked=!!ce.cloneNode(!0).lastChild.defaultValue,ce.innerHTML="",y.option=!!ce.lastChild;var ge={thead:[1,"","
"],col:[2,"","
"],tr:[2,"","
"],td:[3,"","
"],_default:[0,"",""]};function ve(e,t){var n;return n="undefined"!=typeof e.getElementsByTagName?e.getElementsByTagName(t||"*"):"undefined"!=typeof e.querySelectorAll?e.querySelectorAll(t||"*"):[],void 0===t||t&&A(e,t)?S.merge([e],n):n}function ye(e,t){for(var n=0,r=e.length;n",""]);var me=/<|&#?\w+;/;function xe(e,t,n,r,i){for(var o,a,s,u,l,c,f=t.createDocumentFragment(),p=[],d=0,h=e.length;d\s*$/g;function je(e,t){return A(e,"table")&&A(11!==t.nodeType?t:t.firstChild,"tr")&&S(e).children("tbody")[0]||e}function De(e){return e.type=(null!==e.getAttribute("type"))+"/"+e.type,e}function qe(e){return"true/"===(e.type||"").slice(0,5)?e.type=e.type.slice(5):e.removeAttribute("type"),e}function Le(e,t){var n,r,i,o,a,s;if(1===t.nodeType){if(Y.hasData(e)&&(s=Y.get(e).events))for(i in Y.remove(t,"handle events"),s)for(n=0,r=s[i].length;n").attr(n.scriptAttrs||{}).prop({charset:n.scriptCharset,src:n.url}).on("load error",i=function(e){r.remove(),i=null,e&&t("error"===e.type?404:200,e.type)}),E.head.appendChild(r[0])},abort:function(){i&&i()}}});var _t,zt=[],Ut=/(=)\?(?=&|$)|\?\?/;S.ajaxSetup({jsonp:"callback",jsonpCallback:function(){var e=zt.pop()||S.expando+"_"+wt.guid++;return this[e]=!0,e}}),S.ajaxPrefilter("json jsonp",function(e,t,n){var r,i,o,a=!1!==e.jsonp&&(Ut.test(e.url)?"url":"string"==typeof e.data&&0===(e.contentType||"").indexOf("application/x-www-form-urlencoded")&&Ut.test(e.data)&&"data");if(a||"jsonp"===e.dataTypes[0])return r=e.jsonpCallback=m(e.jsonpCallback)?e.jsonpCallback():e.jsonpCallback,a?e[a]=e[a].replace(Ut,"$1"+r):!1!==e.jsonp&&(e.url+=(Tt.test(e.url)?"&":"?")+e.jsonp+"="+r),e.converters["script json"]=function(){return o||S.error(r+" was not called"),o[0]},e.dataTypes[0]="json",i=C[r],C[r]=function(){o=arguments},n.always(function(){void 0===i?S(C).removeProp(r):C[r]=i,e[r]&&(e.jsonpCallback=t.jsonpCallback,zt.push(r)),o&&m(i)&&i(o[0]),o=i=void 0}),"script"}),y.createHTMLDocument=((_t=E.implementation.createHTMLDocument("").body).innerHTML="
",2===_t.childNodes.length),S.parseHTML=function(e,t,n){return"string"!=typeof e?[]:("boolean"==typeof t&&(n=t,t=!1),t||(y.createHTMLDocument?((r=(t=E.implementation.createHTMLDocument("")).createElement("base")).href=E.location.href,t.head.appendChild(r)):t=E),o=!n&&[],(i=N.exec(e))?[t.createElement(i[1])]:(i=xe([e],t,o),o&&o.length&&S(o).remove(),S.merge([],i.childNodes)));var r,i,o},S.fn.load=function(e,t,n){var r,i,o,a=this,s=e.indexOf(" ");return-1").append(S.parseHTML(e)).find(r):e)}).always(n&&function(e,t){a.each(function(){n.apply(this,o||[e.responseText,t,e])})}),this},S.expr.pseudos.animated=function(t){return S.grep(S.timers,function(e){return t===e.elem}).length},S.offset={setOffset:function(e,t,n){var r,i,o,a,s,u,l=S.css(e,"position"),c=S(e),f={};"static"===l&&(e.style.position="relative"),s=c.offset(),o=S.css(e,"top"),u=S.css(e,"left"),("absolute"===l||"fixed"===l)&&-1<(o+u).indexOf("auto")?(a=(r=c.position()).top,i=r.left):(a=parseFloat(o)||0,i=parseFloat(u)||0),m(t)&&(t=t.call(e,n,S.extend({},s))),null!=t.top&&(f.top=t.top-s.top+a),null!=t.left&&(f.left=t.left-s.left+i),"using"in t?t.using.call(e,f):c.css(f)}},S.fn.extend({offset:function(t){if(arguments.length)return void 0===t?this:this.each(function(e){S.offset.setOffset(this,t,e)});var e,n,r=this[0];return r?r.getClientRects().length?(e=r.getBoundingClientRect(),n=r.ownerDocument.defaultView,{top:e.top+n.pageYOffset,left:e.left+n.pageXOffset}):{top:0,left:0}:void 0},position:function(){if(this[0]){var e,t,n,r=this[0],i={top:0,left:0};if("fixed"===S.css(r,"position"))t=r.getBoundingClientRect();else{t=this.offset(),n=r.ownerDocument,e=r.offsetParent||n.documentElement;while(e&&(e===n.body||e===n.documentElement)&&"static"===S.css(e,"position"))e=e.parentNode;e&&e!==r&&1===e.nodeType&&((i=S(e).offset()).top+=S.css(e,"borderTopWidth",!0),i.left+=S.css(e,"borderLeftWidth",!0))}return{top:t.top-i.top-S.css(r,"marginTop",!0),left:t.left-i.left-S.css(r,"marginLeft",!0)}}},offsetParent:function(){return this.map(function(){var e=this.offsetParent;while(e&&"static"===S.css(e,"position"))e=e.offsetParent;return e||re})}}),S.each({scrollLeft:"pageXOffset",scrollTop:"pageYOffset"},function(t,i){var o="pageYOffset"===i;S.fn[t]=function(e){return $(this,function(e,t,n){var r;if(x(e)?r=e:9===e.nodeType&&(r=e.defaultView),void 0===n)return r?r[i]:e[t];r?r.scrollTo(o?r.pageXOffset:n,o?n:r.pageYOffset):e[t]=n},t,e,arguments.length)}}),S.each(["top","left"],function(e,n){S.cssHooks[n]=Fe(y.pixelPosition,function(e,t){if(t)return t=We(e,n),Pe.test(t)?S(e).position()[n]+"px":t})}),S.each({Height:"height",Width:"width"},function(a,s){S.each({padding:"inner"+a,content:s,"":"outer"+a},function(r,o){S.fn[o]=function(e,t){var n=arguments.length&&(r||"boolean"!=typeof e),i=r||(!0===e||!0===t?"margin":"border");return $(this,function(e,t,n){var r;return x(e)?0===o.indexOf("outer")?e["inner"+a]:e.document.documentElement["client"+a]:9===e.nodeType?(r=e.documentElement,Math.max(e.body["scroll"+a],r["scroll"+a],e.body["offset"+a],r["offset"+a],r["client"+a])):void 0===n?S.css(e,t,i):S.style(e,t,n,i)},s,n?e:void 0,n)}})}),S.each(["ajaxStart","ajaxStop","ajaxComplete","ajaxError","ajaxSuccess","ajaxSend"],function(e,t){S.fn[t]=function(e){return this.on(t,e)}}),S.fn.extend({bind:function(e,t,n){return this.on(e,null,t,n)},unbind:function(e,t){return this.off(e,null,t)},delegate:function(e,t,n,r){return this.on(t,e,n,r)},undelegate:function(e,t,n){return 1===arguments.length?this.off(e,"**"):this.off(t,e||"**",n)},hover:function(e,t){return this.mouseenter(e).mouseleave(t||e)}}),S.each("blur focus focusin focusout resize scroll click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup contextmenu".split(" "),function(e,n){S.fn[n]=function(e,t){return 00 - var meq1 = "^(" + C + ")?" + V + C + "(" + V + ")?$"; // [C]VC[V] is m=1 - var mgr1 = "^(" + C + ")?" + V + C + V + C; // [C]VCVC... is m>1 - var s_v = "^(" + C + ")?" + v; // vowel in stem - - this.stemWord = function (w) { - var stem; - var suffix; - var firstch; - var origword = w; - - if (w.length < 3) - return w; - - var re; - var re2; - var re3; - var re4; - - firstch = w.substr(0,1); - if (firstch == "y") - w = firstch.toUpperCase() + w.substr(1); - - // Step 1a - re = /^(.+?)(ss|i)es$/; - re2 = /^(.+?)([^s])s$/; - - if (re.test(w)) - w = w.replace(re,"$1$2"); - else if (re2.test(w)) - w = w.replace(re2,"$1$2"); - - // Step 1b - re = /^(.+?)eed$/; - re2 = /^(.+?)(ed|ing)$/; - if (re.test(w)) { - var fp = re.exec(w); - re = new RegExp(mgr0); - if (re.test(fp[1])) { - re = /.$/; - w = w.replace(re,""); - } - } - else if (re2.test(w)) { - var fp = re2.exec(w); - stem = fp[1]; - re2 = new RegExp(s_v); - if (re2.test(stem)) { - w = stem; - re2 = /(at|bl|iz)$/; - re3 = new RegExp("([^aeiouylsz])\\1$"); - re4 = new RegExp("^" + C + v + "[^aeiouwxy]$"); - if (re2.test(w)) - w = w + "e"; - else if (re3.test(w)) { - re = /.$/; - w = w.replace(re,""); - } - else if (re4.test(w)) - w = w + "e"; - } - } - - // Step 1c - re = /^(.+?)y$/; - if (re.test(w)) { - var fp = re.exec(w); - stem = fp[1]; - re = new RegExp(s_v); - if (re.test(stem)) - w = stem + "i"; - } - - // Step 2 - re = /^(.+?)(ational|tional|enci|anci|izer|bli|alli|entli|eli|ousli|ization|ation|ator|alism|iveness|fulness|ousness|aliti|iviti|biliti|logi)$/; - if (re.test(w)) { - var fp = re.exec(w); - stem = fp[1]; - suffix = fp[2]; - re = new RegExp(mgr0); - if (re.test(stem)) - w = stem + step2list[suffix]; - } - - // Step 3 - re = /^(.+?)(icate|ative|alize|iciti|ical|ful|ness)$/; - if (re.test(w)) { - var fp = re.exec(w); - stem = fp[1]; - suffix = fp[2]; - re = new RegExp(mgr0); - if (re.test(stem)) - w = stem + step3list[suffix]; - } - - // Step 4 - re = /^(.+?)(al|ance|ence|er|ic|able|ible|ant|ement|ment|ent|ou|ism|ate|iti|ous|ive|ize)$/; - re2 = /^(.+?)(s|t)(ion)$/; - if (re.test(w)) { - var fp = re.exec(w); - stem = fp[1]; - re = new RegExp(mgr1); - if (re.test(stem)) - w = stem; - } - else if (re2.test(w)) { - var fp = re2.exec(w); - stem = fp[1] + fp[2]; - re2 = new RegExp(mgr1); - if (re2.test(stem)) - w = stem; - } - - // Step 5 - re = /^(.+?)e$/; - if (re.test(w)) { - var fp = re.exec(w); - stem = fp[1]; - re = new RegExp(mgr1); - re2 = new RegExp(meq1); - re3 = new RegExp("^" + C + v + "[^aeiouwxy]$"); - if (re.test(stem) || (re2.test(stem) && !(re3.test(stem)))) - w = stem; - } - re = /ll$/; - re2 = new RegExp(mgr1); - if (re.test(w) && re2.test(w)) { - re = /.$/; - w = w.replace(re,""); - } - - // and turn initial Y back to y - if (firstch == "y") - w = firstch.toLowerCase() + w.substr(1); - return w; - } -} - diff --git a/docs/_build/html/_static/locales/ar/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/ar/LC_MESSAGES/booktheme.po deleted file mode 100644 index edae2ec..0000000 --- a/docs/_build/html/_static/locales/ar/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: ar\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "موضوع بواسطة" - -msgid "Open an issue" -msgstr "افتح قضية" - -msgid "Contents" -msgstr "محتويات" - -msgid "Download notebook file" -msgstr "تنزيل ملف دفتر الملاحظات" - -msgid "Sphinx Book Theme" -msgstr "موضوع كتاب أبو الهول" - -msgid "Fullscreen mode" -msgstr "وضع ملء الشاشة" - -msgid "Edit this page" -msgstr "قم بتحرير هذه الصفحة" - -msgid "By" -msgstr "بواسطة" - -msgid "Copyright" -msgstr "حقوق النشر" - -msgid "Source repository" -msgstr "مستودع المصدر" - -msgid "previous page" -msgstr "الصفحة السابقة" - -msgid "next page" -msgstr "الصفحة التالية" - -msgid "Toggle navigation" -msgstr "تبديل التنقل" - -msgid "repository" -msgstr "مخزن" - -msgid "suggest edit" -msgstr "أقترح تحرير" - -msgid "open issue" -msgstr "قضية مفتوحة" - -msgid "Launch" -msgstr "إطلاق" - -msgid "Print to PDF" -msgstr "طباعة إلى PDF" - -msgid "By the" -msgstr "بواسطة" - -msgid "Last updated on" -msgstr "آخر تحديث في" - -msgid "Download source file" -msgstr "تنزيل ملف المصدر" - -msgid "Download this page" -msgstr "قم بتنزيل هذه الصفحة" diff --git a/docs/_build/html/_static/locales/bg/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/bg/LC_MESSAGES/booktheme.po deleted file mode 100644 index 1f363b9..0000000 --- a/docs/_build/html/_static/locales/bg/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: bg\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "Тема от" - -msgid "Open an issue" -msgstr "Отворете проблем" - -msgid "Contents" -msgstr "Съдържание" - -msgid "Download notebook file" -msgstr "Изтеглете файла на бележника" - -msgid "Sphinx Book Theme" -msgstr "Тема на книгата Sphinx" - -msgid "Fullscreen mode" -msgstr "Режим на цял екран" - -msgid "Edit this page" -msgstr "Редактирайте тази страница" - -msgid "By" -msgstr "От" - -msgid "Copyright" -msgstr "Авторско право" - -msgid "Source repository" -msgstr "Хранилище на източника" - -msgid "previous page" -msgstr "предишна страница" - -msgid "next page" -msgstr "Следваща страница" - -msgid "Toggle navigation" -msgstr "Превключване на навигацията" - -msgid "repository" -msgstr "хранилище" - -msgid "suggest edit" -msgstr "предложи редактиране" - -msgid "open issue" -msgstr "отворен брой" - -msgid "Launch" -msgstr "Стартиране" - -msgid "Print to PDF" -msgstr "Печат в PDF" - -msgid "By the" -msgstr "По" - -msgid "Last updated on" -msgstr "Последна актуализация на" - -msgid "Download source file" -msgstr "Изтеглете изходния файл" - -msgid "Download this page" -msgstr "Изтеглете тази страница" diff --git a/docs/_build/html/_static/locales/bn/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/bn/LC_MESSAGES/booktheme.po deleted file mode 100644 index fa54372..0000000 --- a/docs/_build/html/_static/locales/bn/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,63 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: bn\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "থিম দ্বারা" - -msgid "Open an issue" -msgstr "একটি সমস্যা খুলুন" - -msgid "Download notebook file" -msgstr "নোটবুক ফাইল ডাউনলোড করুন" - -msgid "Sphinx Book Theme" -msgstr "স্পিনিক্স বুক থিম" - -msgid "Edit this page" -msgstr "এই পৃষ্ঠাটি সম্পাদনা করুন" - -msgid "By" -msgstr "দ্বারা" - -msgid "Copyright" -msgstr "কপিরাইট" - -msgid "Source repository" -msgstr "উত্স সংগ্রহস্থল" - -msgid "previous page" -msgstr "আগের পৃষ্ঠা" - -msgid "next page" -msgstr "পরবর্তী পৃষ্ঠা" - -msgid "Toggle navigation" -msgstr "নেভিগেশন টগল করুন" - -msgid "open issue" -msgstr "খোলা সমস্যা" - -msgid "Launch" -msgstr "শুরু করা" - -msgid "Print to PDF" -msgstr "পিডিএফ প্রিন্ট করুন" - -msgid "By the" -msgstr "দ্বারা" - -msgid "Last updated on" -msgstr "সর্বশেষ আপডেট" - -msgid "Download source file" -msgstr "উত্স ফাইল ডাউনলোড করুন" - -msgid "Download this page" -msgstr "এই পৃষ্ঠাটি ডাউনলোড করুন" diff --git a/docs/_build/html/_static/locales/ca/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/ca/LC_MESSAGES/booktheme.po deleted file mode 100644 index 22f1569..0000000 --- a/docs/_build/html/_static/locales/ca/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,66 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: ca\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "Tema del" - -msgid "Open an issue" -msgstr "Obriu un número" - -msgid "Download notebook file" -msgstr "Descarregar fitxer de quadern" - -msgid "Sphinx Book Theme" -msgstr "Tema del llibre Esfinx" - -msgid "Edit this page" -msgstr "Editeu aquesta pàgina" - -msgid "By" -msgstr "Per" - -msgid "Copyright" -msgstr "Copyright" - -msgid "Source repository" -msgstr "Dipòsit de fonts" - -msgid "previous page" -msgstr "Pàgina anterior" - -msgid "next page" -msgstr "pàgina següent" - -msgid "Toggle navigation" -msgstr "Commuta la navegació" - -msgid "suggest edit" -msgstr "suggerir edició" - -msgid "open issue" -msgstr "número obert" - -msgid "Launch" -msgstr "Llançament" - -msgid "Print to PDF" -msgstr "Imprimeix a PDF" - -msgid "By the" -msgstr "Per la" - -msgid "Last updated on" -msgstr "Darrera actualització el" - -msgid "Download source file" -msgstr "Baixeu el fitxer font" - -msgid "Download this page" -msgstr "Descarregueu aquesta pàgina" diff --git a/docs/_build/html/_static/locales/cs/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/cs/LC_MESSAGES/booktheme.po deleted file mode 100644 index afecd9e..0000000 --- a/docs/_build/html/_static/locales/cs/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: cs\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "Téma od" - -msgid "Open an issue" -msgstr "Otevřete problém" - -msgid "Contents" -msgstr "Obsah" - -msgid "Download notebook file" -msgstr "Stáhnout soubor poznámkového bloku" - -msgid "Sphinx Book Theme" -msgstr "Téma knihy Sfinga" - -msgid "Fullscreen mode" -msgstr "Režim celé obrazovky" - -msgid "Edit this page" -msgstr "Upravit tuto stránku" - -msgid "By" -msgstr "Podle" - -msgid "Copyright" -msgstr "autorská práva" - -msgid "Source repository" -msgstr "Zdrojové úložiště" - -msgid "previous page" -msgstr "předchozí stránka" - -msgid "next page" -msgstr "další strana" - -msgid "Toggle navigation" -msgstr "Přepnout navigaci" - -msgid "repository" -msgstr "úložiště" - -msgid "suggest edit" -msgstr "navrhnout úpravy" - -msgid "open issue" -msgstr "otevřené číslo" - -msgid "Launch" -msgstr "Zahájení" - -msgid "Print to PDF" -msgstr "Tisk do PDF" - -msgid "By the" -msgstr "Podle" - -msgid "Last updated on" -msgstr "Naposledy aktualizováno" - -msgid "Download source file" -msgstr "Stáhněte si zdrojový soubor" - -msgid "Download this page" -msgstr "Stáhněte si tuto stránku" diff --git a/docs/_build/html/_static/locales/da/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/da/LC_MESSAGES/booktheme.po deleted file mode 100644 index 649c78a..0000000 --- a/docs/_build/html/_static/locales/da/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: da\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "Tema af" - -msgid "Open an issue" -msgstr "Åbn et problem" - -msgid "Contents" -msgstr "Indhold" - -msgid "Download notebook file" -msgstr "Download notesbog-fil" - -msgid "Sphinx Book Theme" -msgstr "Sphinx bogtema" - -msgid "Fullscreen mode" -msgstr "Fuldskærmstilstand" - -msgid "Edit this page" -msgstr "Rediger denne side" - -msgid "By" -msgstr "Ved" - -msgid "Copyright" -msgstr "ophavsret" - -msgid "Source repository" -msgstr "Kildelager" - -msgid "previous page" -msgstr "forrige side" - -msgid "next page" -msgstr "Næste side" - -msgid "Toggle navigation" -msgstr "Skift navigation" - -msgid "repository" -msgstr "lager" - -msgid "suggest edit" -msgstr "foreslå redigering" - -msgid "open issue" -msgstr "åbent nummer" - -msgid "Launch" -msgstr "Start" - -msgid "Print to PDF" -msgstr "Udskriv til PDF" - -msgid "By the" -msgstr "Ved" - -msgid "Last updated on" -msgstr "Sidst opdateret den" - -msgid "Download source file" -msgstr "Download kildefil" - -msgid "Download this page" -msgstr "Download denne side" diff --git a/docs/_build/html/_static/locales/de/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/de/LC_MESSAGES/booktheme.po deleted file mode 100644 index f51d2ec..0000000 --- a/docs/_build/html/_static/locales/de/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: de\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "Thema von der" - -msgid "Open an issue" -msgstr "Öffnen Sie ein Problem" - -msgid "Contents" -msgstr "Inhalt" - -msgid "Download notebook file" -msgstr "Notebook-Datei herunterladen" - -msgid "Sphinx Book Theme" -msgstr "Sphinx-Buch-Thema" - -msgid "Fullscreen mode" -msgstr "Vollbildmodus" - -msgid "Edit this page" -msgstr "Bearbeite diese Seite" - -msgid "By" -msgstr "Durch" - -msgid "Copyright" -msgstr "Urheberrechte ©" - -msgid "Source repository" -msgstr "Quell-Repository" - -msgid "previous page" -msgstr "vorherige Seite" - -msgid "next page" -msgstr "Nächste Seite" - -msgid "Toggle navigation" -msgstr "Navigation umschalten" - -msgid "repository" -msgstr "Repository" - -msgid "suggest edit" -msgstr "vorschlagen zu bearbeiten" - -msgid "open issue" -msgstr "offenes Thema" - -msgid "Launch" -msgstr "Starten" - -msgid "Print to PDF" -msgstr "In PDF drucken" - -msgid "By the" -msgstr "Bis zum" - -msgid "Last updated on" -msgstr "Zuletzt aktualisiert am" - -msgid "Download source file" -msgstr "Quelldatei herunterladen" - -msgid "Download this page" -msgstr "Laden Sie diese Seite herunter" diff --git a/docs/_build/html/_static/locales/el/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/el/LC_MESSAGES/booktheme.po deleted file mode 100644 index 8bec790..0000000 --- a/docs/_build/html/_static/locales/el/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: el\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "Θέμα από το" - -msgid "Open an issue" -msgstr "Ανοίξτε ένα ζήτημα" - -msgid "Contents" -msgstr "Περιεχόμενα" - -msgid "Download notebook file" -msgstr "Λήψη αρχείου σημειωματάριου" - -msgid "Sphinx Book Theme" -msgstr "Θέμα βιβλίου Sphinx" - -msgid "Fullscreen mode" -msgstr "ΛΕΙΤΟΥΡΓΙΑ ΠΛΗΡΟΥΣ ΟΘΟΝΗΣ" - -msgid "Edit this page" -msgstr "Επεξεργαστείτε αυτήν τη σελίδα" - -msgid "By" -msgstr "Με" - -msgid "Copyright" -msgstr "Πνευματική ιδιοκτησία" - -msgid "Source repository" -msgstr "Αποθήκη πηγής" - -msgid "previous page" -msgstr "προηγούμενη σελίδα" - -msgid "next page" -msgstr "επόμενη σελίδα" - -msgid "Toggle navigation" -msgstr "Εναλλαγή πλοήγησης" - -msgid "repository" -msgstr "αποθήκη" - -msgid "suggest edit" -msgstr "προτείνω επεξεργασία" - -msgid "open issue" -msgstr "ανοιχτό ζήτημα" - -msgid "Launch" -msgstr "Εκτόξευση" - -msgid "Print to PDF" -msgstr "Εκτύπωση σε PDF" - -msgid "By the" -msgstr "Από το" - -msgid "Last updated on" -msgstr "Τελευταία ενημέρωση στις" - -msgid "Download source file" -msgstr "Λήψη αρχείου προέλευσης" - -msgid "Download this page" -msgstr "Λήψη αυτής της σελίδας" diff --git a/docs/_build/html/_static/locales/eo/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/eo/LC_MESSAGES/booktheme.po deleted file mode 100644 index d72a048..0000000 --- a/docs/_build/html/_static/locales/eo/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: eo\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "Temo de la" - -msgid "Open an issue" -msgstr "Malfermu numeron" - -msgid "Contents" -msgstr "Enhavo" - -msgid "Download notebook file" -msgstr "Elŝutu kajeran dosieron" - -msgid "Sphinx Book Theme" -msgstr "Sfinksa Libro-Temo" - -msgid "Fullscreen mode" -msgstr "Plenekrana reĝimo" - -msgid "Edit this page" -msgstr "Redaktu ĉi tiun paĝon" - -msgid "By" -msgstr "De" - -msgid "Copyright" -msgstr "Kopirajto" - -msgid "Source repository" -msgstr "Fonto-deponejo" - -msgid "previous page" -msgstr "antaŭa paĝo" - -msgid "next page" -msgstr "sekva paĝo" - -msgid "Toggle navigation" -msgstr "Ŝalti navigadon" - -msgid "repository" -msgstr "deponejo" - -msgid "suggest edit" -msgstr "sugesti redaktadon" - -msgid "open issue" -msgstr "malferma numero" - -msgid "Launch" -msgstr "Lanĉo" - -msgid "Print to PDF" -msgstr "Presi al PDF" - -msgid "By the" -msgstr "Per la" - -msgid "Last updated on" -msgstr "Laste ĝisdatigita la" - -msgid "Download source file" -msgstr "Elŝutu fontodosieron" - -msgid "Download this page" -msgstr "Elŝutu ĉi tiun paĝon" diff --git a/docs/_build/html/_static/locales/es/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/es/LC_MESSAGES/booktheme.po deleted file mode 100644 index 611834b..0000000 --- a/docs/_build/html/_static/locales/es/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: es\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "Tema por el" - -msgid "Open an issue" -msgstr "Abrir un problema" - -msgid "Contents" -msgstr "Contenido" - -msgid "Download notebook file" -msgstr "Descargar archivo de cuaderno" - -msgid "Sphinx Book Theme" -msgstr "Tema del libro de la esfinge" - -msgid "Fullscreen mode" -msgstr "Modo de pantalla completa" - -msgid "Edit this page" -msgstr "Edita esta página" - -msgid "By" -msgstr "Por" - -msgid "Copyright" -msgstr "Derechos de autor" - -msgid "Source repository" -msgstr "Repositorio de origen" - -msgid "previous page" -msgstr "pagina anterior" - -msgid "next page" -msgstr "siguiente página" - -msgid "Toggle navigation" -msgstr "Navegación de palanca" - -msgid "repository" -msgstr "repositorio" - -msgid "suggest edit" -msgstr "sugerir editar" - -msgid "open issue" -msgstr "Tema abierto" - -msgid "Launch" -msgstr "Lanzamiento" - -msgid "Print to PDF" -msgstr "Imprimir en PDF" - -msgid "By the" -msgstr "Por el" - -msgid "Last updated on" -msgstr "Ultima actualización en" - -msgid "Download source file" -msgstr "Descargar archivo fuente" - -msgid "Download this page" -msgstr "Descarga esta pagina" diff --git a/docs/_build/html/_static/locales/et/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/et/LC_MESSAGES/booktheme.po deleted file mode 100644 index 345088f..0000000 --- a/docs/_build/html/_static/locales/et/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: et\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "Teema" - -msgid "Open an issue" -msgstr "Avage probleem" - -msgid "Contents" -msgstr "Sisu" - -msgid "Download notebook file" -msgstr "Laadige sülearvuti fail alla" - -msgid "Sphinx Book Theme" -msgstr "Sfinksiraamatu teema" - -msgid "Fullscreen mode" -msgstr "Täisekraanirežiim" - -msgid "Edit this page" -msgstr "Muutke seda lehte" - -msgid "By" -msgstr "Kõrval" - -msgid "Copyright" -msgstr "Autoriõigus" - -msgid "Source repository" -msgstr "Allikahoidla" - -msgid "previous page" -msgstr "eelmine leht" - -msgid "next page" -msgstr "järgmine leht" - -msgid "Toggle navigation" -msgstr "Lülita navigeerimine sisse" - -msgid "repository" -msgstr "hoidla" - -msgid "suggest edit" -msgstr "soovita muuta" - -msgid "open issue" -msgstr "avatud küsimus" - -msgid "Launch" -msgstr "Käivitage" - -msgid "Print to PDF" -msgstr "Prindi PDF-i" - -msgid "By the" -msgstr "Autor" - -msgid "Last updated on" -msgstr "Viimati uuendatud" - -msgid "Download source file" -msgstr "Laadige alla lähtefail" - -msgid "Download this page" -msgstr "Laadige see leht alla" diff --git a/docs/_build/html/_static/locales/fi/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/fi/LC_MESSAGES/booktheme.po deleted file mode 100644 index d97a08d..0000000 --- a/docs/_build/html/_static/locales/fi/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: fi\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "Teeman tekijä" - -msgid "Open an issue" -msgstr "Avaa ongelma" - -msgid "Contents" -msgstr "Sisällys" - -msgid "Download notebook file" -msgstr "Lataa muistikirjatiedosto" - -msgid "Sphinx Book Theme" -msgstr "Sphinx-kirjan teema" - -msgid "Fullscreen mode" -msgstr "Koko näytön tila" - -msgid "Edit this page" -msgstr "Muokkaa tätä sivua" - -msgid "By" -msgstr "Tekijä" - -msgid "Copyright" -msgstr "Tekijänoikeus" - -msgid "Source repository" -msgstr "Lähteen arkisto" - -msgid "previous page" -msgstr "Edellinen sivu" - -msgid "next page" -msgstr "seuraava sivu" - -msgid "Toggle navigation" -msgstr "Vaihda navigointia" - -msgid "repository" -msgstr "arkisto" - -msgid "suggest edit" -msgstr "ehdottaa muokkausta" - -msgid "open issue" -msgstr "avoin ongelma" - -msgid "Launch" -msgstr "Tuoda markkinoille" - -msgid "Print to PDF" -msgstr "Tulosta PDF-tiedostoon" - -msgid "By the" -msgstr "Mukaan" - -msgid "Last updated on" -msgstr "Viimeksi päivitetty" - -msgid "Download source file" -msgstr "Lataa lähdetiedosto" - -msgid "Download this page" -msgstr "Lataa tämä sivu" diff --git a/docs/_build/html/_static/locales/fr/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/fr/LC_MESSAGES/booktheme.po deleted file mode 100644 index 88f3517..0000000 --- a/docs/_build/html/_static/locales/fr/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: fr\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "Thème par le" - -msgid "Open an issue" -msgstr "Ouvrez un problème" - -msgid "Contents" -msgstr "Contenu" - -msgid "Download notebook file" -msgstr "Télécharger le fichier notebook" - -msgid "Sphinx Book Theme" -msgstr "Thème du livre Sphinx" - -msgid "Fullscreen mode" -msgstr "Mode plein écran" - -msgid "Edit this page" -msgstr "Modifier cette page" - -msgid "By" -msgstr "Par" - -msgid "Copyright" -msgstr "droits d'auteur" - -msgid "Source repository" -msgstr "Dépôt source" - -msgid "previous page" -msgstr "page précédente" - -msgid "next page" -msgstr "page suivante" - -msgid "Toggle navigation" -msgstr "Basculer la navigation" - -msgid "repository" -msgstr "dépôt" - -msgid "suggest edit" -msgstr "suggestion de modification" - -msgid "open issue" -msgstr "signaler un problème" - -msgid "Launch" -msgstr "lancement" - -msgid "Print to PDF" -msgstr "Imprimer au format PDF" - -msgid "By the" -msgstr "Par le" - -msgid "Last updated on" -msgstr "Dernière mise à jour le" - -msgid "Download source file" -msgstr "Télécharger le fichier source" - -msgid "Download this page" -msgstr "Téléchargez cette page" diff --git a/docs/_build/html/_static/locales/hr/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/hr/LC_MESSAGES/booktheme.po deleted file mode 100644 index fb9440a..0000000 --- a/docs/_build/html/_static/locales/hr/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: hr\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "Tema autora" - -msgid "Open an issue" -msgstr "Otvorite izdanje" - -msgid "Contents" -msgstr "Sadržaj" - -msgid "Download notebook file" -msgstr "Preuzmi datoteku bilježnice" - -msgid "Sphinx Book Theme" -msgstr "Tema knjige Sphinx" - -msgid "Fullscreen mode" -msgstr "Način preko cijelog zaslona" - -msgid "Edit this page" -msgstr "Uredite ovu stranicu" - -msgid "By" -msgstr "Po" - -msgid "Copyright" -msgstr "Autorska prava" - -msgid "Source repository" -msgstr "Izvorno spremište" - -msgid "previous page" -msgstr "Prethodna stranica" - -msgid "next page" -msgstr "sljedeća stranica" - -msgid "Toggle navigation" -msgstr "Uključi / isključi navigaciju" - -msgid "repository" -msgstr "spremište" - -msgid "suggest edit" -msgstr "predloži uređivanje" - -msgid "open issue" -msgstr "otvoreno izdanje" - -msgid "Launch" -msgstr "Pokrenite" - -msgid "Print to PDF" -msgstr "Ispis u PDF" - -msgid "By the" -msgstr "Od strane" - -msgid "Last updated on" -msgstr "Posljednje ažuriranje:" - -msgid "Download source file" -msgstr "Preuzmi izvornu datoteku" - -msgid "Download this page" -msgstr "Preuzmite ovu stranicu" diff --git a/docs/_build/html/_static/locales/id/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/id/LC_MESSAGES/booktheme.po deleted file mode 100644 index 9ffb56f..0000000 --- a/docs/_build/html/_static/locales/id/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: id\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "Tema oleh" - -msgid "Open an issue" -msgstr "Buka masalah" - -msgid "Contents" -msgstr "Isi" - -msgid "Download notebook file" -msgstr "Unduh file notebook" - -msgid "Sphinx Book Theme" -msgstr "Tema Buku Sphinx" - -msgid "Fullscreen mode" -msgstr "Mode layar penuh" - -msgid "Edit this page" -msgstr "Edit halaman ini" - -msgid "By" -msgstr "Oleh" - -msgid "Copyright" -msgstr "hak cipta" - -msgid "Source repository" -msgstr "Repositori sumber" - -msgid "previous page" -msgstr "halaman sebelumnya" - -msgid "next page" -msgstr "halaman selanjutnya" - -msgid "Toggle navigation" -msgstr "Alihkan navigasi" - -msgid "repository" -msgstr "gudang" - -msgid "suggest edit" -msgstr "menyarankan edit" - -msgid "open issue" -msgstr "masalah terbuka" - -msgid "Launch" -msgstr "Meluncurkan" - -msgid "Print to PDF" -msgstr "Cetak ke PDF" - -msgid "By the" -msgstr "Oleh" - -msgid "Last updated on" -msgstr "Terakhir diperbarui saat" - -msgid "Download source file" -msgstr "Unduh file sumber" - -msgid "Download this page" -msgstr "Unduh halaman ini" diff --git a/docs/_build/html/_static/locales/it/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/it/LC_MESSAGES/booktheme.po deleted file mode 100644 index 04308dd..0000000 --- a/docs/_build/html/_static/locales/it/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: it\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "Tema di" - -msgid "Open an issue" -msgstr "Apri un problema" - -msgid "Contents" -msgstr "Contenuti" - -msgid "Download notebook file" -msgstr "Scarica il file del taccuino" - -msgid "Sphinx Book Theme" -msgstr "Tema del libro della Sfinge" - -msgid "Fullscreen mode" -msgstr "Modalità schermo intero" - -msgid "Edit this page" -msgstr "Modifica questa pagina" - -msgid "By" -msgstr "Di" - -msgid "Copyright" -msgstr "Diritto d'autore" - -msgid "Source repository" -msgstr "Repository di origine" - -msgid "previous page" -msgstr "pagina precedente" - -msgid "next page" -msgstr "pagina successiva" - -msgid "Toggle navigation" -msgstr "Attiva / disattiva la navigazione" - -msgid "repository" -msgstr "repository" - -msgid "suggest edit" -msgstr "suggerisci modifica" - -msgid "open issue" -msgstr "questione aperta" - -msgid "Launch" -msgstr "Lanciare" - -msgid "Print to PDF" -msgstr "Stampa in PDF" - -msgid "By the" -msgstr "Dal" - -msgid "Last updated on" -msgstr "Ultimo aggiornamento il" - -msgid "Download source file" -msgstr "Scarica il file sorgente" - -msgid "Download this page" -msgstr "Scarica questa pagina" diff --git a/docs/_build/html/_static/locales/iw/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/iw/LC_MESSAGES/booktheme.po deleted file mode 100644 index 4ea190d..0000000 --- a/docs/_build/html/_static/locales/iw/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: iw\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "נושא מאת" - -msgid "Open an issue" -msgstr "פתח גיליון" - -msgid "Contents" -msgstr "תוכן" - -msgid "Download notebook file" -msgstr "הורד קובץ מחברת" - -msgid "Sphinx Book Theme" -msgstr "נושא ספר ספינקס" - -msgid "Fullscreen mode" -msgstr "מצב מסך מלא" - -msgid "Edit this page" -msgstr "ערוך דף זה" - -msgid "By" -msgstr "על ידי" - -msgid "Copyright" -msgstr "זכויות יוצרים" - -msgid "Source repository" -msgstr "מאגר המקורות" - -msgid "previous page" -msgstr "עמוד קודם" - -msgid "next page" -msgstr "עמוד הבא" - -msgid "Toggle navigation" -msgstr "החלף ניווט" - -msgid "repository" -msgstr "מאגר" - -msgid "suggest edit" -msgstr "מציע לערוך" - -msgid "open issue" -msgstr "בעיה פתוחה" - -msgid "Launch" -msgstr "לְהַשִׁיק" - -msgid "Print to PDF" -msgstr "הדפס לקובץ PDF" - -msgid "By the" -msgstr "דרך" - -msgid "Last updated on" -msgstr "עודכן לאחרונה ב" - -msgid "Download source file" -msgstr "הורד את קובץ המקור" - -msgid "Download this page" -msgstr "הורד דף זה" diff --git a/docs/_build/html/_static/locales/ja/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/ja/LC_MESSAGES/booktheme.po deleted file mode 100644 index 77d5a09..0000000 --- a/docs/_build/html/_static/locales/ja/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: ja\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "のテーマ" - -msgid "Open an issue" -msgstr "問題を報告" - -msgid "Contents" -msgstr "目次" - -msgid "Download notebook file" -msgstr "ノートブックファイルをダウンロード" - -msgid "Sphinx Book Theme" -msgstr "スフィンクスの本のテーマ" - -msgid "Fullscreen mode" -msgstr "全画面モード" - -msgid "Edit this page" -msgstr "このページを編集" - -msgid "By" -msgstr "著者" - -msgid "Copyright" -msgstr "Copyright" - -msgid "Source repository" -msgstr "ソースリポジトリ" - -msgid "previous page" -msgstr "前のページ" - -msgid "next page" -msgstr "次のページ" - -msgid "Toggle navigation" -msgstr "ナビゲーションを切り替え" - -msgid "repository" -msgstr "リポジトリ" - -msgid "suggest edit" -msgstr "編集を提案する" - -msgid "open issue" -msgstr "未解決の問題" - -msgid "Launch" -msgstr "起動" - -msgid "Print to PDF" -msgstr "PDFに印刷" - -msgid "By the" -msgstr "によって" - -msgid "Last updated on" -msgstr "最終更新日" - -msgid "Download source file" -msgstr "ソースファイルをダウンロード" - -msgid "Download this page" -msgstr "このページをダウンロード" diff --git a/docs/_build/html/_static/locales/ko/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/ko/LC_MESSAGES/booktheme.po deleted file mode 100644 index 6ee3d78..0000000 --- a/docs/_build/html/_static/locales/ko/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: ko\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "테마별" - -msgid "Open an issue" -msgstr "이슈 열기" - -msgid "Contents" -msgstr "내용" - -msgid "Download notebook file" -msgstr "노트북 파일 다운로드" - -msgid "Sphinx Book Theme" -msgstr "스핑크스 도서 테마" - -msgid "Fullscreen mode" -msgstr "전체 화면으로보기" - -msgid "Edit this page" -msgstr "이 페이지 편집" - -msgid "By" -msgstr "으로" - -msgid "Copyright" -msgstr "저작권" - -msgid "Source repository" -msgstr "소스 저장소" - -msgid "previous page" -msgstr "이전 페이지" - -msgid "next page" -msgstr "다음 페이지" - -msgid "Toggle navigation" -msgstr "탐색 전환" - -msgid "repository" -msgstr "저장소" - -msgid "suggest edit" -msgstr "편집 제안" - -msgid "open issue" -msgstr "열린 문제" - -msgid "Launch" -msgstr "시작하다" - -msgid "Print to PDF" -msgstr "PDF로 인쇄" - -msgid "By the" -msgstr "에 의해" - -msgid "Last updated on" -msgstr "마지막 업데이트" - -msgid "Download source file" -msgstr "소스 파일 다운로드" - -msgid "Download this page" -msgstr "이 페이지 다운로드" diff --git a/docs/_build/html/_static/locales/lt/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/lt/LC_MESSAGES/booktheme.po deleted file mode 100644 index 01be267..0000000 --- a/docs/_build/html/_static/locales/lt/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: lt\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "Tema" - -msgid "Open an issue" -msgstr "Atidarykite problemą" - -msgid "Contents" -msgstr "Turinys" - -msgid "Download notebook file" -msgstr "Atsisiųsti nešiojamojo kompiuterio failą" - -msgid "Sphinx Book Theme" -msgstr "Sfinkso knygos tema" - -msgid "Fullscreen mode" -msgstr "Pilno ekrano režimas" - -msgid "Edit this page" -msgstr "Redaguoti šį puslapį" - -msgid "By" -msgstr "Iki" - -msgid "Copyright" -msgstr "Autorių teisės" - -msgid "Source repository" -msgstr "Šaltinio saugykla" - -msgid "previous page" -msgstr "Ankstesnis puslapis" - -msgid "next page" -msgstr "Kitas puslapis" - -msgid "Toggle navigation" -msgstr "Perjungti naršymą" - -msgid "repository" -msgstr "saugykla" - -msgid "suggest edit" -msgstr "pasiūlyti redaguoti" - -msgid "open issue" -msgstr "atviras klausimas" - -msgid "Launch" -msgstr "Paleiskite" - -msgid "Print to PDF" -msgstr "Spausdinti į PDF" - -msgid "By the" -msgstr "Prie" - -msgid "Last updated on" -msgstr "Paskutinį kartą atnaujinta" - -msgid "Download source file" -msgstr "Atsisiųsti šaltinio failą" - -msgid "Download this page" -msgstr "Atsisiųskite šį puslapį" diff --git a/docs/_build/html/_static/locales/lv/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/lv/LC_MESSAGES/booktheme.po deleted file mode 100644 index 993a1e4..0000000 --- a/docs/_build/html/_static/locales/lv/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: lv\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "Autora tēma" - -msgid "Open an issue" -msgstr "Atveriet problēmu" - -msgid "Contents" -msgstr "Saturs" - -msgid "Download notebook file" -msgstr "Lejupielādēt piezīmju grāmatiņu" - -msgid "Sphinx Book Theme" -msgstr "Sfinksa grāmatas tēma" - -msgid "Fullscreen mode" -msgstr "Pilnekrāna režīms" - -msgid "Edit this page" -msgstr "Rediģēt šo lapu" - -msgid "By" -msgstr "Autors" - -msgid "Copyright" -msgstr "Autortiesības" - -msgid "Source repository" -msgstr "Avota krātuve" - -msgid "previous page" -msgstr "iepriekšējā lapa" - -msgid "next page" -msgstr "nākamā lapaspuse" - -msgid "Toggle navigation" -msgstr "Pārslēgt navigāciju" - -msgid "repository" -msgstr "krātuve" - -msgid "suggest edit" -msgstr "ieteikt rediģēt" - -msgid "open issue" -msgstr "atklāts jautājums" - -msgid "Launch" -msgstr "Uzsākt" - -msgid "Print to PDF" -msgstr "Drukāt PDF formātā" - -msgid "By the" -msgstr "Ar" - -msgid "Last updated on" -msgstr "Pēdējoreiz atjaunināts" - -msgid "Download source file" -msgstr "Lejupielādēt avota failu" - -msgid "Download this page" -msgstr "Lejupielādējiet šo lapu" diff --git a/docs/_build/html/_static/locales/ml/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/ml/LC_MESSAGES/booktheme.po deleted file mode 100644 index 81daf7c..0000000 --- a/docs/_build/html/_static/locales/ml/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,66 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: ml\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "പ്രമേയം" - -msgid "Open an issue" -msgstr "ഒരു പ്രശ്നം തുറക്കുക" - -msgid "Download notebook file" -msgstr "നോട്ട്ബുക്ക് ഫയൽ ഡൺലോഡ് ചെയ്യുക" - -msgid "Sphinx Book Theme" -msgstr "സ്ഫിങ്ക്സ് പുസ്തക തീം" - -msgid "Edit this page" -msgstr "ഈ പേജ് എഡിറ്റുചെയ്യുക" - -msgid "By" -msgstr "എഴുതിയത്" - -msgid "Copyright" -msgstr "പകർപ്പവകാശം" - -msgid "Source repository" -msgstr "ഉറവിട ശേഖരം" - -msgid "previous page" -msgstr "മുൻപത്തെ താൾ" - -msgid "next page" -msgstr "അടുത്ത പേജ്" - -msgid "Toggle navigation" -msgstr "നാവിഗേഷൻ ടോഗിൾ ചെയ്യുക" - -msgid "suggest edit" -msgstr "എഡിറ്റുചെയ്യാൻ നിർദ്ദേശിക്കുക" - -msgid "open issue" -msgstr "തുറന്ന പ്രശ്നം" - -msgid "Launch" -msgstr "സമാരംഭിക്കുക" - -msgid "Print to PDF" -msgstr "PDF- ലേക്ക് പ്രിന്റുചെയ്യുക" - -msgid "By the" -msgstr "എഴുതിയത്" - -msgid "Last updated on" -msgstr "അവസാനം അപ്‌ഡേറ്റുചെയ്‌തത്" - -msgid "Download source file" -msgstr "ഉറവിട ഫയൽ ഡൗൺലോഡുചെയ്യുക" - -msgid "Download this page" -msgstr "ഈ പേജ് ഡൗൺലോഡുചെയ്യുക" diff --git a/docs/_build/html/_static/locales/mr/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/mr/LC_MESSAGES/booktheme.po deleted file mode 100644 index fd857bf..0000000 --- a/docs/_build/html/_static/locales/mr/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,66 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: mr\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "द्वारा थीम" - -msgid "Open an issue" -msgstr "एक मुद्दा उघडा" - -msgid "Download notebook file" -msgstr "नोटबुक फाईल डाउनलोड करा" - -msgid "Sphinx Book Theme" -msgstr "स्फिंक्स बुक थीम" - -msgid "Edit this page" -msgstr "हे पृष्ठ संपादित करा" - -msgid "By" -msgstr "द्वारा" - -msgid "Copyright" -msgstr "कॉपीराइट" - -msgid "Source repository" -msgstr "स्त्रोत भांडार" - -msgid "previous page" -msgstr "मागील पान" - -msgid "next page" -msgstr "पुढील पृष्ठ" - -msgid "Toggle navigation" -msgstr "नेव्हिगेशन टॉगल करा" - -msgid "suggest edit" -msgstr "संपादन सुचवा" - -msgid "open issue" -msgstr "खुला मुद्दा" - -msgid "Launch" -msgstr "लाँच करा" - -msgid "Print to PDF" -msgstr "पीडीएफवर मुद्रित करा" - -msgid "By the" -msgstr "द्वारा" - -msgid "Last updated on" -msgstr "अखेरचे अद्यतनित" - -msgid "Download source file" -msgstr "स्त्रोत फाइल डाउनलोड करा" - -msgid "Download this page" -msgstr "हे पृष्ठ डाउनलोड करा" diff --git a/docs/_build/html/_static/locales/ms/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/ms/LC_MESSAGES/booktheme.po deleted file mode 100644 index b616d70..0000000 --- a/docs/_build/html/_static/locales/ms/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,66 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: ms\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "Tema oleh" - -msgid "Open an issue" -msgstr "Buka masalah" - -msgid "Download notebook file" -msgstr "Muat turun fail buku nota" - -msgid "Sphinx Book Theme" -msgstr "Tema Buku Sphinx" - -msgid "Edit this page" -msgstr "Edit halaman ini" - -msgid "By" -msgstr "Oleh" - -msgid "Copyright" -msgstr "hak cipta" - -msgid "Source repository" -msgstr "Repositori sumber" - -msgid "previous page" -msgstr "halaman sebelumnya" - -msgid "next page" -msgstr "muka surat seterusnya" - -msgid "Toggle navigation" -msgstr "Togol navigasi" - -msgid "suggest edit" -msgstr "cadangkan edit" - -msgid "open issue" -msgstr "isu terbuka" - -msgid "Launch" -msgstr "Lancarkan" - -msgid "Print to PDF" -msgstr "Cetak ke PDF" - -msgid "By the" -msgstr "Oleh" - -msgid "Last updated on" -msgstr "Terakhir dikemas kini pada" - -msgid "Download source file" -msgstr "Muat turun fail sumber" - -msgid "Download this page" -msgstr "Muat turun halaman ini" diff --git a/docs/_build/html/_static/locales/nl/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/nl/LC_MESSAGES/booktheme.po deleted file mode 100644 index f16f4bc..0000000 --- a/docs/_build/html/_static/locales/nl/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: nl\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "Thema door de" - -msgid "Open an issue" -msgstr "Open een probleem" - -msgid "Contents" -msgstr "Inhoud" - -msgid "Download notebook file" -msgstr "Download notebookbestand" - -msgid "Sphinx Book Theme" -msgstr "Sphinx-boekthema" - -msgid "Fullscreen mode" -msgstr "Volledig scherm" - -msgid "Edit this page" -msgstr "bewerk deze pagina" - -msgid "By" -msgstr "Door" - -msgid "Copyright" -msgstr "auteursrechten" - -msgid "Source repository" -msgstr "Bronopslagplaats" - -msgid "previous page" -msgstr "vorige pagina" - -msgid "next page" -msgstr "volgende bladzijde" - -msgid "Toggle navigation" -msgstr "Schakel navigatie" - -msgid "repository" -msgstr "repository" - -msgid "suggest edit" -msgstr "suggereren bewerken" - -msgid "open issue" -msgstr "open probleem" - -msgid "Launch" -msgstr "Lancering" - -msgid "Print to PDF" -msgstr "Afdrukken naar pdf" - -msgid "By the" -msgstr "Door de" - -msgid "Last updated on" -msgstr "Laatst geupdate op" - -msgid "Download source file" -msgstr "Download het bronbestand" - -msgid "Download this page" -msgstr "Download deze pagina" diff --git a/docs/_build/html/_static/locales/no/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/no/LC_MESSAGES/booktheme.po deleted file mode 100644 index b1d304e..0000000 --- a/docs/_build/html/_static/locales/no/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: no\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "Tema av" - -msgid "Open an issue" -msgstr "Åpne et problem" - -msgid "Contents" -msgstr "Innhold" - -msgid "Download notebook file" -msgstr "Last ned notatbokfilen" - -msgid "Sphinx Book Theme" -msgstr "Sphinx boktema" - -msgid "Fullscreen mode" -msgstr "Fullskjerm-modus" - -msgid "Edit this page" -msgstr "Rediger denne siden" - -msgid "By" -msgstr "Av" - -msgid "Copyright" -msgstr "opphavsrett" - -msgid "Source repository" -msgstr "Kildedepot" - -msgid "previous page" -msgstr "forrige side" - -msgid "next page" -msgstr "neste side" - -msgid "Toggle navigation" -msgstr "Bytt navigasjon" - -msgid "repository" -msgstr "oppbevaringssted" - -msgid "suggest edit" -msgstr "foreslå redigering" - -msgid "open issue" -msgstr "åpent nummer" - -msgid "Launch" -msgstr "Start" - -msgid "Print to PDF" -msgstr "Skriv ut til PDF" - -msgid "By the" -msgstr "Ved" - -msgid "Last updated on" -msgstr "Sist oppdatert den" - -msgid "Download source file" -msgstr "Last ned kildefilen" - -msgid "Download this page" -msgstr "Last ned denne siden" diff --git a/docs/_build/html/_static/locales/pl/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/pl/LC_MESSAGES/booktheme.po deleted file mode 100644 index 80d2c89..0000000 --- a/docs/_build/html/_static/locales/pl/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: pl\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "Motyw autorstwa" - -msgid "Open an issue" -msgstr "Otwórz problem" - -msgid "Contents" -msgstr "Zawartość" - -msgid "Download notebook file" -msgstr "Pobierz plik notatnika" - -msgid "Sphinx Book Theme" -msgstr "Motyw książki Sphinx" - -msgid "Fullscreen mode" -msgstr "Pełny ekran" - -msgid "Edit this page" -msgstr "Edytuj tę strone" - -msgid "By" -msgstr "Przez" - -msgid "Copyright" -msgstr "prawa autorskie" - -msgid "Source repository" -msgstr "Repozytorium źródłowe" - -msgid "previous page" -msgstr "Poprzednia strona" - -msgid "next page" -msgstr "Następna strona" - -msgid "Toggle navigation" -msgstr "Przełącz nawigację" - -msgid "repository" -msgstr "magazyn" - -msgid "suggest edit" -msgstr "zaproponuj edycję" - -msgid "open issue" -msgstr "otwarty problem" - -msgid "Launch" -msgstr "Uruchomić" - -msgid "Print to PDF" -msgstr "Drukuj do PDF" - -msgid "By the" -msgstr "Przez" - -msgid "Last updated on" -msgstr "Ostatnia aktualizacja" - -msgid "Download source file" -msgstr "Pobierz plik źródłowy" - -msgid "Download this page" -msgstr "Pobierz tę stronę" diff --git a/docs/_build/html/_static/locales/pt/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/pt/LC_MESSAGES/booktheme.po deleted file mode 100644 index 45ac847..0000000 --- a/docs/_build/html/_static/locales/pt/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: pt\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "Tema por" - -msgid "Open an issue" -msgstr "Abra um problema" - -msgid "Contents" -msgstr "Conteúdo" - -msgid "Download notebook file" -msgstr "Baixar arquivo de notebook" - -msgid "Sphinx Book Theme" -msgstr "Tema do livro Sphinx" - -msgid "Fullscreen mode" -msgstr "Modo tela cheia" - -msgid "Edit this page" -msgstr "Edite essa página" - -msgid "By" -msgstr "De" - -msgid "Copyright" -msgstr "direito autoral" - -msgid "Source repository" -msgstr "Repositório fonte" - -msgid "previous page" -msgstr "página anterior" - -msgid "next page" -msgstr "próxima página" - -msgid "Toggle navigation" -msgstr "Alternar de navegação" - -msgid "repository" -msgstr "repositório" - -msgid "suggest edit" -msgstr "sugerir edição" - -msgid "open issue" -msgstr "questão aberta" - -msgid "Launch" -msgstr "Lançamento" - -msgid "Print to PDF" -msgstr "Imprimir em PDF" - -msgid "By the" -msgstr "Pelo" - -msgid "Last updated on" -msgstr "Última atualização em" - -msgid "Download source file" -msgstr "Baixar arquivo fonte" - -msgid "Download this page" -msgstr "Baixe esta página" diff --git a/docs/_build/html/_static/locales/ro/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/ro/LC_MESSAGES/booktheme.po deleted file mode 100644 index 532b3b8..0000000 --- a/docs/_build/html/_static/locales/ro/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: ro\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "Tema de" - -msgid "Open an issue" -msgstr "Deschideți o problemă" - -msgid "Contents" -msgstr "Cuprins" - -msgid "Download notebook file" -msgstr "Descărcați fișierul notebook" - -msgid "Sphinx Book Theme" -msgstr "Tema Sphinx Book" - -msgid "Fullscreen mode" -msgstr "Modul ecran întreg" - -msgid "Edit this page" -msgstr "Editați această pagină" - -msgid "By" -msgstr "De" - -msgid "Copyright" -msgstr "Drepturi de autor" - -msgid "Source repository" -msgstr "Depozit sursă" - -msgid "previous page" -msgstr "pagina anterioară" - -msgid "next page" -msgstr "pagina următoare" - -msgid "Toggle navigation" -msgstr "Comutare navigare" - -msgid "repository" -msgstr "repertoriu" - -msgid "suggest edit" -msgstr "sugerează editare" - -msgid "open issue" -msgstr "problema deschisă" - -msgid "Launch" -msgstr "Lansa" - -msgid "Print to PDF" -msgstr "Imprimați în PDF" - -msgid "By the" -msgstr "Langa" - -msgid "Last updated on" -msgstr "Ultima actualizare la" - -msgid "Download source file" -msgstr "Descărcați fișierul sursă" - -msgid "Download this page" -msgstr "Descarcă această pagină" diff --git a/docs/_build/html/_static/locales/ru/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/ru/LC_MESSAGES/booktheme.po deleted file mode 100644 index b718b48..0000000 --- a/docs/_build/html/_static/locales/ru/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: ru\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "Тема от" - -msgid "Open an issue" -msgstr "Открыть вопрос" - -msgid "Contents" -msgstr "Содержание" - -msgid "Download notebook file" -msgstr "Скачать файл записной книжки" - -msgid "Sphinx Book Theme" -msgstr "Тема книги Сфинкс" - -msgid "Fullscreen mode" -msgstr "Полноэкранный режим" - -msgid "Edit this page" -msgstr "Редактировать эту страницу" - -msgid "By" -msgstr "По" - -msgid "Copyright" -msgstr "авторское право" - -msgid "Source repository" -msgstr "Исходный репозиторий" - -msgid "previous page" -msgstr "Предыдущая страница" - -msgid "next page" -msgstr "Следующая страница" - -msgid "Toggle navigation" -msgstr "Переключить навигацию" - -msgid "repository" -msgstr "хранилище" - -msgid "suggest edit" -msgstr "предложить редактировать" - -msgid "open issue" -msgstr "открытый вопрос" - -msgid "Launch" -msgstr "Запуск" - -msgid "Print to PDF" -msgstr "Распечатать в PDF" - -msgid "By the" -msgstr "Посредством" - -msgid "Last updated on" -msgstr "Последнее обновление" - -msgid "Download source file" -msgstr "Скачать исходный файл" - -msgid "Download this page" -msgstr "Загрузите эту страницу" diff --git a/docs/_build/html/_static/locales/sk/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/sk/LC_MESSAGES/booktheme.po deleted file mode 100644 index f6c423b..0000000 --- a/docs/_build/html/_static/locales/sk/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: sk\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "Téma od" - -msgid "Open an issue" -msgstr "Otvorte problém" - -msgid "Contents" -msgstr "Obsah" - -msgid "Download notebook file" -msgstr "Stiahnite si zošit" - -msgid "Sphinx Book Theme" -msgstr "Téma knihy Sfinga" - -msgid "Fullscreen mode" -msgstr "Režim celej obrazovky" - -msgid "Edit this page" -msgstr "Upraviť túto stránku" - -msgid "By" -msgstr "Autor:" - -msgid "Copyright" -msgstr "Autorské práva" - -msgid "Source repository" -msgstr "Zdrojové úložisko" - -msgid "previous page" -msgstr "predchádzajúca strana" - -msgid "next page" -msgstr "ďalšia strana" - -msgid "Toggle navigation" -msgstr "Prepnúť navigáciu" - -msgid "repository" -msgstr "Úložisko" - -msgid "suggest edit" -msgstr "navrhnúť úpravu" - -msgid "open issue" -msgstr "otvorené vydanie" - -msgid "Launch" -msgstr "Spustiť" - -msgid "Print to PDF" -msgstr "Tlač do PDF" - -msgid "By the" -msgstr "Podľa" - -msgid "Last updated on" -msgstr "Posledná aktualizácia dňa" - -msgid "Download source file" -msgstr "Stiahnite si zdrojový súbor" - -msgid "Download this page" -msgstr "Stiahnite si túto stránku" diff --git a/docs/_build/html/_static/locales/sl/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/sl/LC_MESSAGES/booktheme.po deleted file mode 100644 index 9822dc5..0000000 --- a/docs/_build/html/_static/locales/sl/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: sl\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "Tema avtorja" - -msgid "Open an issue" -msgstr "Odprite številko" - -msgid "Contents" -msgstr "Vsebina" - -msgid "Download notebook file" -msgstr "Prenesite datoteko zvezka" - -msgid "Sphinx Book Theme" -msgstr "Tema knjige Sphinx" - -msgid "Fullscreen mode" -msgstr "Celozaslonski način" - -msgid "Edit this page" -msgstr "Uredite to stran" - -msgid "By" -msgstr "Avtor" - -msgid "Copyright" -msgstr "avtorske pravice" - -msgid "Source repository" -msgstr "Izvorno skladišče" - -msgid "previous page" -msgstr "Prejšnja stran" - -msgid "next page" -msgstr "Naslednja stran" - -msgid "Toggle navigation" -msgstr "Preklopi navigacijo" - -msgid "repository" -msgstr "odlagališče" - -msgid "suggest edit" -msgstr "predlagajte urejanje" - -msgid "open issue" -msgstr "odprto vprašanje" - -msgid "Launch" -msgstr "Kosilo" - -msgid "Print to PDF" -msgstr "Natisni v PDF" - -msgid "By the" -msgstr "Avtor" - -msgid "Last updated on" -msgstr "Nazadnje posodobljeno dne" - -msgid "Download source file" -msgstr "Prenesite izvorno datoteko" - -msgid "Download this page" -msgstr "Prenesite to stran" diff --git a/docs/_build/html/_static/locales/sr/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/sr/LC_MESSAGES/booktheme.po deleted file mode 100644 index e809230..0000000 --- a/docs/_build/html/_static/locales/sr/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: sr\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "Тхеме би" - -msgid "Open an issue" -msgstr "Отворите издање" - -msgid "Contents" -msgstr "Садржај" - -msgid "Download notebook file" -msgstr "Преузмите датотеку бележнице" - -msgid "Sphinx Book Theme" -msgstr "Тема књиге Спхинк" - -msgid "Fullscreen mode" -msgstr "Режим целог екрана" - -msgid "Edit this page" -msgstr "Уредите ову страницу" - -msgid "By" -msgstr "Од стране" - -msgid "Copyright" -msgstr "Ауторско право" - -msgid "Source repository" -msgstr "Изворно спремиште" - -msgid "previous page" -msgstr "Претходна страница" - -msgid "next page" -msgstr "Следећа страна" - -msgid "Toggle navigation" -msgstr "Укључи / искључи навигацију" - -msgid "repository" -msgstr "спремиште" - -msgid "suggest edit" -msgstr "предложи уређивање" - -msgid "open issue" -msgstr "отворено издање" - -msgid "Launch" -msgstr "Лансирање" - -msgid "Print to PDF" -msgstr "Испис у ПДФ" - -msgid "By the" -msgstr "Од" - -msgid "Last updated on" -msgstr "Последње ажурирање" - -msgid "Download source file" -msgstr "Преузми изворну датотеку" - -msgid "Download this page" -msgstr "Преузмите ову страницу" diff --git a/docs/_build/html/_static/locales/sv/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/sv/LC_MESSAGES/booktheme.po deleted file mode 100644 index 2421b00..0000000 --- a/docs/_build/html/_static/locales/sv/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: sv\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "Tema av" - -msgid "Open an issue" -msgstr "Öppna en problemrapport" - -msgid "Contents" -msgstr "Innehåll" - -msgid "Download notebook file" -msgstr "Ladda ner notebook-fil" - -msgid "Sphinx Book Theme" -msgstr "Sphinx Boktema" - -msgid "Fullscreen mode" -msgstr "Fullskärmsläge" - -msgid "Edit this page" -msgstr "Redigera den här sidan" - -msgid "By" -msgstr "Av" - -msgid "Copyright" -msgstr "Upphovsrätt" - -msgid "Source repository" -msgstr "Källkodsrepositorium" - -msgid "previous page" -msgstr "föregående sida" - -msgid "next page" -msgstr "nästa sida" - -msgid "Toggle navigation" -msgstr "Växla navigering" - -msgid "repository" -msgstr "repositorium" - -msgid "suggest edit" -msgstr "föreslå ändring" - -msgid "open issue" -msgstr "öppna problemrapport" - -msgid "Launch" -msgstr "Öppna" - -msgid "Print to PDF" -msgstr "Skriv ut till PDF" - -msgid "By the" -msgstr "Av den" - -msgid "Last updated on" -msgstr "Senast uppdaterad den" - -msgid "Download source file" -msgstr "Ladda ner källfil" - -msgid "Download this page" -msgstr "Ladda ner den här sidan" diff --git a/docs/_build/html/_static/locales/ta/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/ta/LC_MESSAGES/booktheme.po deleted file mode 100644 index 500042f..0000000 --- a/docs/_build/html/_static/locales/ta/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,66 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: ta\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "வழங்கிய தீம்" - -msgid "Open an issue" -msgstr "சிக்கலைத் திறக்கவும்" - -msgid "Download notebook file" -msgstr "நோட்புக் கோப்பைப் பதிவிறக்கவும்" - -msgid "Sphinx Book Theme" -msgstr "ஸ்பிங்க்ஸ் புத்தக தீம்" - -msgid "Edit this page" -msgstr "இந்தப் பக்கத்தைத் திருத்தவும்" - -msgid "By" -msgstr "வழங்கியவர்" - -msgid "Copyright" -msgstr "பதிப்புரிமை" - -msgid "Source repository" -msgstr "மூல களஞ்சியம்" - -msgid "previous page" -msgstr "முந்தைய பக்கம்" - -msgid "next page" -msgstr "அடுத்த பக்கம்" - -msgid "Toggle navigation" -msgstr "வழிசெலுத்தலை நிலைமாற்று" - -msgid "suggest edit" -msgstr "திருத்த பரிந்துரைக்கவும்" - -msgid "open issue" -msgstr "திறந்த பிரச்சினை" - -msgid "Launch" -msgstr "தொடங்க" - -msgid "Print to PDF" -msgstr "PDF இல் அச்சிடுக" - -msgid "By the" -msgstr "மூலம்" - -msgid "Last updated on" -msgstr "கடைசியாக புதுப்பிக்கப்பட்டது" - -msgid "Download source file" -msgstr "மூல கோப்பைப் பதிவிறக்குக" - -msgid "Download this page" -msgstr "இந்தப் பக்கத்தைப் பதிவிறக்கவும்" diff --git a/docs/_build/html/_static/locales/te/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/te/LC_MESSAGES/booktheme.po deleted file mode 100644 index b1afebb..0000000 --- a/docs/_build/html/_static/locales/te/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,66 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: te\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "ద్వారా థీమ్" - -msgid "Open an issue" -msgstr "సమస్యను తెరవండి" - -msgid "Download notebook file" -msgstr "నోట్బుక్ ఫైల్ను డౌన్లోడ్ చేయండి" - -msgid "Sphinx Book Theme" -msgstr "సింహిక పుస్తక థీమ్" - -msgid "Edit this page" -msgstr "ఈ పేజీని సవరించండి" - -msgid "By" -msgstr "ద్వారా" - -msgid "Copyright" -msgstr "కాపీరైట్" - -msgid "Source repository" -msgstr "మూల రిపోజిటరీ" - -msgid "previous page" -msgstr "ముందు పేజి" - -msgid "next page" -msgstr "తరువాతి పేజీ" - -msgid "Toggle navigation" -msgstr "నావిగేషన్‌ను టోగుల్ చేయండి" - -msgid "suggest edit" -msgstr "సవరించమని సూచించండి" - -msgid "open issue" -msgstr "ఓపెన్ ఇష్యూ" - -msgid "Launch" -msgstr "ప్రారంభించండి" - -msgid "Print to PDF" -msgstr "PDF కి ముద్రించండి" - -msgid "By the" -msgstr "ద్వారా" - -msgid "Last updated on" -msgstr "చివరిగా నవీకరించబడింది" - -msgid "Download source file" -msgstr "మూల ఫైల్‌ను డౌన్‌లోడ్ చేయండి" - -msgid "Download this page" -msgstr "ఈ పేజీని డౌన్‌లోడ్ చేయండి" diff --git a/docs/_build/html/_static/locales/tg/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/tg/LC_MESSAGES/booktheme.po deleted file mode 100644 index 29b8237..0000000 --- a/docs/_build/html/_static/locales/tg/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: tg\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "Мавзӯъи аз" - -msgid "Open an issue" -msgstr "Масъаларо кушоед" - -msgid "Contents" -msgstr "Мундариҷа" - -msgid "Download notebook file" -msgstr "Файли дафтарро зеркашӣ кунед" - -msgid "Sphinx Book Theme" -msgstr "Сфинкс Мавзӯи китоб" - -msgid "Fullscreen mode" -msgstr "Ҳолати экрани пурра" - -msgid "Edit this page" -msgstr "Ин саҳифаро таҳрир кунед" - -msgid "By" -msgstr "Бо" - -msgid "Copyright" -msgstr "Ҳуқуқи муаллиф" - -msgid "Source repository" -msgstr "Анбори манбаъ" - -msgid "previous page" -msgstr "саҳифаи қаблӣ" - -msgid "next page" -msgstr "саҳифаи оянда" - -msgid "Toggle navigation" -msgstr "Гузаришро иваз кунед" - -msgid "repository" -msgstr "анбор" - -msgid "suggest edit" -msgstr "пешниҳод вироиш" - -msgid "open issue" -msgstr "барориши кушод" - -msgid "Launch" -msgstr "Оғоз" - -msgid "Print to PDF" -msgstr "Чоп ба PDF" - -msgid "By the" -msgstr "Бо" - -msgid "Last updated on" -msgstr "Last навсозӣ дар" - -msgid "Download source file" -msgstr "Файли манбаъро зеркашӣ кунед" - -msgid "Download this page" -msgstr "Ин саҳифаро зеркашӣ кунед" diff --git a/docs/_build/html/_static/locales/th/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/th/LC_MESSAGES/booktheme.po deleted file mode 100644 index ac65ee0..0000000 --- a/docs/_build/html/_static/locales/th/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: th\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "ธีมโดย" - -msgid "Open an issue" -msgstr "เปิดปัญหา" - -msgid "Contents" -msgstr "สารบัญ" - -msgid "Download notebook file" -msgstr "ดาวน์โหลดไฟล์สมุดบันทึก" - -msgid "Sphinx Book Theme" -msgstr "ธีมหนังสือสฟิงซ์" - -msgid "Fullscreen mode" -msgstr "โหมดเต็มหน้าจอ" - -msgid "Edit this page" -msgstr "แก้ไขหน้านี้" - -msgid "By" -msgstr "โดย" - -msgid "Copyright" -msgstr "ลิขสิทธิ์" - -msgid "Source repository" -msgstr "ที่เก็บซอร์ส" - -msgid "previous page" -msgstr "หน้าที่แล้ว" - -msgid "next page" -msgstr "หน้าต่อไป" - -msgid "Toggle navigation" -msgstr "ไม่ต้องสลับช่องทาง" - -msgid "repository" -msgstr "ที่เก็บ" - -msgid "suggest edit" -msgstr "แนะนำแก้ไข" - -msgid "open issue" -msgstr "เปิดปัญหา" - -msgid "Launch" -msgstr "เปิด" - -msgid "Print to PDF" -msgstr "พิมพ์เป็น PDF" - -msgid "By the" -msgstr "โดย" - -msgid "Last updated on" -msgstr "ปรับปรุงล่าสุดเมื่อ" - -msgid "Download source file" -msgstr "ดาวน์โหลดไฟล์ต้นฉบับ" - -msgid "Download this page" -msgstr "ดาวน์โหลดหน้านี้" diff --git a/docs/_build/html/_static/locales/tl/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/tl/LC_MESSAGES/booktheme.po deleted file mode 100644 index 662d66c..0000000 --- a/docs/_build/html/_static/locales/tl/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,66 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: tl\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "Tema ng" - -msgid "Open an issue" -msgstr "Magbukas ng isyu" - -msgid "Download notebook file" -msgstr "Mag-download ng file ng notebook" - -msgid "Sphinx Book Theme" -msgstr "Tema ng Sphinx Book" - -msgid "Edit this page" -msgstr "I-edit ang pahinang ito" - -msgid "By" -msgstr "Ni" - -msgid "Copyright" -msgstr "Copyright" - -msgid "Source repository" -msgstr "Pinagmulan ng imbakan" - -msgid "previous page" -msgstr "Nakaraang pahina" - -msgid "next page" -msgstr "Susunod na pahina" - -msgid "Toggle navigation" -msgstr "I-toggle ang pag-navigate" - -msgid "suggest edit" -msgstr "iminumungkahi i-edit" - -msgid "open issue" -msgstr "bukas na isyu" - -msgid "Launch" -msgstr "Ilunsad" - -msgid "Print to PDF" -msgstr "I-print sa PDF" - -msgid "By the" -msgstr "Sa pamamagitan ng" - -msgid "Last updated on" -msgstr "Huling na-update noong" - -msgid "Download source file" -msgstr "Mag-download ng file ng pinagmulan" - -msgid "Download this page" -msgstr "I-download ang pahinang ito" diff --git a/docs/_build/html/_static/locales/tr/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/tr/LC_MESSAGES/booktheme.po deleted file mode 100644 index d1ae723..0000000 --- a/docs/_build/html/_static/locales/tr/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: tr\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "Tarafından tema" - -msgid "Open an issue" -msgstr "Bir sorunu açın" - -msgid "Contents" -msgstr "İçindekiler" - -msgid "Download notebook file" -msgstr "Defter dosyasını indirin" - -msgid "Sphinx Book Theme" -msgstr "Sfenks Kitap Teması" - -msgid "Fullscreen mode" -msgstr "Tam ekran modu" - -msgid "Edit this page" -msgstr "Bu sayfayı düzenle" - -msgid "By" -msgstr "Tarafından" - -msgid "Copyright" -msgstr "Telif hakkı" - -msgid "Source repository" -msgstr "Kaynak kod deposu" - -msgid "previous page" -msgstr "önceki sayfa" - -msgid "next page" -msgstr "sonraki Sayfa" - -msgid "Toggle navigation" -msgstr "Gezinmeyi değiştir" - -msgid "repository" -msgstr "depo" - -msgid "suggest edit" -msgstr "düzenleme öner" - -msgid "open issue" -msgstr "Açık konu" - -msgid "Launch" -msgstr "Başlatmak" - -msgid "Print to PDF" -msgstr "PDF olarak yazdır" - -msgid "By the" -msgstr "Tarafından" - -msgid "Last updated on" -msgstr "Son güncelleme tarihi" - -msgid "Download source file" -msgstr "Kaynak dosyayı indirin" - -msgid "Download this page" -msgstr "Bu sayfayı indirin" diff --git a/docs/_build/html/_static/locales/uk/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/uk/LC_MESSAGES/booktheme.po deleted file mode 100644 index be49ab8..0000000 --- a/docs/_build/html/_static/locales/uk/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: uk\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "Тема від" - -msgid "Open an issue" -msgstr "Відкрийте випуск" - -msgid "Contents" -msgstr "Зміст" - -msgid "Download notebook file" -msgstr "Завантажте файл блокнота" - -msgid "Sphinx Book Theme" -msgstr "Тема книги \"Сфінкс\"" - -msgid "Fullscreen mode" -msgstr "Повноекранний режим" - -msgid "Edit this page" -msgstr "Редагувати цю сторінку" - -msgid "By" -msgstr "Автор" - -msgid "Copyright" -msgstr "Авторське право" - -msgid "Source repository" -msgstr "Джерело сховища" - -msgid "previous page" -msgstr "Попередня сторінка" - -msgid "next page" -msgstr "Наступна сторінка" - -msgid "Toggle navigation" -msgstr "Переключити навігацію" - -msgid "repository" -msgstr "сховище" - -msgid "suggest edit" -msgstr "запропонувати редагувати" - -msgid "open issue" -msgstr "відкритий випуск" - -msgid "Launch" -msgstr "Запуск" - -msgid "Print to PDF" -msgstr "Друк у форматі PDF" - -msgid "By the" -msgstr "По" - -msgid "Last updated on" -msgstr "Останнє оновлення:" - -msgid "Download source file" -msgstr "Завантажити вихідний файл" - -msgid "Download this page" -msgstr "Завантажте цю сторінку" diff --git a/docs/_build/html/_static/locales/ur/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/ur/LC_MESSAGES/booktheme.po deleted file mode 100644 index 94bcab3..0000000 --- a/docs/_build/html/_static/locales/ur/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,66 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: ur\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "کے ذریعہ تھیم" - -msgid "Open an issue" -msgstr "ایک مسئلہ کھولیں" - -msgid "Download notebook file" -msgstr "نوٹ بک فائل ڈاؤن لوڈ کریں" - -msgid "Sphinx Book Theme" -msgstr "سپنکس بک تھیم" - -msgid "Edit this page" -msgstr "اس صفحے میں ترمیم کریں" - -msgid "By" -msgstr "بذریعہ" - -msgid "Copyright" -msgstr "کاپی رائٹ" - -msgid "Source repository" -msgstr "ماخذ ذخیرہ" - -msgid "previous page" -msgstr "سابقہ ​​صفحہ" - -msgid "next page" -msgstr "اگلا صفحہ" - -msgid "Toggle navigation" -msgstr "نیویگیشن ٹوگل کریں" - -msgid "suggest edit" -msgstr "ترمیم کی تجویز کریں" - -msgid "open issue" -msgstr "کھلا مسئلہ" - -msgid "Launch" -msgstr "لانچ کریں" - -msgid "Print to PDF" -msgstr "پی ڈی ایف پرنٹ کریں" - -msgid "By the" -msgstr "کی طرف" - -msgid "Last updated on" -msgstr "آخری بار تازہ کاری ہوئی" - -msgid "Download source file" -msgstr "سورس فائل ڈاؤن لوڈ کریں" - -msgid "Download this page" -msgstr "اس صفحے کو ڈاؤن لوڈ کریں" diff --git a/docs/_build/html/_static/locales/vi/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/vi/LC_MESSAGES/booktheme.po deleted file mode 100644 index 116236d..0000000 --- a/docs/_build/html/_static/locales/vi/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: vi\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "Chủ đề của" - -msgid "Open an issue" -msgstr "Mở một vấn đề" - -msgid "Contents" -msgstr "Nội dung" - -msgid "Download notebook file" -msgstr "Tải xuống tệp sổ tay" - -msgid "Sphinx Book Theme" -msgstr "Chủ đề sách nhân sư" - -msgid "Fullscreen mode" -msgstr "Chế độ toàn màn hình" - -msgid "Edit this page" -msgstr "chỉnh sửa trang này" - -msgid "By" -msgstr "Bởi" - -msgid "Copyright" -msgstr "Bản quyền" - -msgid "Source repository" -msgstr "Kho nguồn" - -msgid "previous page" -msgstr "trang trước" - -msgid "next page" -msgstr "Trang tiếp theo" - -msgid "Toggle navigation" -msgstr "Chuyển đổi điều hướng thành" - -msgid "repository" -msgstr "kho" - -msgid "suggest edit" -msgstr "đề nghị chỉnh sửa" - -msgid "open issue" -msgstr "vấn đề mở" - -msgid "Launch" -msgstr "Phóng" - -msgid "Print to PDF" -msgstr "In sang PDF" - -msgid "By the" -msgstr "Bằng" - -msgid "Last updated on" -msgstr "Cập nhật lần cuối vào" - -msgid "Download source file" -msgstr "Tải xuống tệp nguồn" - -msgid "Download this page" -msgstr "Tải xuống trang này" diff --git a/docs/_build/html/_static/locales/zh_CN/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/zh_CN/LC_MESSAGES/booktheme.po deleted file mode 100644 index 4f4ab57..0000000 --- a/docs/_build/html/_static/locales/zh_CN/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: zh_CN\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "主题作者:" - -msgid "Open an issue" -msgstr "创建议题" - -msgid "Contents" -msgstr "目录" - -msgid "Download notebook file" -msgstr "下载笔记本文件" - -msgid "Sphinx Book Theme" -msgstr "Sphinx Book 主题" - -msgid "Fullscreen mode" -msgstr "全屏模式" - -msgid "Edit this page" -msgstr "编辑此页面" - -msgid "By" -msgstr "作者:" - -msgid "Copyright" -msgstr "版权" - -msgid "Source repository" -msgstr "源码库" - -msgid "previous page" -msgstr "上一页" - -msgid "next page" -msgstr "下一页" - -msgid "Toggle navigation" -msgstr "显示或隐藏导航栏" - -msgid "repository" -msgstr "仓库" - -msgid "suggest edit" -msgstr "提出修改建议" - -msgid "open issue" -msgstr "创建议题" - -msgid "Launch" -msgstr "启动" - -msgid "Print to PDF" -msgstr "列印成 PDF" - -msgid "By the" -msgstr "作者:" - -msgid "Last updated on" -msgstr "上次更新时间:" - -msgid "Download source file" -msgstr "下载源文件" - -msgid "Download this page" -msgstr "下载此页面" diff --git a/docs/_build/html/_static/locales/zh_TW/LC_MESSAGES/booktheme.po b/docs/_build/html/_static/locales/zh_TW/LC_MESSAGES/booktheme.po deleted file mode 100644 index 42b43b8..0000000 --- a/docs/_build/html/_static/locales/zh_TW/LC_MESSAGES/booktheme.po +++ /dev/null @@ -1,75 +0,0 @@ - -msgid "" -msgstr "" -"Project-Id-Version: Sphinx-Book-Theme\n" -"MIME-Version: 1.0\n" -"Content-Type: text/plain; charset=UTF-8\n" -"Content-Transfer-Encoding: 8bit\n" -"Language: zh_TW\n" -"Plural-Forms: nplurals=2; plural=(n != 1);\n" - -msgid "Theme by the" -msgstr "佈景主題作者:" - -msgid "Open an issue" -msgstr "開啟議題" - -msgid "Contents" -msgstr "目錄" - -msgid "Download notebook file" -msgstr "下載 Notebook 檔案" - -msgid "Sphinx Book Theme" -msgstr "Sphinx Book 佈景主題" - -msgid "Fullscreen mode" -msgstr "全螢幕模式" - -msgid "Edit this page" -msgstr "編輯此頁面" - -msgid "By" -msgstr "作者:" - -msgid "Copyright" -msgstr "Copyright" - -msgid "Source repository" -msgstr "來源儲存庫" - -msgid "previous page" -msgstr "上一頁" - -msgid "next page" -msgstr "下一頁" - -msgid "Toggle navigation" -msgstr "顯示或隱藏導覽列" - -msgid "repository" -msgstr "儲存庫" - -msgid "suggest edit" -msgstr "提出修改建議" - -msgid "open issue" -msgstr "公開的問題" - -msgid "Launch" -msgstr "啟動" - -msgid "Print to PDF" -msgstr "列印成 PDF" - -msgid "By the" -msgstr "作者:" - -msgid "Last updated on" -msgstr "最後更新時間:" - -msgid "Download source file" -msgstr "下載原始檔" - -msgid "Download this page" -msgstr "下載此頁面" diff --git a/docs/_build/html/_static/mamba_tabular.jpg b/docs/_build/html/_static/mamba_tabular.jpg deleted file mode 100644 index b4ec440..0000000 Binary files a/docs/_build/html/_static/mamba_tabular.jpg and /dev/null differ diff --git a/docs/_build/html/_static/minus.png b/docs/_build/html/_static/minus.png deleted file mode 100644 index d96755f..0000000 Binary files a/docs/_build/html/_static/minus.png and /dev/null differ diff --git a/docs/_build/html/_static/nbsphinx-broken-thumbnail.svg b/docs/_build/html/_static/nbsphinx-broken-thumbnail.svg deleted file mode 100644 index 4919ca8..0000000 --- a/docs/_build/html/_static/nbsphinx-broken-thumbnail.svg +++ /dev/null @@ -1,9 +0,0 @@ - - - - diff --git a/docs/_build/html/_static/nbsphinx-code-cells.css b/docs/_build/html/_static/nbsphinx-code-cells.css deleted file mode 100644 index a3fb27c..0000000 --- a/docs/_build/html/_static/nbsphinx-code-cells.css +++ /dev/null @@ -1,259 +0,0 @@ -/* remove conflicting styling from Sphinx themes */ -div.nbinput.container div.prompt *, -div.nboutput.container div.prompt *, -div.nbinput.container div.input_area pre, -div.nboutput.container div.output_area pre, -div.nbinput.container div.input_area .highlight, -div.nboutput.container div.output_area .highlight { - border: none; - padding: 0; - margin: 0; - box-shadow: none; -} - -div.nbinput.container > div[class*=highlight], -div.nboutput.container > div[class*=highlight] { - margin: 0; -} - -div.nbinput.container div.prompt *, -div.nboutput.container div.prompt * { - background: none; -} - -div.nboutput.container div.output_area .highlight, -div.nboutput.container div.output_area pre { - background: unset; -} - -div.nboutput.container div.output_area div.highlight { - color: unset; /* override Pygments text color */ -} - -/* avoid gaps between output lines */ -div.nboutput.container div[class*=highlight] pre { - line-height: normal; -} - -/* input/output containers */ -div.nbinput.container, -div.nboutput.container { - display: -webkit-flex; - display: flex; - align-items: flex-start; - margin: 0; - width: 100%; -} -@media (max-width: 540px) { - div.nbinput.container, - div.nboutput.container { - flex-direction: column; - } -} - -/* input container */ -div.nbinput.container { - padding-top: 5px; -} - -/* last container */ -div.nblast.container { - padding-bottom: 5px; -} - -/* input prompt */ -div.nbinput.container div.prompt pre, -/* for sphinx_immaterial theme: */ -div.nbinput.container div.prompt pre > code { - color: #307FC1; -} - -/* output prompt */ -div.nboutput.container div.prompt pre, -/* for sphinx_immaterial theme: */ -div.nboutput.container div.prompt pre > code { - color: #BF5B3D; -} - -/* all prompts */ -div.nbinput.container div.prompt, -div.nboutput.container div.prompt { - width: 4.5ex; - padding-top: 5px; - position: relative; - user-select: none; -} - -div.nbinput.container div.prompt > div, -div.nboutput.container div.prompt > div { - position: absolute; - right: 0; - margin-right: 0.3ex; -} - -@media (max-width: 540px) { - div.nbinput.container div.prompt, - div.nboutput.container div.prompt { - width: unset; - text-align: left; - padding: 0.4em; - } - div.nboutput.container div.prompt.empty { - padding: 0; - } - - div.nbinput.container div.prompt > div, - div.nboutput.container div.prompt > div { - position: unset; - } -} - -/* disable scrollbars and line breaks on prompts */ -div.nbinput.container div.prompt pre, -div.nboutput.container div.prompt pre { - overflow: hidden; - white-space: pre; -} - -/* input/output area */ -div.nbinput.container div.input_area, -div.nboutput.container div.output_area { - -webkit-flex: 1; - flex: 1; - overflow: auto; -} -@media (max-width: 540px) { - div.nbinput.container div.input_area, - div.nboutput.container div.output_area { - width: 100%; - } -} - -/* input area */ -div.nbinput.container div.input_area { - border: 1px solid #e0e0e0; - border-radius: 2px; - /*background: #f5f5f5;*/ -} - -/* override MathJax center alignment in output cells */ -div.nboutput.container div[class*=MathJax] { - text-align: left !important; -} - -/* override sphinx.ext.imgmath center alignment in output cells */ -div.nboutput.container div.math p { - text-align: left; -} - -/* standard error */ -div.nboutput.container div.output_area.stderr { - background: #fdd; -} - -/* ANSI colors */ -.ansi-black-fg { color: #3E424D; } -.ansi-black-bg { background-color: #3E424D; } -.ansi-black-intense-fg { color: #282C36; } -.ansi-black-intense-bg { background-color: #282C36; } -.ansi-red-fg { color: #E75C58; } -.ansi-red-bg { background-color: #E75C58; } -.ansi-red-intense-fg { color: #B22B31; } -.ansi-red-intense-bg { background-color: #B22B31; } -.ansi-green-fg { color: #00A250; } -.ansi-green-bg { background-color: #00A250; } -.ansi-green-intense-fg { color: #007427; } -.ansi-green-intense-bg { background-color: #007427; } -.ansi-yellow-fg { color: #DDB62B; } -.ansi-yellow-bg { background-color: #DDB62B; } -.ansi-yellow-intense-fg { color: #B27D12; } -.ansi-yellow-intense-bg { background-color: #B27D12; } -.ansi-blue-fg { color: #208FFB; } -.ansi-blue-bg { background-color: #208FFB; } -.ansi-blue-intense-fg { color: #0065CA; } -.ansi-blue-intense-bg { background-color: #0065CA; } -.ansi-magenta-fg { color: #D160C4; } -.ansi-magenta-bg { background-color: #D160C4; } -.ansi-magenta-intense-fg { color: #A03196; } -.ansi-magenta-intense-bg { background-color: #A03196; } -.ansi-cyan-fg { color: #60C6C8; } -.ansi-cyan-bg { background-color: #60C6C8; } -.ansi-cyan-intense-fg { color: #258F8F; } -.ansi-cyan-intense-bg { background-color: #258F8F; } -.ansi-white-fg { color: #C5C1B4; } -.ansi-white-bg { background-color: #C5C1B4; } -.ansi-white-intense-fg { color: #A1A6B2; } -.ansi-white-intense-bg { background-color: #A1A6B2; } - -.ansi-default-inverse-fg { color: #FFFFFF; } -.ansi-default-inverse-bg { background-color: #000000; } - -.ansi-bold { font-weight: bold; } -.ansi-underline { text-decoration: underline; } - - -div.nbinput.container div.input_area div[class*=highlight] > pre, -div.nboutput.container div.output_area div[class*=highlight] > pre, -div.nboutput.container div.output_area div[class*=highlight].math, -div.nboutput.container div.output_area.rendered_html, -div.nboutput.container div.output_area > div.output_javascript, -div.nboutput.container div.output_area:not(.rendered_html) > img{ - padding: 5px; - margin: 0; -} - -/* fix copybtn overflow problem in chromium (needed for 'sphinx_copybutton') */ -div.nbinput.container div.input_area > div[class^='highlight'], -div.nboutput.container div.output_area > div[class^='highlight']{ - overflow-y: hidden; -} - -/* hide copy button on prompts for 'sphinx_copybutton' extension ... */ -.prompt .copybtn, -/* ... and 'sphinx_immaterial' theme */ -.prompt .md-clipboard.md-icon { - display: none; -} - -/* Some additional styling taken form the Jupyter notebook CSS */ -.jp-RenderedHTMLCommon table, -div.rendered_html table { - border: none; - border-collapse: collapse; - border-spacing: 0; - color: black; - font-size: 12px; - table-layout: fixed; -} -.jp-RenderedHTMLCommon thead, -div.rendered_html thead { - border-bottom: 1px solid black; - vertical-align: bottom; -} -.jp-RenderedHTMLCommon tr, -.jp-RenderedHTMLCommon th, -.jp-RenderedHTMLCommon td, -div.rendered_html tr, -div.rendered_html th, -div.rendered_html td { - text-align: right; - vertical-align: middle; - padding: 0.5em 0.5em; - line-height: normal; - white-space: normal; - max-width: none; - border: none; -} -.jp-RenderedHTMLCommon th, -div.rendered_html th { - font-weight: bold; -} -.jp-RenderedHTMLCommon tbody tr:nth-child(odd), -div.rendered_html tbody tr:nth-child(odd) { - background: #f5f5f5; -} -.jp-RenderedHTMLCommon tbody tr:hover, -div.rendered_html tbody tr:hover { - background: rgba(66, 165, 245, 0.2); -} - diff --git a/docs/_build/html/_static/nbsphinx-gallery.css b/docs/_build/html/_static/nbsphinx-gallery.css deleted file mode 100644 index 365c27a..0000000 --- a/docs/_build/html/_static/nbsphinx-gallery.css +++ /dev/null @@ -1,31 +0,0 @@ -.nbsphinx-gallery { - display: grid; - grid-template-columns: repeat(auto-fill, minmax(160px, 1fr)); - gap: 5px; - margin-top: 1em; - margin-bottom: 1em; -} - -.nbsphinx-gallery > a { - padding: 5px; - border: 1px dotted currentColor; - border-radius: 2px; - text-align: center; -} - -.nbsphinx-gallery > a:hover { - border-style: solid; -} - -.nbsphinx-gallery img { - max-width: 100%; - max-height: 100%; -} - -.nbsphinx-gallery > a > div:first-child { - display: flex; - align-items: start; - justify-content: center; - height: 120px; - margin-bottom: 5px; -} diff --git a/docs/_build/html/_static/nbsphinx-no-thumbnail.svg b/docs/_build/html/_static/nbsphinx-no-thumbnail.svg deleted file mode 100644 index 9dca758..0000000 --- a/docs/_build/html/_static/nbsphinx-no-thumbnail.svg +++ /dev/null @@ -1,9 +0,0 @@ - - - - diff --git a/docs/_build/html/_static/plus.png b/docs/_build/html/_static/plus.png deleted file mode 100644 index 7107cec..0000000 Binary files a/docs/_build/html/_static/plus.png and /dev/null differ diff --git a/docs/_build/html/_static/pygments.css b/docs/_build/html/_static/pygments.css deleted file mode 100644 index 012e6a0..0000000 --- a/docs/_build/html/_static/pygments.css +++ /dev/null @@ -1,152 +0,0 @@ -html[data-theme="light"] .highlight pre { line-height: 125%; } -html[data-theme="light"] .highlight td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } -html[data-theme="light"] .highlight span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } -html[data-theme="light"] .highlight td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } -html[data-theme="light"] .highlight span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } -html[data-theme="light"] .highlight .hll { background-color: #fae4c2 } -html[data-theme="light"] .highlight { background: #fefefe; color: #080808 } -html[data-theme="light"] .highlight .c { color: #515151 } /* Comment */ -html[data-theme="light"] .highlight .err { color: #a12236 } /* Error */ -html[data-theme="light"] .highlight .k { color: #6730c5 } /* Keyword */ -html[data-theme="light"] .highlight .l { color: #7f4707 } /* Literal */ -html[data-theme="light"] .highlight .n { color: #080808 } /* Name */ -html[data-theme="light"] .highlight .o { color: #00622f } /* Operator */ -html[data-theme="light"] .highlight .p { color: #080808 } /* Punctuation */ -html[data-theme="light"] .highlight .ch { color: #515151 } /* Comment.Hashbang */ -html[data-theme="light"] .highlight .cm { color: #515151 } /* Comment.Multiline */ -html[data-theme="light"] .highlight .cp { color: #515151 } /* Comment.Preproc */ -html[data-theme="light"] .highlight .cpf { color: #515151 } /* Comment.PreprocFile */ -html[data-theme="light"] .highlight .c1 { color: #515151 } /* Comment.Single */ -html[data-theme="light"] .highlight .cs { color: #515151 } /* Comment.Special */ -html[data-theme="light"] .highlight .gd { color: #005b82 } /* Generic.Deleted */ -html[data-theme="light"] .highlight .ge { font-style: italic } /* Generic.Emph */ -html[data-theme="light"] .highlight .gh { color: #005b82 } /* Generic.Heading */ -html[data-theme="light"] .highlight .gs { font-weight: bold } /* Generic.Strong */ -html[data-theme="light"] .highlight .gu { color: #005b82 } /* Generic.Subheading */ -html[data-theme="light"] .highlight .kc { color: #6730c5 } /* Keyword.Constant */ -html[data-theme="light"] .highlight .kd { color: #6730c5 } /* Keyword.Declaration */ -html[data-theme="light"] .highlight .kn { color: #6730c5 } /* Keyword.Namespace */ -html[data-theme="light"] .highlight .kp { color: #6730c5 } /* Keyword.Pseudo */ -html[data-theme="light"] .highlight .kr { color: #6730c5 } /* Keyword.Reserved */ -html[data-theme="light"] .highlight .kt { color: #7f4707 } /* Keyword.Type */ -html[data-theme="light"] .highlight .ld { color: #7f4707 } /* Literal.Date */ -html[data-theme="light"] .highlight .m { color: #7f4707 } /* Literal.Number */ -html[data-theme="light"] .highlight .s { color: #00622f } /* Literal.String */ -html[data-theme="light"] .highlight .na { color: #912583 } /* Name.Attribute */ -html[data-theme="light"] .highlight .nb { color: #7f4707 } /* Name.Builtin */ -html[data-theme="light"] .highlight .nc { color: #005b82 } /* Name.Class */ -html[data-theme="light"] .highlight .no { color: #005b82 } /* Name.Constant */ -html[data-theme="light"] .highlight .nd { color: #7f4707 } /* Name.Decorator */ -html[data-theme="light"] .highlight .ni { color: #00622f } /* Name.Entity */ -html[data-theme="light"] .highlight .ne { color: #6730c5 } /* Name.Exception */ -html[data-theme="light"] .highlight .nf { color: #005b82 } /* Name.Function */ -html[data-theme="light"] .highlight .nl { color: #7f4707 } /* Name.Label */ -html[data-theme="light"] .highlight .nn { color: #080808 } /* Name.Namespace */ -html[data-theme="light"] .highlight .nx { color: #080808 } /* Name.Other */ -html[data-theme="light"] .highlight .py { color: #005b82 } /* Name.Property */ -html[data-theme="light"] .highlight .nt { color: #005b82 } /* Name.Tag */ -html[data-theme="light"] .highlight .nv { color: #a12236 } /* Name.Variable */ -html[data-theme="light"] .highlight .ow { color: #6730c5 } /* Operator.Word */ -html[data-theme="light"] .highlight .pm { color: #080808 } /* Punctuation.Marker */ -html[data-theme="light"] .highlight .w { color: #080808 } /* Text.Whitespace */ -html[data-theme="light"] .highlight .mb { color: #7f4707 } /* Literal.Number.Bin */ -html[data-theme="light"] .highlight .mf { color: #7f4707 } /* Literal.Number.Float */ -html[data-theme="light"] .highlight .mh { color: #7f4707 } /* Literal.Number.Hex */ -html[data-theme="light"] .highlight .mi { color: #7f4707 } /* Literal.Number.Integer */ -html[data-theme="light"] .highlight .mo { color: #7f4707 } /* Literal.Number.Oct */ -html[data-theme="light"] .highlight .sa { color: #00622f } /* Literal.String.Affix */ -html[data-theme="light"] .highlight .sb { color: #00622f } /* Literal.String.Backtick */ -html[data-theme="light"] .highlight .sc { color: #00622f } /* Literal.String.Char */ -html[data-theme="light"] .highlight .dl { color: #00622f } /* Literal.String.Delimiter */ -html[data-theme="light"] .highlight .sd { color: #00622f } /* Literal.String.Doc */ -html[data-theme="light"] .highlight .s2 { color: #00622f } /* Literal.String.Double */ -html[data-theme="light"] .highlight .se { color: #00622f } /* Literal.String.Escape */ -html[data-theme="light"] .highlight .sh { color: #00622f } /* Literal.String.Heredoc */ -html[data-theme="light"] .highlight .si { color: #00622f } /* Literal.String.Interpol */ -html[data-theme="light"] .highlight .sx { color: #00622f } /* Literal.String.Other */ -html[data-theme="light"] .highlight .sr { color: #a12236 } /* Literal.String.Regex */ -html[data-theme="light"] .highlight .s1 { color: #00622f } /* Literal.String.Single */ -html[data-theme="light"] .highlight .ss { color: #005b82 } /* Literal.String.Symbol */ -html[data-theme="light"] .highlight .bp { color: #7f4707 } /* Name.Builtin.Pseudo */ -html[data-theme="light"] .highlight .fm { color: #005b82 } /* Name.Function.Magic */ -html[data-theme="light"] .highlight .vc { color: #a12236 } /* Name.Variable.Class */ -html[data-theme="light"] .highlight .vg { color: #a12236 } /* Name.Variable.Global */ -html[data-theme="light"] .highlight .vi { color: #a12236 } /* Name.Variable.Instance */ -html[data-theme="light"] .highlight .vm { color: #7f4707 } /* Name.Variable.Magic */ -html[data-theme="light"] .highlight .il { color: #7f4707 } /* Literal.Number.Integer.Long */ -html[data-theme="dark"] .highlight pre { line-height: 125%; } -html[data-theme="dark"] .highlight td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } -html[data-theme="dark"] .highlight span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } -html[data-theme="dark"] .highlight td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } -html[data-theme="dark"] .highlight span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } -html[data-theme="dark"] .highlight .hll { background-color: #ffd9002e } -html[data-theme="dark"] .highlight { background: #2b2b2b; color: #f8f8f2 } -html[data-theme="dark"] .highlight .c { color: #ffd900 } /* Comment */ -html[data-theme="dark"] .highlight .err { color: #ffa07a } /* Error */ -html[data-theme="dark"] .highlight .k { color: #dcc6e0 } /* Keyword */ -html[data-theme="dark"] .highlight .l { color: #ffd900 } /* Literal */ -html[data-theme="dark"] .highlight .n { color: #f8f8f2 } /* Name */ -html[data-theme="dark"] .highlight .o { color: #abe338 } /* Operator */ -html[data-theme="dark"] .highlight .p { color: #f8f8f2 } /* Punctuation */ -html[data-theme="dark"] .highlight .ch { color: #ffd900 } /* Comment.Hashbang */ -html[data-theme="dark"] .highlight .cm { color: #ffd900 } /* Comment.Multiline */ -html[data-theme="dark"] .highlight .cp { color: #ffd900 } /* Comment.Preproc */ -html[data-theme="dark"] .highlight .cpf { color: #ffd900 } /* Comment.PreprocFile */ -html[data-theme="dark"] .highlight .c1 { color: #ffd900 } /* Comment.Single */ -html[data-theme="dark"] .highlight .cs { color: #ffd900 } /* Comment.Special */ -html[data-theme="dark"] .highlight .gd { color: #00e0e0 } /* Generic.Deleted */ -html[data-theme="dark"] .highlight .ge { font-style: italic } /* Generic.Emph */ -html[data-theme="dark"] .highlight .gh { color: #00e0e0 } /* Generic.Heading */ -html[data-theme="dark"] .highlight .gs { font-weight: bold } /* Generic.Strong */ -html[data-theme="dark"] .highlight .gu { color: #00e0e0 } /* Generic.Subheading */ -html[data-theme="dark"] .highlight .kc { color: #dcc6e0 } /* Keyword.Constant */ -html[data-theme="dark"] .highlight .kd { color: #dcc6e0 } /* Keyword.Declaration */ -html[data-theme="dark"] .highlight .kn { color: #dcc6e0 } /* Keyword.Namespace */ -html[data-theme="dark"] .highlight .kp { color: #dcc6e0 } /* Keyword.Pseudo */ -html[data-theme="dark"] .highlight .kr { color: #dcc6e0 } /* Keyword.Reserved */ -html[data-theme="dark"] .highlight .kt { color: #ffd900 } /* Keyword.Type */ -html[data-theme="dark"] .highlight .ld { color: #ffd900 } /* Literal.Date */ -html[data-theme="dark"] .highlight .m { color: #ffd900 } /* Literal.Number */ -html[data-theme="dark"] .highlight .s { color: #abe338 } /* Literal.String */ -html[data-theme="dark"] .highlight .na { color: #ffd900 } /* Name.Attribute */ -html[data-theme="dark"] .highlight .nb { color: #ffd900 } /* Name.Builtin */ -html[data-theme="dark"] .highlight .nc { color: #00e0e0 } /* Name.Class */ -html[data-theme="dark"] .highlight .no { color: #00e0e0 } /* Name.Constant */ -html[data-theme="dark"] .highlight .nd { color: #ffd900 } /* Name.Decorator */ -html[data-theme="dark"] .highlight .ni { color: #abe338 } /* Name.Entity */ -html[data-theme="dark"] .highlight .ne { color: #dcc6e0 } /* Name.Exception */ -html[data-theme="dark"] .highlight .nf { color: #00e0e0 } /* Name.Function */ -html[data-theme="dark"] .highlight .nl { color: #ffd900 } /* Name.Label */ -html[data-theme="dark"] .highlight .nn { color: #f8f8f2 } /* Name.Namespace */ -html[data-theme="dark"] .highlight .nx { color: #f8f8f2 } /* Name.Other */ -html[data-theme="dark"] .highlight .py { color: #00e0e0 } /* Name.Property */ -html[data-theme="dark"] .highlight .nt { color: #00e0e0 } /* Name.Tag */ -html[data-theme="dark"] .highlight .nv { color: #ffa07a } /* Name.Variable */ -html[data-theme="dark"] .highlight .ow { color: #dcc6e0 } /* Operator.Word */ -html[data-theme="dark"] .highlight .pm { color: #f8f8f2 } /* Punctuation.Marker */ -html[data-theme="dark"] .highlight .w { color: #f8f8f2 } /* Text.Whitespace */ -html[data-theme="dark"] .highlight .mb { color: #ffd900 } /* Literal.Number.Bin */ -html[data-theme="dark"] .highlight .mf { color: #ffd900 } /* Literal.Number.Float */ -html[data-theme="dark"] .highlight .mh { color: #ffd900 } /* Literal.Number.Hex */ -html[data-theme="dark"] .highlight .mi { color: #ffd900 } /* Literal.Number.Integer */ -html[data-theme="dark"] .highlight .mo { color: #ffd900 } /* Literal.Number.Oct */ -html[data-theme="dark"] .highlight .sa { color: #abe338 } /* Literal.String.Affix */ -html[data-theme="dark"] .highlight .sb { color: #abe338 } /* Literal.String.Backtick */ -html[data-theme="dark"] .highlight .sc { color: #abe338 } /* Literal.String.Char */ -html[data-theme="dark"] .highlight .dl { color: #abe338 } /* Literal.String.Delimiter */ -html[data-theme="dark"] .highlight .sd { color: #abe338 } /* Literal.String.Doc */ -html[data-theme="dark"] .highlight .s2 { color: #abe338 } /* Literal.String.Double */ -html[data-theme="dark"] .highlight .se { color: #abe338 } /* Literal.String.Escape */ -html[data-theme="dark"] .highlight .sh { color: #abe338 } /* Literal.String.Heredoc */ -html[data-theme="dark"] .highlight .si { color: #abe338 } /* Literal.String.Interpol */ -html[data-theme="dark"] .highlight .sx { color: #abe338 } /* Literal.String.Other */ -html[data-theme="dark"] .highlight .sr { color: #ffa07a } /* Literal.String.Regex */ -html[data-theme="dark"] .highlight .s1 { color: #abe338 } /* Literal.String.Single */ -html[data-theme="dark"] .highlight .ss { color: #00e0e0 } /* Literal.String.Symbol */ -html[data-theme="dark"] .highlight .bp { color: #ffd900 } /* Name.Builtin.Pseudo */ -html[data-theme="dark"] .highlight .fm { color: #00e0e0 } /* Name.Function.Magic */ -html[data-theme="dark"] .highlight .vc { color: #ffa07a } /* Name.Variable.Class */ -html[data-theme="dark"] .highlight .vg { color: #ffa07a } /* Name.Variable.Global */ -html[data-theme="dark"] .highlight .vi { color: #ffa07a } /* Name.Variable.Instance */ -html[data-theme="dark"] .highlight .vm { color: #ffd900 } /* Name.Variable.Magic */ -html[data-theme="dark"] .highlight .il { color: #ffd900 } /* Literal.Number.Integer.Long */ \ No newline at end of file diff --git a/docs/_build/html/_static/sbt-webpack-macros.html b/docs/_build/html/_static/sbt-webpack-macros.html deleted file mode 100644 index 6cbf559..0000000 --- a/docs/_build/html/_static/sbt-webpack-macros.html +++ /dev/null @@ -1,11 +0,0 @@ - -{% macro head_pre_bootstrap() %} - -{% endmacro %} - -{% macro body_post() %} - -{% endmacro %} diff --git a/docs/_build/html/_static/scripts/bootstrap.js b/docs/_build/html/_static/scripts/bootstrap.js deleted file mode 100644 index 4e209b0..0000000 --- a/docs/_build/html/_static/scripts/bootstrap.js +++ /dev/null @@ -1,3 +0,0 @@ -/*! For license information please see bootstrap.js.LICENSE.txt */ -(()=>{"use strict";var t={d:(e,i)=>{for(var n in i)t.o(i,n)&&!t.o(e,n)&&Object.defineProperty(e,n,{enumerable:!0,get:i[n]})},o:(t,e)=>Object.prototype.hasOwnProperty.call(t,e),r:t=>{"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(t,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(t,"__esModule",{value:!0})}},e={};t.r(e),t.d(e,{afterMain:()=>E,afterRead:()=>v,afterWrite:()=>C,applyStyles:()=>$,arrow:()=>J,auto:()=>a,basePlacements:()=>l,beforeMain:()=>y,beforeRead:()=>_,beforeWrite:()=>A,bottom:()=>s,clippingParents:()=>d,computeStyles:()=>it,createPopper:()=>Dt,createPopperBase:()=>St,createPopperLite:()=>$t,detectOverflow:()=>_t,end:()=>h,eventListeners:()=>st,flip:()=>bt,hide:()=>wt,left:()=>r,main:()=>w,modifierPhases:()=>O,offset:()=>Et,placements:()=>g,popper:()=>f,popperGenerator:()=>Lt,popperOffsets:()=>At,preventOverflow:()=>Tt,read:()=>b,reference:()=>p,right:()=>o,start:()=>c,top:()=>n,variationPlacements:()=>m,viewport:()=>u,write:()=>T});var i={};t.r(i),t.d(i,{Alert:()=>Oe,Button:()=>ke,Carousel:()=>ri,Collapse:()=>yi,Dropdown:()=>Vi,Modal:()=>xn,Offcanvas:()=>Vn,Popover:()=>fs,ScrollSpy:()=>Ts,Tab:()=>Ks,Toast:()=>lo,Tooltip:()=>hs});var n="top",s="bottom",o="right",r="left",a="auto",l=[n,s,o,r],c="start",h="end",d="clippingParents",u="viewport",f="popper",p="reference",m=l.reduce((function(t,e){return t.concat([e+"-"+c,e+"-"+h])}),[]),g=[].concat(l,[a]).reduce((function(t,e){return t.concat([e,e+"-"+c,e+"-"+h])}),[]),_="beforeRead",b="read",v="afterRead",y="beforeMain",w="main",E="afterMain",A="beforeWrite",T="write",C="afterWrite",O=[_,b,v,y,w,E,A,T,C];function x(t){return t?(t.nodeName||"").toLowerCase():null}function k(t){if(null==t)return window;if("[object Window]"!==t.toString()){var e=t.ownerDocument;return e&&e.defaultView||window}return t}function L(t){return t instanceof k(t).Element||t instanceof Element}function S(t){return t instanceof k(t).HTMLElement||t instanceof HTMLElement}function D(t){return"undefined"!=typeof ShadowRoot&&(t instanceof k(t).ShadowRoot||t instanceof ShadowRoot)}const $={name:"applyStyles",enabled:!0,phase:"write",fn:function(t){var e=t.state;Object.keys(e.elements).forEach((function(t){var i=e.styles[t]||{},n=e.attributes[t]||{},s=e.elements[t];S(s)&&x(s)&&(Object.assign(s.style,i),Object.keys(n).forEach((function(t){var e=n[t];!1===e?s.removeAttribute(t):s.setAttribute(t,!0===e?"":e)})))}))},effect:function(t){var e=t.state,i={popper:{position:e.options.strategy,left:"0",top:"0",margin:"0"},arrow:{position:"absolute"},reference:{}};return Object.assign(e.elements.popper.style,i.popper),e.styles=i,e.elements.arrow&&Object.assign(e.elements.arrow.style,i.arrow),function(){Object.keys(e.elements).forEach((function(t){var n=e.elements[t],s=e.attributes[t]||{},o=Object.keys(e.styles.hasOwnProperty(t)?e.styles[t]:i[t]).reduce((function(t,e){return t[e]="",t}),{});S(n)&&x(n)&&(Object.assign(n.style,o),Object.keys(s).forEach((function(t){n.removeAttribute(t)})))}))}},requires:["computeStyles"]};function I(t){return t.split("-")[0]}var N=Math.max,P=Math.min,M=Math.round;function j(){var t=navigator.userAgentData;return null!=t&&t.brands&&Array.isArray(t.brands)?t.brands.map((function(t){return t.brand+"/"+t.version})).join(" "):navigator.userAgent}function F(){return!/^((?!chrome|android).)*safari/i.test(j())}function H(t,e,i){void 0===e&&(e=!1),void 0===i&&(i=!1);var n=t.getBoundingClientRect(),s=1,o=1;e&&S(t)&&(s=t.offsetWidth>0&&M(n.width)/t.offsetWidth||1,o=t.offsetHeight>0&&M(n.height)/t.offsetHeight||1);var r=(L(t)?k(t):window).visualViewport,a=!F()&&i,l=(n.left+(a&&r?r.offsetLeft:0))/s,c=(n.top+(a&&r?r.offsetTop:0))/o,h=n.width/s,d=n.height/o;return{width:h,height:d,top:c,right:l+h,bottom:c+d,left:l,x:l,y:c}}function B(t){var e=H(t),i=t.offsetWidth,n=t.offsetHeight;return Math.abs(e.width-i)<=1&&(i=e.width),Math.abs(e.height-n)<=1&&(n=e.height),{x:t.offsetLeft,y:t.offsetTop,width:i,height:n}}function W(t,e){var i=e.getRootNode&&e.getRootNode();if(t.contains(e))return!0;if(i&&D(i)){var n=e;do{if(n&&t.isSameNode(n))return!0;n=n.parentNode||n.host}while(n)}return!1}function z(t){return k(t).getComputedStyle(t)}function R(t){return["table","td","th"].indexOf(x(t))>=0}function q(t){return((L(t)?t.ownerDocument:t.document)||window.document).documentElement}function V(t){return"html"===x(t)?t:t.assignedSlot||t.parentNode||(D(t)?t.host:null)||q(t)}function Y(t){return S(t)&&"fixed"!==z(t).position?t.offsetParent:null}function K(t){for(var e=k(t),i=Y(t);i&&R(i)&&"static"===z(i).position;)i=Y(i);return i&&("html"===x(i)||"body"===x(i)&&"static"===z(i).position)?e:i||function(t){var e=/firefox/i.test(j());if(/Trident/i.test(j())&&S(t)&&"fixed"===z(t).position)return null;var i=V(t);for(D(i)&&(i=i.host);S(i)&&["html","body"].indexOf(x(i))<0;){var n=z(i);if("none"!==n.transform||"none"!==n.perspective||"paint"===n.contain||-1!==["transform","perspective"].indexOf(n.willChange)||e&&"filter"===n.willChange||e&&n.filter&&"none"!==n.filter)return i;i=i.parentNode}return null}(t)||e}function Q(t){return["top","bottom"].indexOf(t)>=0?"x":"y"}function X(t,e,i){return N(t,P(e,i))}function U(t){return Object.assign({},{top:0,right:0,bottom:0,left:0},t)}function G(t,e){return e.reduce((function(e,i){return e[i]=t,e}),{})}const J={name:"arrow",enabled:!0,phase:"main",fn:function(t){var e,i=t.state,a=t.name,c=t.options,h=i.elements.arrow,d=i.modifiersData.popperOffsets,u=I(i.placement),f=Q(u),p=[r,o].indexOf(u)>=0?"height":"width";if(h&&d){var m=function(t,e){return U("number"!=typeof(t="function"==typeof t?t(Object.assign({},e.rects,{placement:e.placement})):t)?t:G(t,l))}(c.padding,i),g=B(h),_="y"===f?n:r,b="y"===f?s:o,v=i.rects.reference[p]+i.rects.reference[f]-d[f]-i.rects.popper[p],y=d[f]-i.rects.reference[f],w=K(h),E=w?"y"===f?w.clientHeight||0:w.clientWidth||0:0,A=v/2-y/2,T=m[_],C=E-g[p]-m[b],O=E/2-g[p]/2+A,x=X(T,O,C),k=f;i.modifiersData[a]=((e={})[k]=x,e.centerOffset=x-O,e)}},effect:function(t){var e=t.state,i=t.options.element,n=void 0===i?"[data-popper-arrow]":i;null!=n&&("string"!=typeof n||(n=e.elements.popper.querySelector(n)))&&W(e.elements.popper,n)&&(e.elements.arrow=n)},requires:["popperOffsets"],requiresIfExists:["preventOverflow"]};function Z(t){return t.split("-")[1]}var tt={top:"auto",right:"auto",bottom:"auto",left:"auto"};function et(t){var e,i=t.popper,a=t.popperRect,l=t.placement,c=t.variation,d=t.offsets,u=t.position,f=t.gpuAcceleration,p=t.adaptive,m=t.roundOffsets,g=t.isFixed,_=d.x,b=void 0===_?0:_,v=d.y,y=void 0===v?0:v,w="function"==typeof m?m({x:b,y}):{x:b,y};b=w.x,y=w.y;var E=d.hasOwnProperty("x"),A=d.hasOwnProperty("y"),T=r,C=n,O=window;if(p){var x=K(i),L="clientHeight",S="clientWidth";x===k(i)&&"static"!==z(x=q(i)).position&&"absolute"===u&&(L="scrollHeight",S="scrollWidth"),(l===n||(l===r||l===o)&&c===h)&&(C=s,y-=(g&&x===O&&O.visualViewport?O.visualViewport.height:x[L])-a.height,y*=f?1:-1),l!==r&&(l!==n&&l!==s||c!==h)||(T=o,b-=(g&&x===O&&O.visualViewport?O.visualViewport.width:x[S])-a.width,b*=f?1:-1)}var D,$=Object.assign({position:u},p&&tt),I=!0===m?function(t,e){var i=t.x,n=t.y,s=e.devicePixelRatio||1;return{x:M(i*s)/s||0,y:M(n*s)/s||0}}({x:b,y},k(i)):{x:b,y};return b=I.x,y=I.y,f?Object.assign({},$,((D={})[C]=A?"0":"",D[T]=E?"0":"",D.transform=(O.devicePixelRatio||1)<=1?"translate("+b+"px, "+y+"px)":"translate3d("+b+"px, "+y+"px, 0)",D)):Object.assign({},$,((e={})[C]=A?y+"px":"",e[T]=E?b+"px":"",e.transform="",e))}const it={name:"computeStyles",enabled:!0,phase:"beforeWrite",fn:function(t){var e=t.state,i=t.options,n=i.gpuAcceleration,s=void 0===n||n,o=i.adaptive,r=void 0===o||o,a=i.roundOffsets,l=void 0===a||a,c={placement:I(e.placement),variation:Z(e.placement),popper:e.elements.popper,popperRect:e.rects.popper,gpuAcceleration:s,isFixed:"fixed"===e.options.strategy};null!=e.modifiersData.popperOffsets&&(e.styles.popper=Object.assign({},e.styles.popper,et(Object.assign({},c,{offsets:e.modifiersData.popperOffsets,position:e.options.strategy,adaptive:r,roundOffsets:l})))),null!=e.modifiersData.arrow&&(e.styles.arrow=Object.assign({},e.styles.arrow,et(Object.assign({},c,{offsets:e.modifiersData.arrow,position:"absolute",adaptive:!1,roundOffsets:l})))),e.attributes.popper=Object.assign({},e.attributes.popper,{"data-popper-placement":e.placement})},data:{}};var nt={passive:!0};const st={name:"eventListeners",enabled:!0,phase:"write",fn:function(){},effect:function(t){var e=t.state,i=t.instance,n=t.options,s=n.scroll,o=void 0===s||s,r=n.resize,a=void 0===r||r,l=k(e.elements.popper),c=[].concat(e.scrollParents.reference,e.scrollParents.popper);return o&&c.forEach((function(t){t.addEventListener("scroll",i.update,nt)})),a&&l.addEventListener("resize",i.update,nt),function(){o&&c.forEach((function(t){t.removeEventListener("scroll",i.update,nt)})),a&&l.removeEventListener("resize",i.update,nt)}},data:{}};var ot={left:"right",right:"left",bottom:"top",top:"bottom"};function rt(t){return t.replace(/left|right|bottom|top/g,(function(t){return ot[t]}))}var at={start:"end",end:"start"};function lt(t){return t.replace(/start|end/g,(function(t){return at[t]}))}function ct(t){var e=k(t);return{scrollLeft:e.pageXOffset,scrollTop:e.pageYOffset}}function ht(t){return H(q(t)).left+ct(t).scrollLeft}function dt(t){var e=z(t),i=e.overflow,n=e.overflowX,s=e.overflowY;return/auto|scroll|overlay|hidden/.test(i+s+n)}function ut(t){return["html","body","#document"].indexOf(x(t))>=0?t.ownerDocument.body:S(t)&&dt(t)?t:ut(V(t))}function ft(t,e){var i;void 0===e&&(e=[]);var n=ut(t),s=n===(null==(i=t.ownerDocument)?void 0:i.body),o=k(n),r=s?[o].concat(o.visualViewport||[],dt(n)?n:[]):n,a=e.concat(r);return s?a:a.concat(ft(V(r)))}function pt(t){return Object.assign({},t,{left:t.x,top:t.y,right:t.x+t.width,bottom:t.y+t.height})}function mt(t,e,i){return e===u?pt(function(t,e){var i=k(t),n=q(t),s=i.visualViewport,o=n.clientWidth,r=n.clientHeight,a=0,l=0;if(s){o=s.width,r=s.height;var c=F();(c||!c&&"fixed"===e)&&(a=s.offsetLeft,l=s.offsetTop)}return{width:o,height:r,x:a+ht(t),y:l}}(t,i)):L(e)?function(t,e){var i=H(t,!1,"fixed"===e);return i.top=i.top+t.clientTop,i.left=i.left+t.clientLeft,i.bottom=i.top+t.clientHeight,i.right=i.left+t.clientWidth,i.width=t.clientWidth,i.height=t.clientHeight,i.x=i.left,i.y=i.top,i}(e,i):pt(function(t){var e,i=q(t),n=ct(t),s=null==(e=t.ownerDocument)?void 0:e.body,o=N(i.scrollWidth,i.clientWidth,s?s.scrollWidth:0,s?s.clientWidth:0),r=N(i.scrollHeight,i.clientHeight,s?s.scrollHeight:0,s?s.clientHeight:0),a=-n.scrollLeft+ht(t),l=-n.scrollTop;return"rtl"===z(s||i).direction&&(a+=N(i.clientWidth,s?s.clientWidth:0)-o),{width:o,height:r,x:a,y:l}}(q(t)))}function gt(t){var e,i=t.reference,a=t.element,l=t.placement,d=l?I(l):null,u=l?Z(l):null,f=i.x+i.width/2-a.width/2,p=i.y+i.height/2-a.height/2;switch(d){case n:e={x:f,y:i.y-a.height};break;case s:e={x:f,y:i.y+i.height};break;case o:e={x:i.x+i.width,y:p};break;case r:e={x:i.x-a.width,y:p};break;default:e={x:i.x,y:i.y}}var m=d?Q(d):null;if(null!=m){var g="y"===m?"height":"width";switch(u){case c:e[m]=e[m]-(i[g]/2-a[g]/2);break;case h:e[m]=e[m]+(i[g]/2-a[g]/2)}}return e}function _t(t,e){void 0===e&&(e={});var i=e,r=i.placement,a=void 0===r?t.placement:r,c=i.strategy,h=void 0===c?t.strategy:c,m=i.boundary,g=void 0===m?d:m,_=i.rootBoundary,b=void 0===_?u:_,v=i.elementContext,y=void 0===v?f:v,w=i.altBoundary,E=void 0!==w&&w,A=i.padding,T=void 0===A?0:A,C=U("number"!=typeof T?T:G(T,l)),O=y===f?p:f,k=t.rects.popper,D=t.elements[E?O:y],$=function(t,e,i,n){var s="clippingParents"===e?function(t){var e=ft(V(t)),i=["absolute","fixed"].indexOf(z(t).position)>=0&&S(t)?K(t):t;return L(i)?e.filter((function(t){return L(t)&&W(t,i)&&"body"!==x(t)})):[]}(t):[].concat(e),o=[].concat(s,[i]),r=o[0],a=o.reduce((function(e,i){var s=mt(t,i,n);return e.top=N(s.top,e.top),e.right=P(s.right,e.right),e.bottom=P(s.bottom,e.bottom),e.left=N(s.left,e.left),e}),mt(t,r,n));return a.width=a.right-a.left,a.height=a.bottom-a.top,a.x=a.left,a.y=a.top,a}(L(D)?D:D.contextElement||q(t.elements.popper),g,b,h),I=H(t.elements.reference),M=gt({reference:I,element:k,strategy:"absolute",placement:a}),j=pt(Object.assign({},k,M)),F=y===f?j:I,B={top:$.top-F.top+C.top,bottom:F.bottom-$.bottom+C.bottom,left:$.left-F.left+C.left,right:F.right-$.right+C.right},R=t.modifiersData.offset;if(y===f&&R){var Y=R[a];Object.keys(B).forEach((function(t){var e=[o,s].indexOf(t)>=0?1:-1,i=[n,s].indexOf(t)>=0?"y":"x";B[t]+=Y[i]*e}))}return B}const bt={name:"flip",enabled:!0,phase:"main",fn:function(t){var e=t.state,i=t.options,h=t.name;if(!e.modifiersData[h]._skip){for(var d=i.mainAxis,u=void 0===d||d,f=i.altAxis,p=void 0===f||f,_=i.fallbackPlacements,b=i.padding,v=i.boundary,y=i.rootBoundary,w=i.altBoundary,E=i.flipVariations,A=void 0===E||E,T=i.allowedAutoPlacements,C=e.options.placement,O=I(C),x=_||(O!==C&&A?function(t){if(I(t)===a)return[];var e=rt(t);return[lt(t),e,lt(e)]}(C):[rt(C)]),k=[C].concat(x).reduce((function(t,i){return t.concat(I(i)===a?function(t,e){void 0===e&&(e={});var i=e,n=i.placement,s=i.boundary,o=i.rootBoundary,r=i.padding,a=i.flipVariations,c=i.allowedAutoPlacements,h=void 0===c?g:c,d=Z(n),u=d?a?m:m.filter((function(t){return Z(t)===d})):l,f=u.filter((function(t){return h.indexOf(t)>=0}));0===f.length&&(f=u);var p=f.reduce((function(e,i){return e[i]=_t(t,{placement:i,boundary:s,rootBoundary:o,padding:r})[I(i)],e}),{});return Object.keys(p).sort((function(t,e){return p[t]-p[e]}))}(e,{placement:i,boundary:v,rootBoundary:y,padding:b,flipVariations:A,allowedAutoPlacements:T}):i)}),[]),L=e.rects.reference,S=e.rects.popper,D=new Map,$=!0,N=k[0],P=0;P=0,B=H?"width":"height",W=_t(e,{placement:M,boundary:v,rootBoundary:y,altBoundary:w,padding:b}),z=H?F?o:r:F?s:n;L[B]>S[B]&&(z=rt(z));var R=rt(z),q=[];if(u&&q.push(W[j]<=0),p&&q.push(W[z]<=0,W[R]<=0),q.every((function(t){return t}))){N=M,$=!1;break}D.set(M,q)}if($)for(var V=function(t){var e=k.find((function(e){var i=D.get(e);if(i)return i.slice(0,t).every((function(t){return t}))}));if(e)return N=e,"break"},Y=A?3:1;Y>0&&"break"!==V(Y);Y--);e.placement!==N&&(e.modifiersData[h]._skip=!0,e.placement=N,e.reset=!0)}},requiresIfExists:["offset"],data:{_skip:!1}};function vt(t,e,i){return void 0===i&&(i={x:0,y:0}),{top:t.top-e.height-i.y,right:t.right-e.width+i.x,bottom:t.bottom-e.height+i.y,left:t.left-e.width-i.x}}function yt(t){return[n,o,s,r].some((function(e){return t[e]>=0}))}const wt={name:"hide",enabled:!0,phase:"main",requiresIfExists:["preventOverflow"],fn:function(t){var e=t.state,i=t.name,n=e.rects.reference,s=e.rects.popper,o=e.modifiersData.preventOverflow,r=_t(e,{elementContext:"reference"}),a=_t(e,{altBoundary:!0}),l=vt(r,n),c=vt(a,s,o),h=yt(l),d=yt(c);e.modifiersData[i]={referenceClippingOffsets:l,popperEscapeOffsets:c,isReferenceHidden:h,hasPopperEscaped:d},e.attributes.popper=Object.assign({},e.attributes.popper,{"data-popper-reference-hidden":h,"data-popper-escaped":d})}},Et={name:"offset",enabled:!0,phase:"main",requires:["popperOffsets"],fn:function(t){var e=t.state,i=t.options,s=t.name,a=i.offset,l=void 0===a?[0,0]:a,c=g.reduce((function(t,i){return t[i]=function(t,e,i){var s=I(t),a=[r,n].indexOf(s)>=0?-1:1,l="function"==typeof i?i(Object.assign({},e,{placement:t})):i,c=l[0],h=l[1];return c=c||0,h=(h||0)*a,[r,o].indexOf(s)>=0?{x:h,y:c}:{x:c,y:h}}(i,e.rects,l),t}),{}),h=c[e.placement],d=h.x,u=h.y;null!=e.modifiersData.popperOffsets&&(e.modifiersData.popperOffsets.x+=d,e.modifiersData.popperOffsets.y+=u),e.modifiersData[s]=c}},At={name:"popperOffsets",enabled:!0,phase:"read",fn:function(t){var e=t.state,i=t.name;e.modifiersData[i]=gt({reference:e.rects.reference,element:e.rects.popper,strategy:"absolute",placement:e.placement})},data:{}},Tt={name:"preventOverflow",enabled:!0,phase:"main",fn:function(t){var e=t.state,i=t.options,a=t.name,l=i.mainAxis,h=void 0===l||l,d=i.altAxis,u=void 0!==d&&d,f=i.boundary,p=i.rootBoundary,m=i.altBoundary,g=i.padding,_=i.tether,b=void 0===_||_,v=i.tetherOffset,y=void 0===v?0:v,w=_t(e,{boundary:f,rootBoundary:p,padding:g,altBoundary:m}),E=I(e.placement),A=Z(e.placement),T=!A,C=Q(E),O="x"===C?"y":"x",x=e.modifiersData.popperOffsets,k=e.rects.reference,L=e.rects.popper,S="function"==typeof y?y(Object.assign({},e.rects,{placement:e.placement})):y,D="number"==typeof S?{mainAxis:S,altAxis:S}:Object.assign({mainAxis:0,altAxis:0},S),$=e.modifiersData.offset?e.modifiersData.offset[e.placement]:null,M={x:0,y:0};if(x){if(h){var j,F="y"===C?n:r,H="y"===C?s:o,W="y"===C?"height":"width",z=x[C],R=z+w[F],q=z-w[H],V=b?-L[W]/2:0,Y=A===c?k[W]:L[W],U=A===c?-L[W]:-k[W],G=e.elements.arrow,J=b&&G?B(G):{width:0,height:0},tt=e.modifiersData["arrow#persistent"]?e.modifiersData["arrow#persistent"].padding:{top:0,right:0,bottom:0,left:0},et=tt[F],it=tt[H],nt=X(0,k[W],J[W]),st=T?k[W]/2-V-nt-et-D.mainAxis:Y-nt-et-D.mainAxis,ot=T?-k[W]/2+V+nt+it+D.mainAxis:U+nt+it+D.mainAxis,rt=e.elements.arrow&&K(e.elements.arrow),at=rt?"y"===C?rt.clientTop||0:rt.clientLeft||0:0,lt=null!=(j=null==$?void 0:$[C])?j:0,ct=z+ot-lt,ht=X(b?P(R,z+st-lt-at):R,z,b?N(q,ct):q);x[C]=ht,M[C]=ht-z}if(u){var dt,ut="x"===C?n:r,ft="x"===C?s:o,pt=x[O],mt="y"===O?"height":"width",gt=pt+w[ut],bt=pt-w[ft],vt=-1!==[n,r].indexOf(E),yt=null!=(dt=null==$?void 0:$[O])?dt:0,wt=vt?gt:pt-k[mt]-L[mt]-yt+D.altAxis,Et=vt?pt+k[mt]+L[mt]-yt-D.altAxis:bt,At=b&&vt?function(t,e,i){var n=X(t,e,i);return n>i?i:n}(wt,pt,Et):X(b?wt:gt,pt,b?Et:bt);x[O]=At,M[O]=At-pt}e.modifiersData[a]=M}},requiresIfExists:["offset"]};function Ct(t,e,i){void 0===i&&(i=!1);var n,s,o=S(e),r=S(e)&&function(t){var e=t.getBoundingClientRect(),i=M(e.width)/t.offsetWidth||1,n=M(e.height)/t.offsetHeight||1;return 1!==i||1!==n}(e),a=q(e),l=H(t,r,i),c={scrollLeft:0,scrollTop:0},h={x:0,y:0};return(o||!o&&!i)&&(("body"!==x(e)||dt(a))&&(c=(n=e)!==k(n)&&S(n)?{scrollLeft:(s=n).scrollLeft,scrollTop:s.scrollTop}:ct(n)),S(e)?((h=H(e,!0)).x+=e.clientLeft,h.y+=e.clientTop):a&&(h.x=ht(a))),{x:l.left+c.scrollLeft-h.x,y:l.top+c.scrollTop-h.y,width:l.width,height:l.height}}function Ot(t){var e=new Map,i=new Set,n=[];function s(t){i.add(t.name),[].concat(t.requires||[],t.requiresIfExists||[]).forEach((function(t){if(!i.has(t)){var n=e.get(t);n&&s(n)}})),n.push(t)}return t.forEach((function(t){e.set(t.name,t)})),t.forEach((function(t){i.has(t.name)||s(t)})),n}var xt={placement:"bottom",modifiers:[],strategy:"absolute"};function kt(){for(var t=arguments.length,e=new Array(t),i=0;iIt.has(t)&&It.get(t).get(e)||null,remove(t,e){if(!It.has(t))return;const i=It.get(t);i.delete(e),0===i.size&&It.delete(t)}},Pt="transitionend",Mt=t=>(t&&window.CSS&&window.CSS.escape&&(t=t.replace(/#([^\s"#']+)/g,((t,e)=>`#${CSS.escape(e)}`))),t),jt=t=>{t.dispatchEvent(new Event(Pt))},Ft=t=>!(!t||"object"!=typeof t)&&(void 0!==t.jquery&&(t=t[0]),void 0!==t.nodeType),Ht=t=>Ft(t)?t.jquery?t[0]:t:"string"==typeof t&&t.length>0?document.querySelector(Mt(t)):null,Bt=t=>{if(!Ft(t)||0===t.getClientRects().length)return!1;const e="visible"===getComputedStyle(t).getPropertyValue("visibility"),i=t.closest("details:not([open])");if(!i)return e;if(i!==t){const e=t.closest("summary");if(e&&e.parentNode!==i)return!1;if(null===e)return!1}return e},Wt=t=>!t||t.nodeType!==Node.ELEMENT_NODE||!!t.classList.contains("disabled")||(void 0!==t.disabled?t.disabled:t.hasAttribute("disabled")&&"false"!==t.getAttribute("disabled")),zt=t=>{if(!document.documentElement.attachShadow)return null;if("function"==typeof t.getRootNode){const e=t.getRootNode();return e instanceof ShadowRoot?e:null}return t instanceof ShadowRoot?t:t.parentNode?zt(t.parentNode):null},Rt=()=>{},qt=t=>{t.offsetHeight},Vt=()=>window.jQuery&&!document.body.hasAttribute("data-bs-no-jquery")?window.jQuery:null,Yt=[],Kt=()=>"rtl"===document.documentElement.dir,Qt=t=>{var e;e=()=>{const e=Vt();if(e){const i=t.NAME,n=e.fn[i];e.fn[i]=t.jQueryInterface,e.fn[i].Constructor=t,e.fn[i].noConflict=()=>(e.fn[i]=n,t.jQueryInterface)}},"loading"===document.readyState?(Yt.length||document.addEventListener("DOMContentLoaded",(()=>{for(const t of Yt)t()})),Yt.push(e)):e()},Xt=(t,e=[],i=t)=>"function"==typeof t?t(...e):i,Ut=(t,e,i=!0)=>{if(!i)return void Xt(t);const n=(t=>{if(!t)return 0;let{transitionDuration:e,transitionDelay:i}=window.getComputedStyle(t);const n=Number.parseFloat(e),s=Number.parseFloat(i);return n||s?(e=e.split(",")[0],i=i.split(",")[0],1e3*(Number.parseFloat(e)+Number.parseFloat(i))):0})(e)+5;let s=!1;const o=({target:i})=>{i===e&&(s=!0,e.removeEventListener(Pt,o),Xt(t))};e.addEventListener(Pt,o),setTimeout((()=>{s||jt(e)}),n)},Gt=(t,e,i,n)=>{const s=t.length;let o=t.indexOf(e);return-1===o?!i&&n?t[s-1]:t[0]:(o+=i?1:-1,n&&(o=(o+s)%s),t[Math.max(0,Math.min(o,s-1))])},Jt=/[^.]*(?=\..*)\.|.*/,Zt=/\..*/,te=/::\d+$/,ee={};let ie=1;const ne={mouseenter:"mouseover",mouseleave:"mouseout"},se=new Set(["click","dblclick","mouseup","mousedown","contextmenu","mousewheel","DOMMouseScroll","mouseover","mouseout","mousemove","selectstart","selectend","keydown","keypress","keyup","orientationchange","touchstart","touchmove","touchend","touchcancel","pointerdown","pointermove","pointerup","pointerleave","pointercancel","gesturestart","gesturechange","gestureend","focus","blur","change","reset","select","submit","focusin","focusout","load","unload","beforeunload","resize","move","DOMContentLoaded","readystatechange","error","abort","scroll"]);function oe(t,e){return e&&`${e}::${ie++}`||t.uidEvent||ie++}function re(t){const e=oe(t);return t.uidEvent=e,ee[e]=ee[e]||{},ee[e]}function ae(t,e,i=null){return Object.values(t).find((t=>t.callable===e&&t.delegationSelector===i))}function le(t,e,i){const n="string"==typeof e,s=n?i:e||i;let o=ue(t);return se.has(o)||(o=t),[n,s,o]}function ce(t,e,i,n,s){if("string"!=typeof e||!t)return;let[o,r,a]=le(e,i,n);if(e in ne){const t=t=>function(e){if(!e.relatedTarget||e.relatedTarget!==e.delegateTarget&&!e.delegateTarget.contains(e.relatedTarget))return t.call(this,e)};r=t(r)}const l=re(t),c=l[a]||(l[a]={}),h=ae(c,r,o?i:null);if(h)return void(h.oneOff=h.oneOff&&s);const d=oe(r,e.replace(Jt,"")),u=o?function(t,e,i){return function n(s){const o=t.querySelectorAll(e);for(let{target:r}=s;r&&r!==this;r=r.parentNode)for(const a of o)if(a===r)return pe(s,{delegateTarget:r}),n.oneOff&&fe.off(t,s.type,e,i),i.apply(r,[s])}}(t,i,r):function(t,e){return function i(n){return pe(n,{delegateTarget:t}),i.oneOff&&fe.off(t,n.type,e),e.apply(t,[n])}}(t,r);u.delegationSelector=o?i:null,u.callable=r,u.oneOff=s,u.uidEvent=d,c[d]=u,t.addEventListener(a,u,o)}function he(t,e,i,n,s){const o=ae(e[i],n,s);o&&(t.removeEventListener(i,o,Boolean(s)),delete e[i][o.uidEvent])}function de(t,e,i,n){const s=e[i]||{};for(const[o,r]of Object.entries(s))o.includes(n)&&he(t,e,i,r.callable,r.delegationSelector)}function ue(t){return t=t.replace(Zt,""),ne[t]||t}const fe={on(t,e,i,n){ce(t,e,i,n,!1)},one(t,e,i,n){ce(t,e,i,n,!0)},off(t,e,i,n){if("string"!=typeof e||!t)return;const[s,o,r]=le(e,i,n),a=r!==e,l=re(t),c=l[r]||{},h=e.startsWith(".");if(void 0===o){if(h)for(const i of Object.keys(l))de(t,l,i,e.slice(1));for(const[i,n]of Object.entries(c)){const s=i.replace(te,"");a&&!e.includes(s)||he(t,l,r,n.callable,n.delegationSelector)}}else{if(!Object.keys(c).length)return;he(t,l,r,o,s?i:null)}},trigger(t,e,i){if("string"!=typeof e||!t)return null;const n=Vt();let s=null,o=!0,r=!0,a=!1;e!==ue(e)&&n&&(s=n.Event(e,i),n(t).trigger(s),o=!s.isPropagationStopped(),r=!s.isImmediatePropagationStopped(),a=s.isDefaultPrevented());const l=pe(new Event(e,{bubbles:o,cancelable:!0}),i);return a&&l.preventDefault(),r&&t.dispatchEvent(l),l.defaultPrevented&&s&&s.preventDefault(),l}};function pe(t,e={}){for(const[i,n]of Object.entries(e))try{t[i]=n}catch(e){Object.defineProperty(t,i,{configurable:!0,get:()=>n})}return t}function me(t){if("true"===t)return!0;if("false"===t)return!1;if(t===Number(t).toString())return Number(t);if(""===t||"null"===t)return null;if("string"!=typeof t)return t;try{return JSON.parse(decodeURIComponent(t))}catch(e){return t}}function ge(t){return t.replace(/[A-Z]/g,(t=>`-${t.toLowerCase()}`))}const _e={setDataAttribute(t,e,i){t.setAttribute(`data-bs-${ge(e)}`,i)},removeDataAttribute(t,e){t.removeAttribute(`data-bs-${ge(e)}`)},getDataAttributes(t){if(!t)return{};const e={},i=Object.keys(t.dataset).filter((t=>t.startsWith("bs")&&!t.startsWith("bsConfig")));for(const n of i){let i=n.replace(/^bs/,"");i=i.charAt(0).toLowerCase()+i.slice(1,i.length),e[i]=me(t.dataset[n])}return e},getDataAttribute:(t,e)=>me(t.getAttribute(`data-bs-${ge(e)}`))};class be{static get Default(){return{}}static get DefaultType(){return{}}static get NAME(){throw new Error('You have to implement the static method "NAME", for each component!')}_getConfig(t){return t=this._mergeConfigObj(t),t=this._configAfterMerge(t),this._typeCheckConfig(t),t}_configAfterMerge(t){return t}_mergeConfigObj(t,e){const i=Ft(e)?_e.getDataAttribute(e,"config"):{};return{...this.constructor.Default,..."object"==typeof i?i:{},...Ft(e)?_e.getDataAttributes(e):{},..."object"==typeof t?t:{}}}_typeCheckConfig(t,e=this.constructor.DefaultType){for(const[n,s]of Object.entries(e)){const e=t[n],o=Ft(e)?"element":null==(i=e)?`${i}`:Object.prototype.toString.call(i).match(/\s([a-z]+)/i)[1].toLowerCase();if(!new RegExp(s).test(o))throw new TypeError(`${this.constructor.NAME.toUpperCase()}: Option "${n}" provided type "${o}" but expected type "${s}".`)}var i}}class ve extends be{constructor(t,e){super(),(t=Ht(t))&&(this._element=t,this._config=this._getConfig(e),Nt.set(this._element,this.constructor.DATA_KEY,this))}dispose(){Nt.remove(this._element,this.constructor.DATA_KEY),fe.off(this._element,this.constructor.EVENT_KEY);for(const t of Object.getOwnPropertyNames(this))this[t]=null}_queueCallback(t,e,i=!0){Ut(t,e,i)}_getConfig(t){return t=this._mergeConfigObj(t,this._element),t=this._configAfterMerge(t),this._typeCheckConfig(t),t}static getInstance(t){return Nt.get(Ht(t),this.DATA_KEY)}static getOrCreateInstance(t,e={}){return this.getInstance(t)||new this(t,"object"==typeof e?e:null)}static get VERSION(){return"5.3.2"}static get DATA_KEY(){return`bs.${this.NAME}`}static get EVENT_KEY(){return`.${this.DATA_KEY}`}static eventName(t){return`${t}${this.EVENT_KEY}`}}const ye=t=>{let e=t.getAttribute("data-bs-target");if(!e||"#"===e){let i=t.getAttribute("href");if(!i||!i.includes("#")&&!i.startsWith("."))return null;i.includes("#")&&!i.startsWith("#")&&(i=`#${i.split("#")[1]}`),e=i&&"#"!==i?Mt(i.trim()):null}return e},we={find:(t,e=document.documentElement)=>[].concat(...Element.prototype.querySelectorAll.call(e,t)),findOne:(t,e=document.documentElement)=>Element.prototype.querySelector.call(e,t),children:(t,e)=>[].concat(...t.children).filter((t=>t.matches(e))),parents(t,e){const i=[];let n=t.parentNode.closest(e);for(;n;)i.push(n),n=n.parentNode.closest(e);return i},prev(t,e){let i=t.previousElementSibling;for(;i;){if(i.matches(e))return[i];i=i.previousElementSibling}return[]},next(t,e){let i=t.nextElementSibling;for(;i;){if(i.matches(e))return[i];i=i.nextElementSibling}return[]},focusableChildren(t){const e=["a","button","input","textarea","select","details","[tabindex]",'[contenteditable="true"]'].map((t=>`${t}:not([tabindex^="-"])`)).join(",");return this.find(e,t).filter((t=>!Wt(t)&&Bt(t)))},getSelectorFromElement(t){const e=ye(t);return e&&we.findOne(e)?e:null},getElementFromSelector(t){const e=ye(t);return e?we.findOne(e):null},getMultipleElementsFromSelector(t){const e=ye(t);return e?we.find(e):[]}},Ee=(t,e="hide")=>{const i=`click.dismiss${t.EVENT_KEY}`,n=t.NAME;fe.on(document,i,`[data-bs-dismiss="${n}"]`,(function(i){if(["A","AREA"].includes(this.tagName)&&i.preventDefault(),Wt(this))return;const s=we.getElementFromSelector(this)||this.closest(`.${n}`);t.getOrCreateInstance(s)[e]()}))},Ae=".bs.alert",Te=`close${Ae}`,Ce=`closed${Ae}`;class Oe extends ve{static get NAME(){return"alert"}close(){if(fe.trigger(this._element,Te).defaultPrevented)return;this._element.classList.remove("show");const t=this._element.classList.contains("fade");this._queueCallback((()=>this._destroyElement()),this._element,t)}_destroyElement(){this._element.remove(),fe.trigger(this._element,Ce),this.dispose()}static jQueryInterface(t){return this.each((function(){const e=Oe.getOrCreateInstance(this);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t](this)}}))}}Ee(Oe,"close"),Qt(Oe);const xe='[data-bs-toggle="button"]';class ke extends ve{static get NAME(){return"button"}toggle(){this._element.setAttribute("aria-pressed",this._element.classList.toggle("active"))}static jQueryInterface(t){return this.each((function(){const e=ke.getOrCreateInstance(this);"toggle"===t&&e[t]()}))}}fe.on(document,"click.bs.button.data-api",xe,(t=>{t.preventDefault();const e=t.target.closest(xe);ke.getOrCreateInstance(e).toggle()})),Qt(ke);const Le=".bs.swipe",Se=`touchstart${Le}`,De=`touchmove${Le}`,$e=`touchend${Le}`,Ie=`pointerdown${Le}`,Ne=`pointerup${Le}`,Pe={endCallback:null,leftCallback:null,rightCallback:null},Me={endCallback:"(function|null)",leftCallback:"(function|null)",rightCallback:"(function|null)"};class je extends be{constructor(t,e){super(),this._element=t,t&&je.isSupported()&&(this._config=this._getConfig(e),this._deltaX=0,this._supportPointerEvents=Boolean(window.PointerEvent),this._initEvents())}static get Default(){return Pe}static get DefaultType(){return Me}static get NAME(){return"swipe"}dispose(){fe.off(this._element,Le)}_start(t){this._supportPointerEvents?this._eventIsPointerPenTouch(t)&&(this._deltaX=t.clientX):this._deltaX=t.touches[0].clientX}_end(t){this._eventIsPointerPenTouch(t)&&(this._deltaX=t.clientX-this._deltaX),this._handleSwipe(),Xt(this._config.endCallback)}_move(t){this._deltaX=t.touches&&t.touches.length>1?0:t.touches[0].clientX-this._deltaX}_handleSwipe(){const t=Math.abs(this._deltaX);if(t<=40)return;const e=t/this._deltaX;this._deltaX=0,e&&Xt(e>0?this._config.rightCallback:this._config.leftCallback)}_initEvents(){this._supportPointerEvents?(fe.on(this._element,Ie,(t=>this._start(t))),fe.on(this._element,Ne,(t=>this._end(t))),this._element.classList.add("pointer-event")):(fe.on(this._element,Se,(t=>this._start(t))),fe.on(this._element,De,(t=>this._move(t))),fe.on(this._element,$e,(t=>this._end(t))))}_eventIsPointerPenTouch(t){return this._supportPointerEvents&&("pen"===t.pointerType||"touch"===t.pointerType)}static isSupported(){return"ontouchstart"in document.documentElement||navigator.maxTouchPoints>0}}const Fe=".bs.carousel",He=".data-api",Be="next",We="prev",ze="left",Re="right",qe=`slide${Fe}`,Ve=`slid${Fe}`,Ye=`keydown${Fe}`,Ke=`mouseenter${Fe}`,Qe=`mouseleave${Fe}`,Xe=`dragstart${Fe}`,Ue=`load${Fe}${He}`,Ge=`click${Fe}${He}`,Je="carousel",Ze="active",ti=".active",ei=".carousel-item",ii=ti+ei,ni={ArrowLeft:Re,ArrowRight:ze},si={interval:5e3,keyboard:!0,pause:"hover",ride:!1,touch:!0,wrap:!0},oi={interval:"(number|boolean)",keyboard:"boolean",pause:"(string|boolean)",ride:"(boolean|string)",touch:"boolean",wrap:"boolean"};class ri extends ve{constructor(t,e){super(t,e),this._interval=null,this._activeElement=null,this._isSliding=!1,this.touchTimeout=null,this._swipeHelper=null,this._indicatorsElement=we.findOne(".carousel-indicators",this._element),this._addEventListeners(),this._config.ride===Je&&this.cycle()}static get Default(){return si}static get DefaultType(){return oi}static get NAME(){return"carousel"}next(){this._slide(Be)}nextWhenVisible(){!document.hidden&&Bt(this._element)&&this.next()}prev(){this._slide(We)}pause(){this._isSliding&&jt(this._element),this._clearInterval()}cycle(){this._clearInterval(),this._updateInterval(),this._interval=setInterval((()=>this.nextWhenVisible()),this._config.interval)}_maybeEnableCycle(){this._config.ride&&(this._isSliding?fe.one(this._element,Ve,(()=>this.cycle())):this.cycle())}to(t){const e=this._getItems();if(t>e.length-1||t<0)return;if(this._isSliding)return void fe.one(this._element,Ve,(()=>this.to(t)));const i=this._getItemIndex(this._getActive());if(i===t)return;const n=t>i?Be:We;this._slide(n,e[t])}dispose(){this._swipeHelper&&this._swipeHelper.dispose(),super.dispose()}_configAfterMerge(t){return t.defaultInterval=t.interval,t}_addEventListeners(){this._config.keyboard&&fe.on(this._element,Ye,(t=>this._keydown(t))),"hover"===this._config.pause&&(fe.on(this._element,Ke,(()=>this.pause())),fe.on(this._element,Qe,(()=>this._maybeEnableCycle()))),this._config.touch&&je.isSupported()&&this._addTouchEventListeners()}_addTouchEventListeners(){for(const t of we.find(".carousel-item img",this._element))fe.on(t,Xe,(t=>t.preventDefault()));const t={leftCallback:()=>this._slide(this._directionToOrder(ze)),rightCallback:()=>this._slide(this._directionToOrder(Re)),endCallback:()=>{"hover"===this._config.pause&&(this.pause(),this.touchTimeout&&clearTimeout(this.touchTimeout),this.touchTimeout=setTimeout((()=>this._maybeEnableCycle()),500+this._config.interval))}};this._swipeHelper=new je(this._element,t)}_keydown(t){if(/input|textarea/i.test(t.target.tagName))return;const e=ni[t.key];e&&(t.preventDefault(),this._slide(this._directionToOrder(e)))}_getItemIndex(t){return this._getItems().indexOf(t)}_setActiveIndicatorElement(t){if(!this._indicatorsElement)return;const e=we.findOne(ti,this._indicatorsElement);e.classList.remove(Ze),e.removeAttribute("aria-current");const i=we.findOne(`[data-bs-slide-to="${t}"]`,this._indicatorsElement);i&&(i.classList.add(Ze),i.setAttribute("aria-current","true"))}_updateInterval(){const t=this._activeElement||this._getActive();if(!t)return;const e=Number.parseInt(t.getAttribute("data-bs-interval"),10);this._config.interval=e||this._config.defaultInterval}_slide(t,e=null){if(this._isSliding)return;const i=this._getActive(),n=t===Be,s=e||Gt(this._getItems(),i,n,this._config.wrap);if(s===i)return;const o=this._getItemIndex(s),r=e=>fe.trigger(this._element,e,{relatedTarget:s,direction:this._orderToDirection(t),from:this._getItemIndex(i),to:o});if(r(qe).defaultPrevented)return;if(!i||!s)return;const a=Boolean(this._interval);this.pause(),this._isSliding=!0,this._setActiveIndicatorElement(o),this._activeElement=s;const l=n?"carousel-item-start":"carousel-item-end",c=n?"carousel-item-next":"carousel-item-prev";s.classList.add(c),qt(s),i.classList.add(l),s.classList.add(l),this._queueCallback((()=>{s.classList.remove(l,c),s.classList.add(Ze),i.classList.remove(Ze,c,l),this._isSliding=!1,r(Ve)}),i,this._isAnimated()),a&&this.cycle()}_isAnimated(){return this._element.classList.contains("slide")}_getActive(){return we.findOne(ii,this._element)}_getItems(){return we.find(ei,this._element)}_clearInterval(){this._interval&&(clearInterval(this._interval),this._interval=null)}_directionToOrder(t){return Kt()?t===ze?We:Be:t===ze?Be:We}_orderToDirection(t){return Kt()?t===We?ze:Re:t===We?Re:ze}static jQueryInterface(t){return this.each((function(){const e=ri.getOrCreateInstance(this,t);if("number"!=typeof t){if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t]()}}else e.to(t)}))}}fe.on(document,Ge,"[data-bs-slide], [data-bs-slide-to]",(function(t){const e=we.getElementFromSelector(this);if(!e||!e.classList.contains(Je))return;t.preventDefault();const i=ri.getOrCreateInstance(e),n=this.getAttribute("data-bs-slide-to");return n?(i.to(n),void i._maybeEnableCycle()):"next"===_e.getDataAttribute(this,"slide")?(i.next(),void i._maybeEnableCycle()):(i.prev(),void i._maybeEnableCycle())})),fe.on(window,Ue,(()=>{const t=we.find('[data-bs-ride="carousel"]');for(const e of t)ri.getOrCreateInstance(e)})),Qt(ri);const ai=".bs.collapse",li=`show${ai}`,ci=`shown${ai}`,hi=`hide${ai}`,di=`hidden${ai}`,ui=`click${ai}.data-api`,fi="show",pi="collapse",mi="collapsing",gi=`:scope .${pi} .${pi}`,_i='[data-bs-toggle="collapse"]',bi={parent:null,toggle:!0},vi={parent:"(null|element)",toggle:"boolean"};class yi extends ve{constructor(t,e){super(t,e),this._isTransitioning=!1,this._triggerArray=[];const i=we.find(_i);for(const t of i){const e=we.getSelectorFromElement(t),i=we.find(e).filter((t=>t===this._element));null!==e&&i.length&&this._triggerArray.push(t)}this._initializeChildren(),this._config.parent||this._addAriaAndCollapsedClass(this._triggerArray,this._isShown()),this._config.toggle&&this.toggle()}static get Default(){return bi}static get DefaultType(){return vi}static get NAME(){return"collapse"}toggle(){this._isShown()?this.hide():this.show()}show(){if(this._isTransitioning||this._isShown())return;let t=[];if(this._config.parent&&(t=this._getFirstLevelChildren(".collapse.show, .collapse.collapsing").filter((t=>t!==this._element)).map((t=>yi.getOrCreateInstance(t,{toggle:!1})))),t.length&&t[0]._isTransitioning)return;if(fe.trigger(this._element,li).defaultPrevented)return;for(const e of t)e.hide();const e=this._getDimension();this._element.classList.remove(pi),this._element.classList.add(mi),this._element.style[e]=0,this._addAriaAndCollapsedClass(this._triggerArray,!0),this._isTransitioning=!0;const i=`scroll${e[0].toUpperCase()+e.slice(1)}`;this._queueCallback((()=>{this._isTransitioning=!1,this._element.classList.remove(mi),this._element.classList.add(pi,fi),this._element.style[e]="",fe.trigger(this._element,ci)}),this._element,!0),this._element.style[e]=`${this._element[i]}px`}hide(){if(this._isTransitioning||!this._isShown())return;if(fe.trigger(this._element,hi).defaultPrevented)return;const t=this._getDimension();this._element.style[t]=`${this._element.getBoundingClientRect()[t]}px`,qt(this._element),this._element.classList.add(mi),this._element.classList.remove(pi,fi);for(const t of this._triggerArray){const e=we.getElementFromSelector(t);e&&!this._isShown(e)&&this._addAriaAndCollapsedClass([t],!1)}this._isTransitioning=!0,this._element.style[t]="",this._queueCallback((()=>{this._isTransitioning=!1,this._element.classList.remove(mi),this._element.classList.add(pi),fe.trigger(this._element,di)}),this._element,!0)}_isShown(t=this._element){return t.classList.contains(fi)}_configAfterMerge(t){return t.toggle=Boolean(t.toggle),t.parent=Ht(t.parent),t}_getDimension(){return this._element.classList.contains("collapse-horizontal")?"width":"height"}_initializeChildren(){if(!this._config.parent)return;const t=this._getFirstLevelChildren(_i);for(const e of t){const t=we.getElementFromSelector(e);t&&this._addAriaAndCollapsedClass([e],this._isShown(t))}}_getFirstLevelChildren(t){const e=we.find(gi,this._config.parent);return we.find(t,this._config.parent).filter((t=>!e.includes(t)))}_addAriaAndCollapsedClass(t,e){if(t.length)for(const i of t)i.classList.toggle("collapsed",!e),i.setAttribute("aria-expanded",e)}static jQueryInterface(t){const e={};return"string"==typeof t&&/show|hide/.test(t)&&(e.toggle=!1),this.each((function(){const i=yi.getOrCreateInstance(this,e);if("string"==typeof t){if(void 0===i[t])throw new TypeError(`No method named "${t}"`);i[t]()}}))}}fe.on(document,ui,_i,(function(t){("A"===t.target.tagName||t.delegateTarget&&"A"===t.delegateTarget.tagName)&&t.preventDefault();for(const t of we.getMultipleElementsFromSelector(this))yi.getOrCreateInstance(t,{toggle:!1}).toggle()})),Qt(yi);const wi="dropdown",Ei=".bs.dropdown",Ai=".data-api",Ti="ArrowUp",Ci="ArrowDown",Oi=`hide${Ei}`,xi=`hidden${Ei}`,ki=`show${Ei}`,Li=`shown${Ei}`,Si=`click${Ei}${Ai}`,Di=`keydown${Ei}${Ai}`,$i=`keyup${Ei}${Ai}`,Ii="show",Ni='[data-bs-toggle="dropdown"]:not(.disabled):not(:disabled)',Pi=`${Ni}.${Ii}`,Mi=".dropdown-menu",ji=Kt()?"top-end":"top-start",Fi=Kt()?"top-start":"top-end",Hi=Kt()?"bottom-end":"bottom-start",Bi=Kt()?"bottom-start":"bottom-end",Wi=Kt()?"left-start":"right-start",zi=Kt()?"right-start":"left-start",Ri={autoClose:!0,boundary:"clippingParents",display:"dynamic",offset:[0,2],popperConfig:null,reference:"toggle"},qi={autoClose:"(boolean|string)",boundary:"(string|element)",display:"string",offset:"(array|string|function)",popperConfig:"(null|object|function)",reference:"(string|element|object)"};class Vi extends ve{constructor(t,e){super(t,e),this._popper=null,this._parent=this._element.parentNode,this._menu=we.next(this._element,Mi)[0]||we.prev(this._element,Mi)[0]||we.findOne(Mi,this._parent),this._inNavbar=this._detectNavbar()}static get Default(){return Ri}static get DefaultType(){return qi}static get NAME(){return wi}toggle(){return this._isShown()?this.hide():this.show()}show(){if(Wt(this._element)||this._isShown())return;const t={relatedTarget:this._element};if(!fe.trigger(this._element,ki,t).defaultPrevented){if(this._createPopper(),"ontouchstart"in document.documentElement&&!this._parent.closest(".navbar-nav"))for(const t of[].concat(...document.body.children))fe.on(t,"mouseover",Rt);this._element.focus(),this._element.setAttribute("aria-expanded",!0),this._menu.classList.add(Ii),this._element.classList.add(Ii),fe.trigger(this._element,Li,t)}}hide(){if(Wt(this._element)||!this._isShown())return;const t={relatedTarget:this._element};this._completeHide(t)}dispose(){this._popper&&this._popper.destroy(),super.dispose()}update(){this._inNavbar=this._detectNavbar(),this._popper&&this._popper.update()}_completeHide(t){if(!fe.trigger(this._element,Oi,t).defaultPrevented){if("ontouchstart"in document.documentElement)for(const t of[].concat(...document.body.children))fe.off(t,"mouseover",Rt);this._popper&&this._popper.destroy(),this._menu.classList.remove(Ii),this._element.classList.remove(Ii),this._element.setAttribute("aria-expanded","false"),_e.removeDataAttribute(this._menu,"popper"),fe.trigger(this._element,xi,t)}}_getConfig(t){if("object"==typeof(t=super._getConfig(t)).reference&&!Ft(t.reference)&&"function"!=typeof t.reference.getBoundingClientRect)throw new TypeError(`${wi.toUpperCase()}: Option "reference" provided type "object" without a required "getBoundingClientRect" method.`);return t}_createPopper(){if(void 0===e)throw new TypeError("Bootstrap's dropdowns require Popper (https://popper.js.org)");let t=this._element;"parent"===this._config.reference?t=this._parent:Ft(this._config.reference)?t=Ht(this._config.reference):"object"==typeof this._config.reference&&(t=this._config.reference);const i=this._getPopperConfig();this._popper=Dt(t,this._menu,i)}_isShown(){return this._menu.classList.contains(Ii)}_getPlacement(){const t=this._parent;if(t.classList.contains("dropend"))return Wi;if(t.classList.contains("dropstart"))return zi;if(t.classList.contains("dropup-center"))return"top";if(t.classList.contains("dropdown-center"))return"bottom";const e="end"===getComputedStyle(this._menu).getPropertyValue("--bs-position").trim();return t.classList.contains("dropup")?e?Fi:ji:e?Bi:Hi}_detectNavbar(){return null!==this._element.closest(".navbar")}_getOffset(){const{offset:t}=this._config;return"string"==typeof t?t.split(",").map((t=>Number.parseInt(t,10))):"function"==typeof t?e=>t(e,this._element):t}_getPopperConfig(){const t={placement:this._getPlacement(),modifiers:[{name:"preventOverflow",options:{boundary:this._config.boundary}},{name:"offset",options:{offset:this._getOffset()}}]};return(this._inNavbar||"static"===this._config.display)&&(_e.setDataAttribute(this._menu,"popper","static"),t.modifiers=[{name:"applyStyles",enabled:!1}]),{...t,...Xt(this._config.popperConfig,[t])}}_selectMenuItem({key:t,target:e}){const i=we.find(".dropdown-menu .dropdown-item:not(.disabled):not(:disabled)",this._menu).filter((t=>Bt(t)));i.length&&Gt(i,e,t===Ci,!i.includes(e)).focus()}static jQueryInterface(t){return this.each((function(){const e=Vi.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}static clearMenus(t){if(2===t.button||"keyup"===t.type&&"Tab"!==t.key)return;const e=we.find(Pi);for(const i of e){const e=Vi.getInstance(i);if(!e||!1===e._config.autoClose)continue;const n=t.composedPath(),s=n.includes(e._menu);if(n.includes(e._element)||"inside"===e._config.autoClose&&!s||"outside"===e._config.autoClose&&s)continue;if(e._menu.contains(t.target)&&("keyup"===t.type&&"Tab"===t.key||/input|select|option|textarea|form/i.test(t.target.tagName)))continue;const o={relatedTarget:e._element};"click"===t.type&&(o.clickEvent=t),e._completeHide(o)}}static dataApiKeydownHandler(t){const e=/input|textarea/i.test(t.target.tagName),i="Escape"===t.key,n=[Ti,Ci].includes(t.key);if(!n&&!i)return;if(e&&!i)return;t.preventDefault();const s=this.matches(Ni)?this:we.prev(this,Ni)[0]||we.next(this,Ni)[0]||we.findOne(Ni,t.delegateTarget.parentNode),o=Vi.getOrCreateInstance(s);if(n)return t.stopPropagation(),o.show(),void o._selectMenuItem(t);o._isShown()&&(t.stopPropagation(),o.hide(),s.focus())}}fe.on(document,Di,Ni,Vi.dataApiKeydownHandler),fe.on(document,Di,Mi,Vi.dataApiKeydownHandler),fe.on(document,Si,Vi.clearMenus),fe.on(document,$i,Vi.clearMenus),fe.on(document,Si,Ni,(function(t){t.preventDefault(),Vi.getOrCreateInstance(this).toggle()})),Qt(Vi);const Yi="backdrop",Ki="show",Qi=`mousedown.bs.${Yi}`,Xi={className:"modal-backdrop",clickCallback:null,isAnimated:!1,isVisible:!0,rootElement:"body"},Ui={className:"string",clickCallback:"(function|null)",isAnimated:"boolean",isVisible:"boolean",rootElement:"(element|string)"};class Gi extends be{constructor(t){super(),this._config=this._getConfig(t),this._isAppended=!1,this._element=null}static get Default(){return Xi}static get DefaultType(){return Ui}static get NAME(){return Yi}show(t){if(!this._config.isVisible)return void Xt(t);this._append();const e=this._getElement();this._config.isAnimated&&qt(e),e.classList.add(Ki),this._emulateAnimation((()=>{Xt(t)}))}hide(t){this._config.isVisible?(this._getElement().classList.remove(Ki),this._emulateAnimation((()=>{this.dispose(),Xt(t)}))):Xt(t)}dispose(){this._isAppended&&(fe.off(this._element,Qi),this._element.remove(),this._isAppended=!1)}_getElement(){if(!this._element){const t=document.createElement("div");t.className=this._config.className,this._config.isAnimated&&t.classList.add("fade"),this._element=t}return this._element}_configAfterMerge(t){return t.rootElement=Ht(t.rootElement),t}_append(){if(this._isAppended)return;const t=this._getElement();this._config.rootElement.append(t),fe.on(t,Qi,(()=>{Xt(this._config.clickCallback)})),this._isAppended=!0}_emulateAnimation(t){Ut(t,this._getElement(),this._config.isAnimated)}}const Ji=".bs.focustrap",Zi=`focusin${Ji}`,tn=`keydown.tab${Ji}`,en="backward",nn={autofocus:!0,trapElement:null},sn={autofocus:"boolean",trapElement:"element"};class on extends be{constructor(t){super(),this._config=this._getConfig(t),this._isActive=!1,this._lastTabNavDirection=null}static get Default(){return nn}static get DefaultType(){return sn}static get NAME(){return"focustrap"}activate(){this._isActive||(this._config.autofocus&&this._config.trapElement.focus(),fe.off(document,Ji),fe.on(document,Zi,(t=>this._handleFocusin(t))),fe.on(document,tn,(t=>this._handleKeydown(t))),this._isActive=!0)}deactivate(){this._isActive&&(this._isActive=!1,fe.off(document,Ji))}_handleFocusin(t){const{trapElement:e}=this._config;if(t.target===document||t.target===e||e.contains(t.target))return;const i=we.focusableChildren(e);0===i.length?e.focus():this._lastTabNavDirection===en?i[i.length-1].focus():i[0].focus()}_handleKeydown(t){"Tab"===t.key&&(this._lastTabNavDirection=t.shiftKey?en:"forward")}}const rn=".fixed-top, .fixed-bottom, .is-fixed, .sticky-top",an=".sticky-top",ln="padding-right",cn="margin-right";class hn{constructor(){this._element=document.body}getWidth(){const t=document.documentElement.clientWidth;return Math.abs(window.innerWidth-t)}hide(){const t=this.getWidth();this._disableOverFlow(),this._setElementAttributes(this._element,ln,(e=>e+t)),this._setElementAttributes(rn,ln,(e=>e+t)),this._setElementAttributes(an,cn,(e=>e-t))}reset(){this._resetElementAttributes(this._element,"overflow"),this._resetElementAttributes(this._element,ln),this._resetElementAttributes(rn,ln),this._resetElementAttributes(an,cn)}isOverflowing(){return this.getWidth()>0}_disableOverFlow(){this._saveInitialAttribute(this._element,"overflow"),this._element.style.overflow="hidden"}_setElementAttributes(t,e,i){const n=this.getWidth();this._applyManipulationCallback(t,(t=>{if(t!==this._element&&window.innerWidth>t.clientWidth+n)return;this._saveInitialAttribute(t,e);const s=window.getComputedStyle(t).getPropertyValue(e);t.style.setProperty(e,`${i(Number.parseFloat(s))}px`)}))}_saveInitialAttribute(t,e){const i=t.style.getPropertyValue(e);i&&_e.setDataAttribute(t,e,i)}_resetElementAttributes(t,e){this._applyManipulationCallback(t,(t=>{const i=_e.getDataAttribute(t,e);null!==i?(_e.removeDataAttribute(t,e),t.style.setProperty(e,i)):t.style.removeProperty(e)}))}_applyManipulationCallback(t,e){if(Ft(t))e(t);else for(const i of we.find(t,this._element))e(i)}}const dn=".bs.modal",un=`hide${dn}`,fn=`hidePrevented${dn}`,pn=`hidden${dn}`,mn=`show${dn}`,gn=`shown${dn}`,_n=`resize${dn}`,bn=`click.dismiss${dn}`,vn=`mousedown.dismiss${dn}`,yn=`keydown.dismiss${dn}`,wn=`click${dn}.data-api`,En="modal-open",An="show",Tn="modal-static",Cn={backdrop:!0,focus:!0,keyboard:!0},On={backdrop:"(boolean|string)",focus:"boolean",keyboard:"boolean"};class xn extends ve{constructor(t,e){super(t,e),this._dialog=we.findOne(".modal-dialog",this._element),this._backdrop=this._initializeBackDrop(),this._focustrap=this._initializeFocusTrap(),this._isShown=!1,this._isTransitioning=!1,this._scrollBar=new hn,this._addEventListeners()}static get Default(){return Cn}static get DefaultType(){return On}static get NAME(){return"modal"}toggle(t){return this._isShown?this.hide():this.show(t)}show(t){this._isShown||this._isTransitioning||fe.trigger(this._element,mn,{relatedTarget:t}).defaultPrevented||(this._isShown=!0,this._isTransitioning=!0,this._scrollBar.hide(),document.body.classList.add(En),this._adjustDialog(),this._backdrop.show((()=>this._showElement(t))))}hide(){this._isShown&&!this._isTransitioning&&(fe.trigger(this._element,un).defaultPrevented||(this._isShown=!1,this._isTransitioning=!0,this._focustrap.deactivate(),this._element.classList.remove(An),this._queueCallback((()=>this._hideModal()),this._element,this._isAnimated())))}dispose(){fe.off(window,dn),fe.off(this._dialog,dn),this._backdrop.dispose(),this._focustrap.deactivate(),super.dispose()}handleUpdate(){this._adjustDialog()}_initializeBackDrop(){return new Gi({isVisible:Boolean(this._config.backdrop),isAnimated:this._isAnimated()})}_initializeFocusTrap(){return new on({trapElement:this._element})}_showElement(t){document.body.contains(this._element)||document.body.append(this._element),this._element.style.display="block",this._element.removeAttribute("aria-hidden"),this._element.setAttribute("aria-modal",!0),this._element.setAttribute("role","dialog"),this._element.scrollTop=0;const e=we.findOne(".modal-body",this._dialog);e&&(e.scrollTop=0),qt(this._element),this._element.classList.add(An),this._queueCallback((()=>{this._config.focus&&this._focustrap.activate(),this._isTransitioning=!1,fe.trigger(this._element,gn,{relatedTarget:t})}),this._dialog,this._isAnimated())}_addEventListeners(){fe.on(this._element,yn,(t=>{"Escape"===t.key&&(this._config.keyboard?this.hide():this._triggerBackdropTransition())})),fe.on(window,_n,(()=>{this._isShown&&!this._isTransitioning&&this._adjustDialog()})),fe.on(this._element,vn,(t=>{fe.one(this._element,bn,(e=>{this._element===t.target&&this._element===e.target&&("static"!==this._config.backdrop?this._config.backdrop&&this.hide():this._triggerBackdropTransition())}))}))}_hideModal(){this._element.style.display="none",this._element.setAttribute("aria-hidden",!0),this._element.removeAttribute("aria-modal"),this._element.removeAttribute("role"),this._isTransitioning=!1,this._backdrop.hide((()=>{document.body.classList.remove(En),this._resetAdjustments(),this._scrollBar.reset(),fe.trigger(this._element,pn)}))}_isAnimated(){return this._element.classList.contains("fade")}_triggerBackdropTransition(){if(fe.trigger(this._element,fn).defaultPrevented)return;const t=this._element.scrollHeight>document.documentElement.clientHeight,e=this._element.style.overflowY;"hidden"===e||this._element.classList.contains(Tn)||(t||(this._element.style.overflowY="hidden"),this._element.classList.add(Tn),this._queueCallback((()=>{this._element.classList.remove(Tn),this._queueCallback((()=>{this._element.style.overflowY=e}),this._dialog)}),this._dialog),this._element.focus())}_adjustDialog(){const t=this._element.scrollHeight>document.documentElement.clientHeight,e=this._scrollBar.getWidth(),i=e>0;if(i&&!t){const t=Kt()?"paddingLeft":"paddingRight";this._element.style[t]=`${e}px`}if(!i&&t){const t=Kt()?"paddingRight":"paddingLeft";this._element.style[t]=`${e}px`}}_resetAdjustments(){this._element.style.paddingLeft="",this._element.style.paddingRight=""}static jQueryInterface(t,e){return this.each((function(){const i=xn.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===i[t])throw new TypeError(`No method named "${t}"`);i[t](e)}}))}}fe.on(document,wn,'[data-bs-toggle="modal"]',(function(t){const e=we.getElementFromSelector(this);["A","AREA"].includes(this.tagName)&&t.preventDefault(),fe.one(e,mn,(t=>{t.defaultPrevented||fe.one(e,pn,(()=>{Bt(this)&&this.focus()}))}));const i=we.findOne(".modal.show");i&&xn.getInstance(i).hide(),xn.getOrCreateInstance(e).toggle(this)})),Ee(xn),Qt(xn);const kn=".bs.offcanvas",Ln=".data-api",Sn=`load${kn}${Ln}`,Dn="show",$n="showing",In="hiding",Nn=".offcanvas.show",Pn=`show${kn}`,Mn=`shown${kn}`,jn=`hide${kn}`,Fn=`hidePrevented${kn}`,Hn=`hidden${kn}`,Bn=`resize${kn}`,Wn=`click${kn}${Ln}`,zn=`keydown.dismiss${kn}`,Rn={backdrop:!0,keyboard:!0,scroll:!1},qn={backdrop:"(boolean|string)",keyboard:"boolean",scroll:"boolean"};class Vn extends ve{constructor(t,e){super(t,e),this._isShown=!1,this._backdrop=this._initializeBackDrop(),this._focustrap=this._initializeFocusTrap(),this._addEventListeners()}static get Default(){return Rn}static get DefaultType(){return qn}static get NAME(){return"offcanvas"}toggle(t){return this._isShown?this.hide():this.show(t)}show(t){this._isShown||fe.trigger(this._element,Pn,{relatedTarget:t}).defaultPrevented||(this._isShown=!0,this._backdrop.show(),this._config.scroll||(new hn).hide(),this._element.setAttribute("aria-modal",!0),this._element.setAttribute("role","dialog"),this._element.classList.add($n),this._queueCallback((()=>{this._config.scroll&&!this._config.backdrop||this._focustrap.activate(),this._element.classList.add(Dn),this._element.classList.remove($n),fe.trigger(this._element,Mn,{relatedTarget:t})}),this._element,!0))}hide(){this._isShown&&(fe.trigger(this._element,jn).defaultPrevented||(this._focustrap.deactivate(),this._element.blur(),this._isShown=!1,this._element.classList.add(In),this._backdrop.hide(),this._queueCallback((()=>{this._element.classList.remove(Dn,In),this._element.removeAttribute("aria-modal"),this._element.removeAttribute("role"),this._config.scroll||(new hn).reset(),fe.trigger(this._element,Hn)}),this._element,!0)))}dispose(){this._backdrop.dispose(),this._focustrap.deactivate(),super.dispose()}_initializeBackDrop(){const t=Boolean(this._config.backdrop);return new Gi({className:"offcanvas-backdrop",isVisible:t,isAnimated:!0,rootElement:this._element.parentNode,clickCallback:t?()=>{"static"!==this._config.backdrop?this.hide():fe.trigger(this._element,Fn)}:null})}_initializeFocusTrap(){return new on({trapElement:this._element})}_addEventListeners(){fe.on(this._element,zn,(t=>{"Escape"===t.key&&(this._config.keyboard?this.hide():fe.trigger(this._element,Fn))}))}static jQueryInterface(t){return this.each((function(){const e=Vn.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t](this)}}))}}fe.on(document,Wn,'[data-bs-toggle="offcanvas"]',(function(t){const e=we.getElementFromSelector(this);if(["A","AREA"].includes(this.tagName)&&t.preventDefault(),Wt(this))return;fe.one(e,Hn,(()=>{Bt(this)&&this.focus()}));const i=we.findOne(Nn);i&&i!==e&&Vn.getInstance(i).hide(),Vn.getOrCreateInstance(e).toggle(this)})),fe.on(window,Sn,(()=>{for(const t of we.find(Nn))Vn.getOrCreateInstance(t).show()})),fe.on(window,Bn,(()=>{for(const t of we.find("[aria-modal][class*=show][class*=offcanvas-]"))"fixed"!==getComputedStyle(t).position&&Vn.getOrCreateInstance(t).hide()})),Ee(Vn),Qt(Vn);const Yn={"*":["class","dir","id","lang","role",/^aria-[\w-]*$/i],a:["target","href","title","rel"],area:[],b:[],br:[],col:[],code:[],div:[],em:[],hr:[],h1:[],h2:[],h3:[],h4:[],h5:[],h6:[],i:[],img:["src","srcset","alt","title","width","height"],li:[],ol:[],p:[],pre:[],s:[],small:[],span:[],sub:[],sup:[],strong:[],u:[],ul:[]},Kn=new Set(["background","cite","href","itemtype","longdesc","poster","src","xlink:href"]),Qn=/^(?!javascript:)(?:[a-z0-9+.-]+:|[^&:/?#]*(?:[/?#]|$))/i,Xn=(t,e)=>{const i=t.nodeName.toLowerCase();return e.includes(i)?!Kn.has(i)||Boolean(Qn.test(t.nodeValue)):e.filter((t=>t instanceof RegExp)).some((t=>t.test(i)))},Un={allowList:Yn,content:{},extraClass:"",html:!1,sanitize:!0,sanitizeFn:null,template:"
"},Gn={allowList:"object",content:"object",extraClass:"(string|function)",html:"boolean",sanitize:"boolean",sanitizeFn:"(null|function)",template:"string"},Jn={entry:"(string|element|function|null)",selector:"(string|element)"};class Zn extends be{constructor(t){super(),this._config=this._getConfig(t)}static get Default(){return Un}static get DefaultType(){return Gn}static get NAME(){return"TemplateFactory"}getContent(){return Object.values(this._config.content).map((t=>this._resolvePossibleFunction(t))).filter(Boolean)}hasContent(){return this.getContent().length>0}changeContent(t){return this._checkContent(t),this._config.content={...this._config.content,...t},this}toHtml(){const t=document.createElement("div");t.innerHTML=this._maybeSanitize(this._config.template);for(const[e,i]of Object.entries(this._config.content))this._setContent(t,i,e);const e=t.children[0],i=this._resolvePossibleFunction(this._config.extraClass);return i&&e.classList.add(...i.split(" ")),e}_typeCheckConfig(t){super._typeCheckConfig(t),this._checkContent(t.content)}_checkContent(t){for(const[e,i]of Object.entries(t))super._typeCheckConfig({selector:e,entry:i},Jn)}_setContent(t,e,i){const n=we.findOne(i,t);n&&((e=this._resolvePossibleFunction(e))?Ft(e)?this._putElementInTemplate(Ht(e),n):this._config.html?n.innerHTML=this._maybeSanitize(e):n.textContent=e:n.remove())}_maybeSanitize(t){return this._config.sanitize?function(t,e,i){if(!t.length)return t;if(i&&"function"==typeof i)return i(t);const n=(new window.DOMParser).parseFromString(t,"text/html"),s=[].concat(...n.body.querySelectorAll("*"));for(const t of s){const i=t.nodeName.toLowerCase();if(!Object.keys(e).includes(i)){t.remove();continue}const n=[].concat(...t.attributes),s=[].concat(e["*"]||[],e[i]||[]);for(const e of n)Xn(e,s)||t.removeAttribute(e.nodeName)}return n.body.innerHTML}(t,this._config.allowList,this._config.sanitizeFn):t}_resolvePossibleFunction(t){return Xt(t,[this])}_putElementInTemplate(t,e){if(this._config.html)return e.innerHTML="",void e.append(t);e.textContent=t.textContent}}const ts=new Set(["sanitize","allowList","sanitizeFn"]),es="fade",is="show",ns=".modal",ss="hide.bs.modal",os="hover",rs="focus",as={AUTO:"auto",TOP:"top",RIGHT:Kt()?"left":"right",BOTTOM:"bottom",LEFT:Kt()?"right":"left"},ls={allowList:Yn,animation:!0,boundary:"clippingParents",container:!1,customClass:"",delay:0,fallbackPlacements:["top","right","bottom","left"],html:!1,offset:[0,6],placement:"top",popperConfig:null,sanitize:!0,sanitizeFn:null,selector:!1,template:'',title:"",trigger:"hover focus"},cs={allowList:"object",animation:"boolean",boundary:"(string|element)",container:"(string|element|boolean)",customClass:"(string|function)",delay:"(number|object)",fallbackPlacements:"array",html:"boolean",offset:"(array|string|function)",placement:"(string|function)",popperConfig:"(null|object|function)",sanitize:"boolean",sanitizeFn:"(null|function)",selector:"(string|boolean)",template:"string",title:"(string|element|function)",trigger:"string"};class hs extends ve{constructor(t,i){if(void 0===e)throw new TypeError("Bootstrap's tooltips require Popper (https://popper.js.org)");super(t,i),this._isEnabled=!0,this._timeout=0,this._isHovered=null,this._activeTrigger={},this._popper=null,this._templateFactory=null,this._newContent=null,this.tip=null,this._setListeners(),this._config.selector||this._fixTitle()}static get Default(){return ls}static get DefaultType(){return cs}static get NAME(){return"tooltip"}enable(){this._isEnabled=!0}disable(){this._isEnabled=!1}toggleEnabled(){this._isEnabled=!this._isEnabled}toggle(){this._isEnabled&&(this._activeTrigger.click=!this._activeTrigger.click,this._isShown()?this._leave():this._enter())}dispose(){clearTimeout(this._timeout),fe.off(this._element.closest(ns),ss,this._hideModalHandler),this._element.getAttribute("data-bs-original-title")&&this._element.setAttribute("title",this._element.getAttribute("data-bs-original-title")),this._disposePopper(),super.dispose()}show(){if("none"===this._element.style.display)throw new Error("Please use show on visible elements");if(!this._isWithContent()||!this._isEnabled)return;const t=fe.trigger(this._element,this.constructor.eventName("show")),e=(zt(this._element)||this._element.ownerDocument.documentElement).contains(this._element);if(t.defaultPrevented||!e)return;this._disposePopper();const i=this._getTipElement();this._element.setAttribute("aria-describedby",i.getAttribute("id"));const{container:n}=this._config;if(this._element.ownerDocument.documentElement.contains(this.tip)||(n.append(i),fe.trigger(this._element,this.constructor.eventName("inserted"))),this._popper=this._createPopper(i),i.classList.add(is),"ontouchstart"in document.documentElement)for(const t of[].concat(...document.body.children))fe.on(t,"mouseover",Rt);this._queueCallback((()=>{fe.trigger(this._element,this.constructor.eventName("shown")),!1===this._isHovered&&this._leave(),this._isHovered=!1}),this.tip,this._isAnimated())}hide(){if(this._isShown()&&!fe.trigger(this._element,this.constructor.eventName("hide")).defaultPrevented){if(this._getTipElement().classList.remove(is),"ontouchstart"in document.documentElement)for(const t of[].concat(...document.body.children))fe.off(t,"mouseover",Rt);this._activeTrigger.click=!1,this._activeTrigger[rs]=!1,this._activeTrigger[os]=!1,this._isHovered=null,this._queueCallback((()=>{this._isWithActiveTrigger()||(this._isHovered||this._disposePopper(),this._element.removeAttribute("aria-describedby"),fe.trigger(this._element,this.constructor.eventName("hidden")))}),this.tip,this._isAnimated())}}update(){this._popper&&this._popper.update()}_isWithContent(){return Boolean(this._getTitle())}_getTipElement(){return this.tip||(this.tip=this._createTipElement(this._newContent||this._getContentForTemplate())),this.tip}_createTipElement(t){const e=this._getTemplateFactory(t).toHtml();if(!e)return null;e.classList.remove(es,is),e.classList.add(`bs-${this.constructor.NAME}-auto`);const i=(t=>{do{t+=Math.floor(1e6*Math.random())}while(document.getElementById(t));return t})(this.constructor.NAME).toString();return e.setAttribute("id",i),this._isAnimated()&&e.classList.add(es),e}setContent(t){this._newContent=t,this._isShown()&&(this._disposePopper(),this.show())}_getTemplateFactory(t){return this._templateFactory?this._templateFactory.changeContent(t):this._templateFactory=new Zn({...this._config,content:t,extraClass:this._resolvePossibleFunction(this._config.customClass)}),this._templateFactory}_getContentForTemplate(){return{".tooltip-inner":this._getTitle()}}_getTitle(){return this._resolvePossibleFunction(this._config.title)||this._element.getAttribute("data-bs-original-title")}_initializeOnDelegatedTarget(t){return this.constructor.getOrCreateInstance(t.delegateTarget,this._getDelegateConfig())}_isAnimated(){return this._config.animation||this.tip&&this.tip.classList.contains(es)}_isShown(){return this.tip&&this.tip.classList.contains(is)}_createPopper(t){const e=Xt(this._config.placement,[this,t,this._element]),i=as[e.toUpperCase()];return Dt(this._element,t,this._getPopperConfig(i))}_getOffset(){const{offset:t}=this._config;return"string"==typeof t?t.split(",").map((t=>Number.parseInt(t,10))):"function"==typeof t?e=>t(e,this._element):t}_resolvePossibleFunction(t){return Xt(t,[this._element])}_getPopperConfig(t){const e={placement:t,modifiers:[{name:"flip",options:{fallbackPlacements:this._config.fallbackPlacements}},{name:"offset",options:{offset:this._getOffset()}},{name:"preventOverflow",options:{boundary:this._config.boundary}},{name:"arrow",options:{element:`.${this.constructor.NAME}-arrow`}},{name:"preSetPlacement",enabled:!0,phase:"beforeMain",fn:t=>{this._getTipElement().setAttribute("data-popper-placement",t.state.placement)}}]};return{...e,...Xt(this._config.popperConfig,[e])}}_setListeners(){const t=this._config.trigger.split(" ");for(const e of t)if("click"===e)fe.on(this._element,this.constructor.eventName("click"),this._config.selector,(t=>{this._initializeOnDelegatedTarget(t).toggle()}));else if("manual"!==e){const t=e===os?this.constructor.eventName("mouseenter"):this.constructor.eventName("focusin"),i=e===os?this.constructor.eventName("mouseleave"):this.constructor.eventName("focusout");fe.on(this._element,t,this._config.selector,(t=>{const e=this._initializeOnDelegatedTarget(t);e._activeTrigger["focusin"===t.type?rs:os]=!0,e._enter()})),fe.on(this._element,i,this._config.selector,(t=>{const e=this._initializeOnDelegatedTarget(t);e._activeTrigger["focusout"===t.type?rs:os]=e._element.contains(t.relatedTarget),e._leave()}))}this._hideModalHandler=()=>{this._element&&this.hide()},fe.on(this._element.closest(ns),ss,this._hideModalHandler)}_fixTitle(){const t=this._element.getAttribute("title");t&&(this._element.getAttribute("aria-label")||this._element.textContent.trim()||this._element.setAttribute("aria-label",t),this._element.setAttribute("data-bs-original-title",t),this._element.removeAttribute("title"))}_enter(){this._isShown()||this._isHovered?this._isHovered=!0:(this._isHovered=!0,this._setTimeout((()=>{this._isHovered&&this.show()}),this._config.delay.show))}_leave(){this._isWithActiveTrigger()||(this._isHovered=!1,this._setTimeout((()=>{this._isHovered||this.hide()}),this._config.delay.hide))}_setTimeout(t,e){clearTimeout(this._timeout),this._timeout=setTimeout(t,e)}_isWithActiveTrigger(){return Object.values(this._activeTrigger).includes(!0)}_getConfig(t){const e=_e.getDataAttributes(this._element);for(const t of Object.keys(e))ts.has(t)&&delete e[t];return t={...e,..."object"==typeof t&&t?t:{}},t=this._mergeConfigObj(t),t=this._configAfterMerge(t),this._typeCheckConfig(t),t}_configAfterMerge(t){return t.container=!1===t.container?document.body:Ht(t.container),"number"==typeof t.delay&&(t.delay={show:t.delay,hide:t.delay}),"number"==typeof t.title&&(t.title=t.title.toString()),"number"==typeof t.content&&(t.content=t.content.toString()),t}_getDelegateConfig(){const t={};for(const[e,i]of Object.entries(this._config))this.constructor.Default[e]!==i&&(t[e]=i);return t.selector=!1,t.trigger="manual",t}_disposePopper(){this._popper&&(this._popper.destroy(),this._popper=null),this.tip&&(this.tip.remove(),this.tip=null)}static jQueryInterface(t){return this.each((function(){const e=hs.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}}Qt(hs);const ds={...hs.Default,content:"",offset:[0,8],placement:"right",template:'',trigger:"click"},us={...hs.DefaultType,content:"(null|string|element|function)"};class fs extends hs{static get Default(){return ds}static get DefaultType(){return us}static get NAME(){return"popover"}_isWithContent(){return this._getTitle()||this._getContent()}_getContentForTemplate(){return{".popover-header":this._getTitle(),".popover-body":this._getContent()}}_getContent(){return this._resolvePossibleFunction(this._config.content)}static jQueryInterface(t){return this.each((function(){const e=fs.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}}Qt(fs);const ps=".bs.scrollspy",ms=`activate${ps}`,gs=`click${ps}`,_s=`load${ps}.data-api`,bs="active",vs="[href]",ys=".nav-link",ws=`${ys}, .nav-item > ${ys}, .list-group-item`,Es={offset:null,rootMargin:"0px 0px -25%",smoothScroll:!1,target:null,threshold:[.1,.5,1]},As={offset:"(number|null)",rootMargin:"string",smoothScroll:"boolean",target:"element",threshold:"array"};class Ts extends ve{constructor(t,e){super(t,e),this._targetLinks=new Map,this._observableSections=new Map,this._rootElement="visible"===getComputedStyle(this._element).overflowY?null:this._element,this._activeTarget=null,this._observer=null,this._previousScrollData={visibleEntryTop:0,parentScrollTop:0},this.refresh()}static get Default(){return Es}static get DefaultType(){return As}static get NAME(){return"scrollspy"}refresh(){this._initializeTargetsAndObservables(),this._maybeEnableSmoothScroll(),this._observer?this._observer.disconnect():this._observer=this._getNewObserver();for(const t of this._observableSections.values())this._observer.observe(t)}dispose(){this._observer.disconnect(),super.dispose()}_configAfterMerge(t){return t.target=Ht(t.target)||document.body,t.rootMargin=t.offset?`${t.offset}px 0px -30%`:t.rootMargin,"string"==typeof t.threshold&&(t.threshold=t.threshold.split(",").map((t=>Number.parseFloat(t)))),t}_maybeEnableSmoothScroll(){this._config.smoothScroll&&(fe.off(this._config.target,gs),fe.on(this._config.target,gs,vs,(t=>{const e=this._observableSections.get(t.target.hash);if(e){t.preventDefault();const i=this._rootElement||window,n=e.offsetTop-this._element.offsetTop;if(i.scrollTo)return void i.scrollTo({top:n,behavior:"smooth"});i.scrollTop=n}})))}_getNewObserver(){const t={root:this._rootElement,threshold:this._config.threshold,rootMargin:this._config.rootMargin};return new IntersectionObserver((t=>this._observerCallback(t)),t)}_observerCallback(t){const e=t=>this._targetLinks.get(`#${t.target.id}`),i=t=>{this._previousScrollData.visibleEntryTop=t.target.offsetTop,this._process(e(t))},n=(this._rootElement||document.documentElement).scrollTop,s=n>=this._previousScrollData.parentScrollTop;this._previousScrollData.parentScrollTop=n;for(const o of t){if(!o.isIntersecting){this._activeTarget=null,this._clearActiveClass(e(o));continue}const t=o.target.offsetTop>=this._previousScrollData.visibleEntryTop;if(s&&t){if(i(o),!n)return}else s||t||i(o)}}_initializeTargetsAndObservables(){this._targetLinks=new Map,this._observableSections=new Map;const t=we.find(vs,this._config.target);for(const e of t){if(!e.hash||Wt(e))continue;const t=we.findOne(decodeURI(e.hash),this._element);Bt(t)&&(this._targetLinks.set(decodeURI(e.hash),e),this._observableSections.set(e.hash,t))}}_process(t){this._activeTarget!==t&&(this._clearActiveClass(this._config.target),this._activeTarget=t,t.classList.add(bs),this._activateParents(t),fe.trigger(this._element,ms,{relatedTarget:t}))}_activateParents(t){if(t.classList.contains("dropdown-item"))we.findOne(".dropdown-toggle",t.closest(".dropdown")).classList.add(bs);else for(const e of we.parents(t,".nav, .list-group"))for(const t of we.prev(e,ws))t.classList.add(bs)}_clearActiveClass(t){t.classList.remove(bs);const e=we.find(`${vs}.${bs}`,t);for(const t of e)t.classList.remove(bs)}static jQueryInterface(t){return this.each((function(){const e=Ts.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t]()}}))}}fe.on(window,_s,(()=>{for(const t of we.find('[data-bs-spy="scroll"]'))Ts.getOrCreateInstance(t)})),Qt(Ts);const Cs=".bs.tab",Os=`hide${Cs}`,xs=`hidden${Cs}`,ks=`show${Cs}`,Ls=`shown${Cs}`,Ss=`click${Cs}`,Ds=`keydown${Cs}`,$s=`load${Cs}`,Is="ArrowLeft",Ns="ArrowRight",Ps="ArrowUp",Ms="ArrowDown",js="Home",Fs="End",Hs="active",Bs="fade",Ws="show",zs=".dropdown-toggle",Rs=`:not(${zs})`,qs='[data-bs-toggle="tab"], [data-bs-toggle="pill"], [data-bs-toggle="list"]',Vs=`.nav-link${Rs}, .list-group-item${Rs}, [role="tab"]${Rs}, ${qs}`,Ys=`.${Hs}[data-bs-toggle="tab"], .${Hs}[data-bs-toggle="pill"], .${Hs}[data-bs-toggle="list"]`;class Ks extends ve{constructor(t){super(t),this._parent=this._element.closest('.list-group, .nav, [role="tablist"]'),this._parent&&(this._setInitialAttributes(this._parent,this._getChildren()),fe.on(this._element,Ds,(t=>this._keydown(t))))}static get NAME(){return"tab"}show(){const t=this._element;if(this._elemIsActive(t))return;const e=this._getActiveElem(),i=e?fe.trigger(e,Os,{relatedTarget:t}):null;fe.trigger(t,ks,{relatedTarget:e}).defaultPrevented||i&&i.defaultPrevented||(this._deactivate(e,t),this._activate(t,e))}_activate(t,e){t&&(t.classList.add(Hs),this._activate(we.getElementFromSelector(t)),this._queueCallback((()=>{"tab"===t.getAttribute("role")?(t.removeAttribute("tabindex"),t.setAttribute("aria-selected",!0),this._toggleDropDown(t,!0),fe.trigger(t,Ls,{relatedTarget:e})):t.classList.add(Ws)}),t,t.classList.contains(Bs)))}_deactivate(t,e){t&&(t.classList.remove(Hs),t.blur(),this._deactivate(we.getElementFromSelector(t)),this._queueCallback((()=>{"tab"===t.getAttribute("role")?(t.setAttribute("aria-selected",!1),t.setAttribute("tabindex","-1"),this._toggleDropDown(t,!1),fe.trigger(t,xs,{relatedTarget:e})):t.classList.remove(Ws)}),t,t.classList.contains(Bs)))}_keydown(t){if(![Is,Ns,Ps,Ms,js,Fs].includes(t.key))return;t.stopPropagation(),t.preventDefault();const e=this._getChildren().filter((t=>!Wt(t)));let i;if([js,Fs].includes(t.key))i=e[t.key===js?0:e.length-1];else{const n=[Ns,Ms].includes(t.key);i=Gt(e,t.target,n,!0)}i&&(i.focus({preventScroll:!0}),Ks.getOrCreateInstance(i).show())}_getChildren(){return we.find(Vs,this._parent)}_getActiveElem(){return this._getChildren().find((t=>this._elemIsActive(t)))||null}_setInitialAttributes(t,e){this._setAttributeIfNotExists(t,"role","tablist");for(const t of e)this._setInitialAttributesOnChild(t)}_setInitialAttributesOnChild(t){t=this._getInnerElement(t);const e=this._elemIsActive(t),i=this._getOuterElement(t);t.setAttribute("aria-selected",e),i!==t&&this._setAttributeIfNotExists(i,"role","presentation"),e||t.setAttribute("tabindex","-1"),this._setAttributeIfNotExists(t,"role","tab"),this._setInitialAttributesOnTargetPanel(t)}_setInitialAttributesOnTargetPanel(t){const e=we.getElementFromSelector(t);e&&(this._setAttributeIfNotExists(e,"role","tabpanel"),t.id&&this._setAttributeIfNotExists(e,"aria-labelledby",`${t.id}`))}_toggleDropDown(t,e){const i=this._getOuterElement(t);if(!i.classList.contains("dropdown"))return;const n=(t,n)=>{const s=we.findOne(t,i);s&&s.classList.toggle(n,e)};n(zs,Hs),n(".dropdown-menu",Ws),i.setAttribute("aria-expanded",e)}_setAttributeIfNotExists(t,e,i){t.hasAttribute(e)||t.setAttribute(e,i)}_elemIsActive(t){return t.classList.contains(Hs)}_getInnerElement(t){return t.matches(Vs)?t:we.findOne(Vs,t)}_getOuterElement(t){return t.closest(".nav-item, .list-group-item")||t}static jQueryInterface(t){return this.each((function(){const e=Ks.getOrCreateInstance(this);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t]()}}))}}fe.on(document,Ss,qs,(function(t){["A","AREA"].includes(this.tagName)&&t.preventDefault(),Wt(this)||Ks.getOrCreateInstance(this).show()})),fe.on(window,$s,(()=>{for(const t of we.find(Ys))Ks.getOrCreateInstance(t)})),Qt(Ks);const Qs=".bs.toast",Xs=`mouseover${Qs}`,Us=`mouseout${Qs}`,Gs=`focusin${Qs}`,Js=`focusout${Qs}`,Zs=`hide${Qs}`,to=`hidden${Qs}`,eo=`show${Qs}`,io=`shown${Qs}`,no="hide",so="show",oo="showing",ro={animation:"boolean",autohide:"boolean",delay:"number"},ao={animation:!0,autohide:!0,delay:5e3};class lo extends ve{constructor(t,e){super(t,e),this._timeout=null,this._hasMouseInteraction=!1,this._hasKeyboardInteraction=!1,this._setListeners()}static get Default(){return ao}static get DefaultType(){return ro}static get NAME(){return"toast"}show(){fe.trigger(this._element,eo).defaultPrevented||(this._clearTimeout(),this._config.animation&&this._element.classList.add("fade"),this._element.classList.remove(no),qt(this._element),this._element.classList.add(so,oo),this._queueCallback((()=>{this._element.classList.remove(oo),fe.trigger(this._element,io),this._maybeScheduleHide()}),this._element,this._config.animation))}hide(){this.isShown()&&(fe.trigger(this._element,Zs).defaultPrevented||(this._element.classList.add(oo),this._queueCallback((()=>{this._element.classList.add(no),this._element.classList.remove(oo,so),fe.trigger(this._element,to)}),this._element,this._config.animation)))}dispose(){this._clearTimeout(),this.isShown()&&this._element.classList.remove(so),super.dispose()}isShown(){return this._element.classList.contains(so)}_maybeScheduleHide(){this._config.autohide&&(this._hasMouseInteraction||this._hasKeyboardInteraction||(this._timeout=setTimeout((()=>{this.hide()}),this._config.delay)))}_onInteraction(t,e){switch(t.type){case"mouseover":case"mouseout":this._hasMouseInteraction=e;break;case"focusin":case"focusout":this._hasKeyboardInteraction=e}if(e)return void this._clearTimeout();const i=t.relatedTarget;this._element===i||this._element.contains(i)||this._maybeScheduleHide()}_setListeners(){fe.on(this._element,Xs,(t=>this._onInteraction(t,!0))),fe.on(this._element,Us,(t=>this._onInteraction(t,!1))),fe.on(this._element,Gs,(t=>this._onInteraction(t,!0))),fe.on(this._element,Js,(t=>this._onInteraction(t,!1)))}_clearTimeout(){clearTimeout(this._timeout),this._timeout=null}static jQueryInterface(t){return this.each((function(){const e=lo.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t](this)}}))}}function co(t){"loading"!=document.readyState?t():document.addEventListener("DOMContentLoaded",t)}Ee(lo),Qt(lo),co((function(){[].slice.call(document.querySelectorAll('[data-bs-toggle="tooltip"]')).map((function(t){return new hs(t,{delay:{show:500,hide:100}})}))})),co((function(){document.getElementById("pst-back-to-top").addEventListener("click",(function(){document.body.scrollTop=0,document.documentElement.scrollTop=0}))})),co((function(){var t=document.getElementById("pst-back-to-top"),e=document.getElementsByClassName("bd-header")[0].getBoundingClientRect();window.addEventListener("scroll",(function(){this.oldScroll>this.scrollY&&this.scrollY>e.bottom?t.style.display="block":t.style.display="none",this.oldScroll=this.scrollY}))})),window.bootstrap=i})(); -//# sourceMappingURL=bootstrap.js.map \ No newline at end of file diff --git a/docs/_build/html/_static/scripts/bootstrap.js.LICENSE.txt b/docs/_build/html/_static/scripts/bootstrap.js.LICENSE.txt deleted file mode 100644 index 10f979d..0000000 --- a/docs/_build/html/_static/scripts/bootstrap.js.LICENSE.txt +++ /dev/null @@ -1,5 +0,0 @@ -/*! - * Bootstrap v5.3.2 (https://getbootstrap.com/) - * Copyright 2011-2023 The Bootstrap Authors (https://github.com/twbs/bootstrap/graphs/contributors) - * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE) - */ diff --git a/docs/_build/html/_static/scripts/bootstrap.js.map b/docs/_build/html/_static/scripts/bootstrap.js.map deleted file mode 100644 index 64e212b..0000000 --- a/docs/_build/html/_static/scripts/bootstrap.js.map +++ /dev/null @@ -1 +0,0 @@ -{"version":3,"file":"scripts/bootstrap.js","mappings":";mBACA,IAAIA,EAAsB,CCA1BA,EAAwB,CAACC,EAASC,KACjC,IAAI,IAAIC,KAAOD,EACXF,EAAoBI,EAAEF,EAAYC,KAASH,EAAoBI,EAAEH,EAASE,IAC5EE,OAAOC,eAAeL,EAASE,EAAK,CAAEI,YAAY,EAAMC,IAAKN,EAAWC,IAE1E,ECNDH,EAAwB,CAACS,EAAKC,IAAUL,OAAOM,UAAUC,eAAeC,KAAKJ,EAAKC,GCClFV,EAAyBC,IACH,oBAAXa,QAA0BA,OAAOC,aAC1CV,OAAOC,eAAeL,EAASa,OAAOC,YAAa,CAAEC,MAAO,WAE7DX,OAAOC,eAAeL,EAAS,aAAc,CAAEe,OAAO,GAAO,01BCLvD,IAAI,EAAM,MACNC,EAAS,SACTC,EAAQ,QACRC,EAAO,OACPC,EAAO,OACPC,EAAiB,CAAC,EAAKJ,EAAQC,EAAOC,GACtCG,EAAQ,QACRC,EAAM,MACNC,EAAkB,kBAClBC,EAAW,WACXC,EAAS,SACTC,EAAY,YACZC,EAAmCP,EAAeQ,QAAO,SAAUC,EAAKC,GACjF,OAAOD,EAAIE,OAAO,CAACD,EAAY,IAAMT,EAAOS,EAAY,IAAMR,GAChE,GAAG,IACQ,EAA0B,GAAGS,OAAOX,EAAgB,CAACD,IAAOS,QAAO,SAAUC,EAAKC,GAC3F,OAAOD,EAAIE,OAAO,CAACD,EAAWA,EAAY,IAAMT,EAAOS,EAAY,IAAMR,GAC3E,GAAG,IAEQU,EAAa,aACbC,EAAO,OACPC,EAAY,YAEZC,EAAa,aACbC,EAAO,OACPC,EAAY,YAEZC,EAAc,cACdC,EAAQ,QACRC,EAAa,aACbC,EAAiB,CAACT,EAAYC,EAAMC,EAAWC,EAAYC,EAAMC,EAAWC,EAAaC,EAAOC,GC9B5F,SAASE,EAAYC,GAClC,OAAOA,GAAWA,EAAQC,UAAY,IAAIC,cAAgB,IAC5D,CCFe,SAASC,EAAUC,GAChC,GAAY,MAARA,EACF,OAAOC,OAGT,GAAwB,oBAApBD,EAAKE,WAAkC,CACzC,IAAIC,EAAgBH,EAAKG,cACzB,OAAOA,GAAgBA,EAAcC,aAAwBH,MAC/D,CAEA,OAAOD,CACT,CCTA,SAASK,EAAUL,GAEjB,OAAOA,aADUD,EAAUC,GAAMM,SACIN,aAAgBM,OACvD,CAEA,SAASC,EAAcP,GAErB,OAAOA,aADUD,EAAUC,GAAMQ,aACIR,aAAgBQ,WACvD,CAEA,SAASC,EAAaT,GAEpB,MAA0B,oBAAfU,aAKJV,aADUD,EAAUC,GAAMU,YACIV,aAAgBU,WACvD,CCwDA,SACEC,KAAM,cACNC,SAAS,EACTC,MAAO,QACPC,GA5EF,SAAqBC,GACnB,IAAIC,EAAQD,EAAKC,MACjB3D,OAAO4D,KAAKD,EAAME,UAAUC,SAAQ,SAAUR,GAC5C,IAAIS,EAAQJ,EAAMK,OAAOV,IAAS,CAAC,EAC/BW,EAAaN,EAAMM,WAAWX,IAAS,CAAC,EACxCf,EAAUoB,EAAME,SAASP,GAExBJ,EAAcX,IAAaD,EAAYC,KAO5CvC,OAAOkE,OAAO3B,EAAQwB,MAAOA,GAC7B/D,OAAO4D,KAAKK,GAAYH,SAAQ,SAAUR,GACxC,IAAI3C,EAAQsD,EAAWX,IAET,IAAV3C,EACF4B,EAAQ4B,gBAAgBb,GAExBf,EAAQ6B,aAAad,GAAgB,IAAV3C,EAAiB,GAAKA,EAErD,IACF,GACF,EAoDE0D,OAlDF,SAAgBC,GACd,IAAIX,EAAQW,EAAMX,MACdY,EAAgB,CAClBlD,OAAQ,CACNmD,SAAUb,EAAMc,QAAQC,SACxB5D,KAAM,IACN6D,IAAK,IACLC,OAAQ,KAEVC,MAAO,CACLL,SAAU,YAEZlD,UAAW,CAAC,GASd,OAPAtB,OAAOkE,OAAOP,EAAME,SAASxC,OAAO0C,MAAOQ,EAAclD,QACzDsC,EAAMK,OAASO,EAEXZ,EAAME,SAASgB,OACjB7E,OAAOkE,OAAOP,EAAME,SAASgB,MAAMd,MAAOQ,EAAcM,OAGnD,WACL7E,OAAO4D,KAAKD,EAAME,UAAUC,SAAQ,SAAUR,GAC5C,IAAIf,EAAUoB,EAAME,SAASP,GACzBW,EAAaN,EAAMM,WAAWX,IAAS,CAAC,EAGxCS,EAFkB/D,OAAO4D,KAAKD,EAAMK,OAAOzD,eAAe+C,GAAQK,EAAMK,OAAOV,GAAQiB,EAAcjB,IAE7E9B,QAAO,SAAUuC,EAAOe,GAElD,OADAf,EAAMe,GAAY,GACXf,CACT,GAAG,CAAC,GAECb,EAAcX,IAAaD,EAAYC,KAI5CvC,OAAOkE,OAAO3B,EAAQwB,MAAOA,GAC7B/D,OAAO4D,KAAKK,GAAYH,SAAQ,SAAUiB,GACxCxC,EAAQ4B,gBAAgBY,EAC1B,IACF,GACF,CACF,EASEC,SAAU,CAAC,kBCjFE,SAASC,EAAiBvD,GACvC,OAAOA,EAAUwD,MAAM,KAAK,EAC9B,CCHO,IAAI,EAAMC,KAAKC,IACX,EAAMD,KAAKE,IACXC,EAAQH,KAAKG,MCFT,SAASC,IACtB,IAAIC,EAASC,UAAUC,cAEvB,OAAc,MAAVF,GAAkBA,EAAOG,QAAUC,MAAMC,QAAQL,EAAOG,QACnDH,EAAOG,OAAOG,KAAI,SAAUC,GACjC,OAAOA,EAAKC,MAAQ,IAAMD,EAAKE,OACjC,IAAGC,KAAK,KAGHT,UAAUU,SACnB,CCTe,SAASC,IACtB,OAAQ,iCAAiCC,KAAKd,IAChD,CCCe,SAASe,EAAsB/D,EAASgE,EAAcC,QAC9C,IAAjBD,IACFA,GAAe,QAGO,IAApBC,IACFA,GAAkB,GAGpB,IAAIC,EAAalE,EAAQ+D,wBACrBI,EAAS,EACTC,EAAS,EAETJ,GAAgBrD,EAAcX,KAChCmE,EAASnE,EAAQqE,YAAc,GAAItB,EAAMmB,EAAWI,OAAStE,EAAQqE,aAAmB,EACxFD,EAASpE,EAAQuE,aAAe,GAAIxB,EAAMmB,EAAWM,QAAUxE,EAAQuE,cAAoB,GAG7F,IACIE,GADOhE,EAAUT,GAAWG,EAAUH,GAAWK,QAC3BoE,eAEtBC,GAAoBb,KAAsBI,EAC1CU,GAAKT,EAAW3F,MAAQmG,GAAoBD,EAAiBA,EAAeG,WAAa,IAAMT,EAC/FU,GAAKX,EAAW9B,KAAOsC,GAAoBD,EAAiBA,EAAeK,UAAY,IAAMV,EAC7FE,EAAQJ,EAAWI,MAAQH,EAC3BK,EAASN,EAAWM,OAASJ,EACjC,MAAO,CACLE,MAAOA,EACPE,OAAQA,EACRpC,IAAKyC,EACLvG,MAAOqG,EAAIL,EACXjG,OAAQwG,EAAIL,EACZjG,KAAMoG,EACNA,EAAGA,EACHE,EAAGA,EAEP,CCrCe,SAASE,EAAc/E,GACpC,IAAIkE,EAAaH,EAAsB/D,GAGnCsE,EAAQtE,EAAQqE,YAChBG,EAASxE,EAAQuE,aAUrB,OARI3B,KAAKoC,IAAId,EAAWI,MAAQA,IAAU,IACxCA,EAAQJ,EAAWI,OAGjB1B,KAAKoC,IAAId,EAAWM,OAASA,IAAW,IAC1CA,EAASN,EAAWM,QAGf,CACLG,EAAG3E,EAAQ4E,WACXC,EAAG7E,EAAQ8E,UACXR,MAAOA,EACPE,OAAQA,EAEZ,CCvBe,SAASS,EAASC,EAAQC,GACvC,IAAIC,EAAWD,EAAME,aAAeF,EAAME,cAE1C,GAAIH,EAAOD,SAASE,GAClB,OAAO,EAEJ,GAAIC,GAAYvE,EAAauE,GAAW,CACzC,IAAIE,EAAOH,EAEX,EAAG,CACD,GAAIG,GAAQJ,EAAOK,WAAWD,GAC5B,OAAO,EAITA,EAAOA,EAAKE,YAAcF,EAAKG,IACjC,OAASH,EACX,CAGF,OAAO,CACT,CCrBe,SAAS,EAAiBtF,GACvC,OAAOG,EAAUH,GAAS0F,iBAAiB1F,EAC7C,CCFe,SAAS2F,EAAe3F,GACrC,MAAO,CAAC,QAAS,KAAM,MAAM4F,QAAQ7F,EAAYC,KAAa,CAChE,CCFe,SAAS6F,EAAmB7F,GAEzC,QAASS,EAAUT,GAAWA,EAAQO,cACtCP,EAAQ8F,WAAazF,OAAOyF,UAAUC,eACxC,CCFe,SAASC,EAAchG,GACpC,MAA6B,SAAzBD,EAAYC,GACPA,EAMPA,EAAQiG,cACRjG,EAAQwF,aACR3E,EAAab,GAAWA,EAAQyF,KAAO,OAEvCI,EAAmB7F,EAGvB,CCVA,SAASkG,EAAoBlG,GAC3B,OAAKW,EAAcX,IACoB,UAAvC,EAAiBA,GAASiC,SAInBjC,EAAQmG,aAHN,IAIX,CAwCe,SAASC,EAAgBpG,GAItC,IAHA,IAAIK,EAASF,EAAUH,GACnBmG,EAAeD,EAAoBlG,GAEhCmG,GAAgBR,EAAeQ,IAA6D,WAA5C,EAAiBA,GAAclE,UACpFkE,EAAeD,EAAoBC,GAGrC,OAAIA,IAA+C,SAA9BpG,EAAYoG,IAA0D,SAA9BpG,EAAYoG,IAAwE,WAA5C,EAAiBA,GAAclE,UAC3H5B,EAGF8F,GAhDT,SAA4BnG,GAC1B,IAAIqG,EAAY,WAAWvC,KAAKd,KAGhC,GAFW,WAAWc,KAAKd,MAEfrC,EAAcX,IAII,UAFX,EAAiBA,GAEnBiC,SACb,OAAO,KAIX,IAAIqE,EAAcN,EAAchG,GAMhC,IAJIa,EAAayF,KACfA,EAAcA,EAAYb,MAGrB9E,EAAc2F,IAAgB,CAAC,OAAQ,QAAQV,QAAQ7F,EAAYuG,IAAgB,GAAG,CAC3F,IAAIC,EAAM,EAAiBD,GAI3B,GAAsB,SAAlBC,EAAIC,WAA4C,SAApBD,EAAIE,aAA0C,UAAhBF,EAAIG,UAAiF,IAA1D,CAAC,YAAa,eAAed,QAAQW,EAAII,aAAsBN,GAAgC,WAAnBE,EAAII,YAA2BN,GAAaE,EAAIK,QAAyB,SAAfL,EAAIK,OACjO,OAAON,EAEPA,EAAcA,EAAYd,UAE9B,CAEA,OAAO,IACT,CAgByBqB,CAAmB7G,IAAYK,CACxD,CCpEe,SAASyG,EAAyB3H,GAC/C,MAAO,CAAC,MAAO,UAAUyG,QAAQzG,IAAc,EAAI,IAAM,GAC3D,CCDO,SAAS4H,EAAOjE,EAAK1E,EAAOyE,GACjC,OAAO,EAAQC,EAAK,EAAQ1E,EAAOyE,GACrC,CCFe,SAASmE,EAAmBC,GACzC,OAAOxJ,OAAOkE,OAAO,CAAC,ECDf,CACLS,IAAK,EACL9D,MAAO,EACPD,OAAQ,EACRE,KAAM,GDHuC0I,EACjD,CEHe,SAASC,EAAgB9I,EAAOiD,GAC7C,OAAOA,EAAKpC,QAAO,SAAUkI,EAAS5J,GAEpC,OADA4J,EAAQ5J,GAAOa,EACR+I,CACT,GAAG,CAAC,EACN,CC4EA,SACEpG,KAAM,QACNC,SAAS,EACTC,MAAO,OACPC,GApEF,SAAeC,GACb,IAAIiG,EAEAhG,EAAQD,EAAKC,MACbL,EAAOI,EAAKJ,KACZmB,EAAUf,EAAKe,QACfmF,EAAejG,EAAME,SAASgB,MAC9BgF,EAAgBlG,EAAMmG,cAAcD,cACpCE,EAAgB9E,EAAiBtB,EAAMjC,WACvCsI,EAAOX,EAAyBU,GAEhCE,EADa,CAACnJ,EAAMD,GAAOsH,QAAQ4B,IAAkB,EAClC,SAAW,QAElC,GAAKH,GAAiBC,EAAtB,CAIA,IAAIL,EAxBgB,SAAyBU,EAASvG,GAItD,OAAO4F,EAAsC,iBAH7CW,EAA6B,mBAAZA,EAAyBA,EAAQlK,OAAOkE,OAAO,CAAC,EAAGP,EAAMwG,MAAO,CAC/EzI,UAAWiC,EAAMjC,aACbwI,GACkDA,EAAUT,EAAgBS,EAASlJ,GAC7F,CAmBsBoJ,CAAgB3F,EAAQyF,QAASvG,GACjD0G,EAAY/C,EAAcsC,GAC1BU,EAAmB,MAATN,EAAe,EAAMlJ,EAC/ByJ,EAAmB,MAATP,EAAepJ,EAASC,EAClC2J,EAAU7G,EAAMwG,MAAM7I,UAAU2I,GAAOtG,EAAMwG,MAAM7I,UAAU0I,GAAQH,EAAcG,GAAQrG,EAAMwG,MAAM9I,OAAO4I,GAC9GQ,EAAYZ,EAAcG,GAAQrG,EAAMwG,MAAM7I,UAAU0I,GACxDU,EAAoB/B,EAAgBiB,GACpCe,EAAaD,EAA6B,MAATV,EAAeU,EAAkBE,cAAgB,EAAIF,EAAkBG,aAAe,EAAI,EAC3HC,EAAoBN,EAAU,EAAIC,EAAY,EAG9CpF,EAAMmE,EAAcc,GACpBlF,EAAMuF,EAAaN,EAAUJ,GAAOT,EAAce,GAClDQ,EAASJ,EAAa,EAAIN,EAAUJ,GAAO,EAAIa,EAC/CE,EAAS1B,EAAOjE,EAAK0F,EAAQ3F,GAE7B6F,EAAWjB,EACfrG,EAAMmG,cAAcxG,KAASqG,EAAwB,CAAC,GAAyBsB,GAAYD,EAAQrB,EAAsBuB,aAAeF,EAASD,EAAQpB,EAnBzJ,CAoBF,EAkCEtF,OAhCF,SAAgBC,GACd,IAAIX,EAAQW,EAAMX,MAEdwH,EADU7G,EAAMG,QACWlC,QAC3BqH,OAAoC,IAArBuB,EAA8B,sBAAwBA,EAErD,MAAhBvB,IAKwB,iBAAjBA,IACTA,EAAejG,EAAME,SAASxC,OAAO+J,cAAcxB,MAOhDpC,EAAS7D,EAAME,SAASxC,OAAQuI,KAIrCjG,EAAME,SAASgB,MAAQ+E,EACzB,EASE5E,SAAU,CAAC,iBACXqG,iBAAkB,CAAC,oBCxFN,SAASC,EAAa5J,GACnC,OAAOA,EAAUwD,MAAM,KAAK,EAC9B,CCOA,IAAIqG,GAAa,CACf5G,IAAK,OACL9D,MAAO,OACPD,OAAQ,OACRE,KAAM,QAeD,SAAS0K,GAAYlH,GAC1B,IAAImH,EAEApK,EAASiD,EAAMjD,OACfqK,EAAapH,EAAMoH,WACnBhK,EAAY4C,EAAM5C,UAClBiK,EAAYrH,EAAMqH,UAClBC,EAAUtH,EAAMsH,QAChBpH,EAAWF,EAAME,SACjBqH,EAAkBvH,EAAMuH,gBACxBC,EAAWxH,EAAMwH,SACjBC,EAAezH,EAAMyH,aACrBC,EAAU1H,EAAM0H,QAChBC,EAAaL,EAAQ1E,EACrBA,OAAmB,IAAf+E,EAAwB,EAAIA,EAChCC,EAAaN,EAAQxE,EACrBA,OAAmB,IAAf8E,EAAwB,EAAIA,EAEhCC,EAAgC,mBAAjBJ,EAA8BA,EAAa,CAC5D7E,EAAGA,EACHE,IACG,CACHF,EAAGA,EACHE,GAGFF,EAAIiF,EAAMjF,EACVE,EAAI+E,EAAM/E,EACV,IAAIgF,EAAOR,EAAQrL,eAAe,KAC9B8L,EAAOT,EAAQrL,eAAe,KAC9B+L,EAAQxL,EACRyL,EAAQ,EACRC,EAAM5J,OAEV,GAAIkJ,EAAU,CACZ,IAAIpD,EAAeC,EAAgBtH,GAC/BoL,EAAa,eACbC,EAAY,cAEZhE,IAAiBhG,EAAUrB,IAGmB,WAA5C,EAFJqH,EAAeN,EAAmB/G,IAECmD,UAAsC,aAAbA,IAC1DiI,EAAa,eACbC,EAAY,gBAOZhL,IAAc,IAAQA,IAAcZ,GAAQY,IAAcb,IAAU8K,IAAczK,KACpFqL,EAAQ3L,EAGRwG,IAFc4E,GAAWtD,IAAiB8D,GAAOA,EAAIxF,eAAiBwF,EAAIxF,eAAeD,OACzF2B,EAAa+D,IACEf,EAAW3E,OAC1BK,GAAKyE,EAAkB,GAAK,GAG1BnK,IAAcZ,IAASY,IAAc,GAAOA,IAAcd,GAAW+K,IAAczK,KACrFoL,EAAQzL,EAGRqG,IAFc8E,GAAWtD,IAAiB8D,GAAOA,EAAIxF,eAAiBwF,EAAIxF,eAAeH,MACzF6B,EAAagE,IACEhB,EAAW7E,MAC1BK,GAAK2E,EAAkB,GAAK,EAEhC,CAEA,IAgBMc,EAhBFC,EAAe5M,OAAOkE,OAAO,CAC/BM,SAAUA,GACTsH,GAAYP,IAEXsB,GAAyB,IAAjBd,EAlFd,SAA2BrI,EAAM8I,GAC/B,IAAItF,EAAIxD,EAAKwD,EACTE,EAAI1D,EAAK0D,EACT0F,EAAMN,EAAIO,kBAAoB,EAClC,MAAO,CACL7F,EAAG5B,EAAM4B,EAAI4F,GAAOA,GAAO,EAC3B1F,EAAG9B,EAAM8B,EAAI0F,GAAOA,GAAO,EAE/B,CA0EsCE,CAAkB,CACpD9F,EAAGA,EACHE,GACC1E,EAAUrB,IAAW,CACtB6F,EAAGA,EACHE,GAMF,OAHAF,EAAI2F,EAAM3F,EACVE,EAAIyF,EAAMzF,EAENyE,EAGK7L,OAAOkE,OAAO,CAAC,EAAG0I,IAAeD,EAAiB,CAAC,GAAkBJ,GAASF,EAAO,IAAM,GAAIM,EAAeL,GAASF,EAAO,IAAM,GAAIO,EAAe5D,WAAayD,EAAIO,kBAAoB,IAAM,EAAI,aAAe7F,EAAI,OAASE,EAAI,MAAQ,eAAiBF,EAAI,OAASE,EAAI,SAAUuF,IAG5R3M,OAAOkE,OAAO,CAAC,EAAG0I,IAAenB,EAAkB,CAAC,GAAmBc,GAASF,EAAOjF,EAAI,KAAO,GAAIqE,EAAgBa,GAASF,EAAOlF,EAAI,KAAO,GAAIuE,EAAgB1C,UAAY,GAAI0C,GAC9L,CA4CA,UACEnI,KAAM,gBACNC,SAAS,EACTC,MAAO,cACPC,GA9CF,SAAuBwJ,GACrB,IAAItJ,EAAQsJ,EAAMtJ,MACdc,EAAUwI,EAAMxI,QAChByI,EAAwBzI,EAAQoH,gBAChCA,OAA4C,IAA1BqB,GAA0CA,EAC5DC,EAAoB1I,EAAQqH,SAC5BA,OAAiC,IAAtBqB,GAAsCA,EACjDC,EAAwB3I,EAAQsH,aAChCA,OAAyC,IAA1BqB,GAA0CA,EACzDR,EAAe,CACjBlL,UAAWuD,EAAiBtB,EAAMjC,WAClCiK,UAAWL,EAAa3H,EAAMjC,WAC9BL,OAAQsC,EAAME,SAASxC,OACvBqK,WAAY/H,EAAMwG,MAAM9I,OACxBwK,gBAAiBA,EACjBG,QAAoC,UAA3BrI,EAAMc,QAAQC,UAGgB,MAArCf,EAAMmG,cAAcD,gBACtBlG,EAAMK,OAAO3C,OAASrB,OAAOkE,OAAO,CAAC,EAAGP,EAAMK,OAAO3C,OAAQmK,GAAYxL,OAAOkE,OAAO,CAAC,EAAG0I,EAAc,CACvGhB,QAASjI,EAAMmG,cAAcD,cAC7BrF,SAAUb,EAAMc,QAAQC,SACxBoH,SAAUA,EACVC,aAAcA,OAIe,MAA7BpI,EAAMmG,cAAcjF,QACtBlB,EAAMK,OAAOa,MAAQ7E,OAAOkE,OAAO,CAAC,EAAGP,EAAMK,OAAOa,MAAO2G,GAAYxL,OAAOkE,OAAO,CAAC,EAAG0I,EAAc,CACrGhB,QAASjI,EAAMmG,cAAcjF,MAC7BL,SAAU,WACVsH,UAAU,EACVC,aAAcA,OAIlBpI,EAAMM,WAAW5C,OAASrB,OAAOkE,OAAO,CAAC,EAAGP,EAAMM,WAAW5C,OAAQ,CACnE,wBAAyBsC,EAAMjC,WAEnC,EAQE2L,KAAM,CAAC,GCrKT,IAAIC,GAAU,CACZA,SAAS,GAsCX,UACEhK,KAAM,iBACNC,SAAS,EACTC,MAAO,QACPC,GAAI,WAAe,EACnBY,OAxCF,SAAgBX,GACd,IAAIC,EAAQD,EAAKC,MACb4J,EAAW7J,EAAK6J,SAChB9I,EAAUf,EAAKe,QACf+I,EAAkB/I,EAAQgJ,OAC1BA,OAA6B,IAApBD,GAAoCA,EAC7CE,EAAkBjJ,EAAQkJ,OAC1BA,OAA6B,IAApBD,GAAoCA,EAC7C9K,EAASF,EAAUiB,EAAME,SAASxC,QAClCuM,EAAgB,GAAGjM,OAAOgC,EAAMiK,cAActM,UAAWqC,EAAMiK,cAAcvM,QAYjF,OAVIoM,GACFG,EAAc9J,SAAQ,SAAU+J,GAC9BA,EAAaC,iBAAiB,SAAUP,EAASQ,OAAQT,GAC3D,IAGEK,GACF/K,EAAOkL,iBAAiB,SAAUP,EAASQ,OAAQT,IAG9C,WACDG,GACFG,EAAc9J,SAAQ,SAAU+J,GAC9BA,EAAaG,oBAAoB,SAAUT,EAASQ,OAAQT,GAC9D,IAGEK,GACF/K,EAAOoL,oBAAoB,SAAUT,EAASQ,OAAQT,GAE1D,CACF,EASED,KAAM,CAAC,GC/CT,IAAIY,GAAO,CACTnN,KAAM,QACND,MAAO,OACPD,OAAQ,MACR+D,IAAK,UAEQ,SAASuJ,GAAqBxM,GAC3C,OAAOA,EAAUyM,QAAQ,0BAA0B,SAAUC,GAC3D,OAAOH,GAAKG,EACd,GACF,CCVA,IAAI,GAAO,CACTnN,MAAO,MACPC,IAAK,SAEQ,SAASmN,GAA8B3M,GACpD,OAAOA,EAAUyM,QAAQ,cAAc,SAAUC,GAC/C,OAAO,GAAKA,EACd,GACF,CCPe,SAASE,GAAgB3L,GACtC,IAAI6J,EAAM9J,EAAUC,GAGpB,MAAO,CACL4L,WAHe/B,EAAIgC,YAInBC,UAHcjC,EAAIkC,YAKtB,CCNe,SAASC,GAAoBpM,GAQ1C,OAAO+D,EAAsB8B,EAAmB7F,IAAUzB,KAAOwN,GAAgB/L,GAASgM,UAC5F,CCXe,SAASK,GAAerM,GAErC,IAAIsM,EAAoB,EAAiBtM,GACrCuM,EAAWD,EAAkBC,SAC7BC,EAAYF,EAAkBE,UAC9BC,EAAYH,EAAkBG,UAElC,MAAO,6BAA6B3I,KAAKyI,EAAWE,EAAYD,EAClE,CCLe,SAASE,GAAgBtM,GACtC,MAAI,CAAC,OAAQ,OAAQ,aAAawF,QAAQ7F,EAAYK,KAAU,EAEvDA,EAAKG,cAAcoM,KAGxBhM,EAAcP,IAASiM,GAAejM,GACjCA,EAGFsM,GAAgB1G,EAAc5F,GACvC,CCJe,SAASwM,GAAkB5M,EAAS6M,GACjD,IAAIC,OAES,IAATD,IACFA,EAAO,IAGT,IAAIvB,EAAeoB,GAAgB1M,GAC/B+M,EAASzB,KAAqE,OAAlDwB,EAAwB9M,EAAQO,oBAAyB,EAASuM,EAAsBH,MACpH1C,EAAM9J,EAAUmL,GAChB0B,EAASD,EAAS,CAAC9C,GAAK7K,OAAO6K,EAAIxF,gBAAkB,GAAI4H,GAAef,GAAgBA,EAAe,IAAMA,EAC7G2B,EAAcJ,EAAKzN,OAAO4N,GAC9B,OAAOD,EAASE,EAChBA,EAAY7N,OAAOwN,GAAkB5G,EAAcgH,IACrD,CCzBe,SAASE,GAAiBC,GACvC,OAAO1P,OAAOkE,OAAO,CAAC,EAAGwL,EAAM,CAC7B5O,KAAM4O,EAAKxI,EACXvC,IAAK+K,EAAKtI,EACVvG,MAAO6O,EAAKxI,EAAIwI,EAAK7I,MACrBjG,OAAQ8O,EAAKtI,EAAIsI,EAAK3I,QAE1B,CCqBA,SAAS4I,GAA2BpN,EAASqN,EAAgBlL,GAC3D,OAAOkL,IAAmBxO,EAAWqO,GCzBxB,SAAyBlN,EAASmC,GAC/C,IAAI8H,EAAM9J,EAAUH,GAChBsN,EAAOzH,EAAmB7F,GAC1ByE,EAAiBwF,EAAIxF,eACrBH,EAAQgJ,EAAKhF,YACb9D,EAAS8I,EAAKjF,aACd1D,EAAI,EACJE,EAAI,EAER,GAAIJ,EAAgB,CAClBH,EAAQG,EAAeH,MACvBE,EAASC,EAAeD,OACxB,IAAI+I,EAAiB1J,KAEjB0J,IAAmBA,GAA+B,UAAbpL,KACvCwC,EAAIF,EAAeG,WACnBC,EAAIJ,EAAeK,UAEvB,CAEA,MAAO,CACLR,MAAOA,EACPE,OAAQA,EACRG,EAAGA,EAAIyH,GAAoBpM,GAC3B6E,EAAGA,EAEP,CDDwD2I,CAAgBxN,EAASmC,IAAa1B,EAAU4M,GAdxG,SAAoCrN,EAASmC,GAC3C,IAAIgL,EAAOpJ,EAAsB/D,GAAS,EAAoB,UAAbmC,GASjD,OARAgL,EAAK/K,IAAM+K,EAAK/K,IAAMpC,EAAQyN,UAC9BN,EAAK5O,KAAO4O,EAAK5O,KAAOyB,EAAQ0N,WAChCP,EAAK9O,OAAS8O,EAAK/K,IAAMpC,EAAQqI,aACjC8E,EAAK7O,MAAQ6O,EAAK5O,KAAOyB,EAAQsI,YACjC6E,EAAK7I,MAAQtE,EAAQsI,YACrB6E,EAAK3I,OAASxE,EAAQqI,aACtB8E,EAAKxI,EAAIwI,EAAK5O,KACd4O,EAAKtI,EAAIsI,EAAK/K,IACP+K,CACT,CAG0HQ,CAA2BN,EAAgBlL,GAAY+K,GEtBlK,SAAyBlN,GACtC,IAAI8M,EAEAQ,EAAOzH,EAAmB7F,GAC1B4N,EAAY7B,GAAgB/L,GAC5B2M,EAA0D,OAAlDG,EAAwB9M,EAAQO,oBAAyB,EAASuM,EAAsBH,KAChGrI,EAAQ,EAAIgJ,EAAKO,YAAaP,EAAKhF,YAAaqE,EAAOA,EAAKkB,YAAc,EAAGlB,EAAOA,EAAKrE,YAAc,GACvG9D,EAAS,EAAI8I,EAAKQ,aAAcR,EAAKjF,aAAcsE,EAAOA,EAAKmB,aAAe,EAAGnB,EAAOA,EAAKtE,aAAe,GAC5G1D,GAAKiJ,EAAU5B,WAAaI,GAAoBpM,GAChD6E,GAAK+I,EAAU1B,UAMnB,MAJiD,QAA7C,EAAiBS,GAAQW,GAAMS,YACjCpJ,GAAK,EAAI2I,EAAKhF,YAAaqE,EAAOA,EAAKrE,YAAc,GAAKhE,GAGrD,CACLA,MAAOA,EACPE,OAAQA,EACRG,EAAGA,EACHE,EAAGA,EAEP,CFCkMmJ,CAAgBnI,EAAmB7F,IACrO,CG1Be,SAASiO,GAAe9M,GACrC,IAOIkI,EAPAtK,EAAYoC,EAAKpC,UACjBiB,EAAUmB,EAAKnB,QACfb,EAAYgC,EAAKhC,UACjBqI,EAAgBrI,EAAYuD,EAAiBvD,GAAa,KAC1DiK,EAAYjK,EAAY4J,EAAa5J,GAAa,KAClD+O,EAAUnP,EAAU4F,EAAI5F,EAAUuF,MAAQ,EAAItE,EAAQsE,MAAQ,EAC9D6J,EAAUpP,EAAU8F,EAAI9F,EAAUyF,OAAS,EAAIxE,EAAQwE,OAAS,EAGpE,OAAQgD,GACN,KAAK,EACH6B,EAAU,CACR1E,EAAGuJ,EACHrJ,EAAG9F,EAAU8F,EAAI7E,EAAQwE,QAE3B,MAEF,KAAKnG,EACHgL,EAAU,CACR1E,EAAGuJ,EACHrJ,EAAG9F,EAAU8F,EAAI9F,EAAUyF,QAE7B,MAEF,KAAKlG,EACH+K,EAAU,CACR1E,EAAG5F,EAAU4F,EAAI5F,EAAUuF,MAC3BO,EAAGsJ,GAEL,MAEF,KAAK5P,EACH8K,EAAU,CACR1E,EAAG5F,EAAU4F,EAAI3E,EAAQsE,MACzBO,EAAGsJ,GAEL,MAEF,QACE9E,EAAU,CACR1E,EAAG5F,EAAU4F,EACbE,EAAG9F,EAAU8F,GAInB,IAAIuJ,EAAW5G,EAAgBV,EAAyBU,GAAiB,KAEzE,GAAgB,MAAZ4G,EAAkB,CACpB,IAAI1G,EAAmB,MAAb0G,EAAmB,SAAW,QAExC,OAAQhF,GACN,KAAK1K,EACH2K,EAAQ+E,GAAY/E,EAAQ+E,IAAarP,EAAU2I,GAAO,EAAI1H,EAAQ0H,GAAO,GAC7E,MAEF,KAAK/I,EACH0K,EAAQ+E,GAAY/E,EAAQ+E,IAAarP,EAAU2I,GAAO,EAAI1H,EAAQ0H,GAAO,GAKnF,CAEA,OAAO2B,CACT,CC3De,SAASgF,GAAejN,EAAOc,QAC5B,IAAZA,IACFA,EAAU,CAAC,GAGb,IAAIoM,EAAWpM,EACXqM,EAAqBD,EAASnP,UAC9BA,OAAmC,IAAvBoP,EAAgCnN,EAAMjC,UAAYoP,EAC9DC,EAAoBF,EAASnM,SAC7BA,OAAiC,IAAtBqM,EAA+BpN,EAAMe,SAAWqM,EAC3DC,EAAoBH,EAASI,SAC7BA,OAAiC,IAAtBD,EAA+B7P,EAAkB6P,EAC5DE,EAAwBL,EAASM,aACjCA,OAAyC,IAA1BD,EAAmC9P,EAAW8P,EAC7DE,EAAwBP,EAASQ,eACjCA,OAA2C,IAA1BD,EAAmC/P,EAAS+P,EAC7DE,EAAuBT,EAASU,YAChCA,OAAuC,IAAzBD,GAA0CA,EACxDE,EAAmBX,EAAS3G,QAC5BA,OAA+B,IAArBsH,EAA8B,EAAIA,EAC5ChI,EAAgBD,EAAsC,iBAAZW,EAAuBA,EAAUT,EAAgBS,EAASlJ,IACpGyQ,EAAaJ,IAAmBhQ,EAASC,EAAYD,EACrDqK,EAAa/H,EAAMwG,MAAM9I,OACzBkB,EAAUoB,EAAME,SAAS0N,EAAcE,EAAaJ,GACpDK,EJkBS,SAAyBnP,EAAS0O,EAAUE,EAAczM,GACvE,IAAIiN,EAAmC,oBAAbV,EAlB5B,SAA4B1O,GAC1B,IAAIpB,EAAkBgO,GAAkB5G,EAAchG,IAElDqP,EADoB,CAAC,WAAY,SAASzJ,QAAQ,EAAiB5F,GAASiC,WAAa,GACnDtB,EAAcX,GAAWoG,EAAgBpG,GAAWA,EAE9F,OAAKS,EAAU4O,GAKRzQ,EAAgBgI,QAAO,SAAUyG,GACtC,OAAO5M,EAAU4M,IAAmBpI,EAASoI,EAAgBgC,IAAmD,SAAhCtP,EAAYsN,EAC9F,IANS,EAOX,CAK6DiC,CAAmBtP,GAAW,GAAGZ,OAAOsP,GAC/F9P,EAAkB,GAAGQ,OAAOgQ,EAAqB,CAACR,IAClDW,EAAsB3Q,EAAgB,GACtC4Q,EAAe5Q,EAAgBK,QAAO,SAAUwQ,EAASpC,GAC3D,IAAIF,EAAOC,GAA2BpN,EAASqN,EAAgBlL,GAK/D,OAJAsN,EAAQrN,IAAM,EAAI+K,EAAK/K,IAAKqN,EAAQrN,KACpCqN,EAAQnR,MAAQ,EAAI6O,EAAK7O,MAAOmR,EAAQnR,OACxCmR,EAAQpR,OAAS,EAAI8O,EAAK9O,OAAQoR,EAAQpR,QAC1CoR,EAAQlR,KAAO,EAAI4O,EAAK5O,KAAMkR,EAAQlR,MAC/BkR,CACT,GAAGrC,GAA2BpN,EAASuP,EAAqBpN,IAK5D,OAJAqN,EAAalL,MAAQkL,EAAalR,MAAQkR,EAAajR,KACvDiR,EAAahL,OAASgL,EAAanR,OAASmR,EAAapN,IACzDoN,EAAa7K,EAAI6K,EAAajR,KAC9BiR,EAAa3K,EAAI2K,EAAapN,IACvBoN,CACT,CInC2BE,CAAgBjP,EAAUT,GAAWA,EAAUA,EAAQ2P,gBAAkB9J,EAAmBzE,EAAME,SAASxC,QAAS4P,EAAUE,EAAczM,GACjKyN,EAAsB7L,EAAsB3C,EAAME,SAASvC,WAC3DuI,EAAgB2G,GAAe,CACjClP,UAAW6Q,EACX5P,QAASmJ,EACThH,SAAU,WACVhD,UAAWA,IAET0Q,EAAmB3C,GAAiBzP,OAAOkE,OAAO,CAAC,EAAGwH,EAAY7B,IAClEwI,EAAoBhB,IAAmBhQ,EAAS+Q,EAAmBD,EAGnEG,EAAkB,CACpB3N,IAAK+M,EAAmB/M,IAAM0N,EAAkB1N,IAAM6E,EAAc7E,IACpE/D,OAAQyR,EAAkBzR,OAAS8Q,EAAmB9Q,OAAS4I,EAAc5I,OAC7EE,KAAM4Q,EAAmB5Q,KAAOuR,EAAkBvR,KAAO0I,EAAc1I,KACvED,MAAOwR,EAAkBxR,MAAQ6Q,EAAmB7Q,MAAQ2I,EAAc3I,OAExE0R,EAAa5O,EAAMmG,cAAckB,OAErC,GAAIqG,IAAmBhQ,GAAUkR,EAAY,CAC3C,IAAIvH,EAASuH,EAAW7Q,GACxB1B,OAAO4D,KAAK0O,GAAiBxO,SAAQ,SAAUhE,GAC7C,IAAI0S,EAAW,CAAC3R,EAAOD,GAAQuH,QAAQrI,IAAQ,EAAI,GAAK,EACpDkK,EAAO,CAAC,EAAKpJ,GAAQuH,QAAQrI,IAAQ,EAAI,IAAM,IACnDwS,EAAgBxS,IAAQkL,EAAOhB,GAAQwI,CACzC,GACF,CAEA,OAAOF,CACT,CCyEA,UACEhP,KAAM,OACNC,SAAS,EACTC,MAAO,OACPC,GA5HF,SAAcC,GACZ,IAAIC,EAAQD,EAAKC,MACbc,EAAUf,EAAKe,QACfnB,EAAOI,EAAKJ,KAEhB,IAAIK,EAAMmG,cAAcxG,GAAMmP,MAA9B,CAoCA,IAhCA,IAAIC,EAAoBjO,EAAQkM,SAC5BgC,OAAsC,IAAtBD,GAAsCA,EACtDE,EAAmBnO,EAAQoO,QAC3BC,OAAoC,IAArBF,GAAqCA,EACpDG,EAA8BtO,EAAQuO,mBACtC9I,EAAUzF,EAAQyF,QAClB+G,EAAWxM,EAAQwM,SACnBE,EAAe1M,EAAQ0M,aACvBI,EAAc9M,EAAQ8M,YACtB0B,EAAwBxO,EAAQyO,eAChCA,OAA2C,IAA1BD,GAA0CA,EAC3DE,EAAwB1O,EAAQ0O,sBAChCC,EAAqBzP,EAAMc,QAAQ/C,UACnCqI,EAAgB9E,EAAiBmO,GAEjCJ,EAAqBD,IADHhJ,IAAkBqJ,GACqCF,EAjC/E,SAAuCxR,GACrC,GAAIuD,EAAiBvD,KAAeX,EAClC,MAAO,GAGT,IAAIsS,EAAoBnF,GAAqBxM,GAC7C,MAAO,CAAC2M,GAA8B3M,GAAY2R,EAAmBhF,GAA8BgF,GACrG,CA0B6IC,CAA8BF,GAA3E,CAAClF,GAAqBkF,KAChHG,EAAa,CAACH,GAAoBzR,OAAOqR,GAAoBxR,QAAO,SAAUC,EAAKC,GACrF,OAAOD,EAAIE,OAAOsD,EAAiBvD,KAAeX,ECvCvC,SAA8B4C,EAAOc,QAClC,IAAZA,IACFA,EAAU,CAAC,GAGb,IAAIoM,EAAWpM,EACX/C,EAAYmP,EAASnP,UACrBuP,EAAWJ,EAASI,SACpBE,EAAeN,EAASM,aACxBjH,EAAU2G,EAAS3G,QACnBgJ,EAAiBrC,EAASqC,eAC1BM,EAAwB3C,EAASsC,sBACjCA,OAAkD,IAA1BK,EAAmC,EAAgBA,EAC3E7H,EAAYL,EAAa5J,GACzB6R,EAAa5H,EAAYuH,EAAiB3R,EAAsBA,EAAoB4H,QAAO,SAAUzH,GACvG,OAAO4J,EAAa5J,KAAeiK,CACrC,IAAK3K,EACDyS,EAAoBF,EAAWpK,QAAO,SAAUzH,GAClD,OAAOyR,EAAsBhL,QAAQzG,IAAc,CACrD,IAEiC,IAA7B+R,EAAkBC,SACpBD,EAAoBF,GAItB,IAAII,EAAYF,EAAkBjS,QAAO,SAAUC,EAAKC,GAOtD,OANAD,EAAIC,GAAakP,GAAejN,EAAO,CACrCjC,UAAWA,EACXuP,SAAUA,EACVE,aAAcA,EACdjH,QAASA,IACRjF,EAAiBvD,IACbD,CACT,GAAG,CAAC,GACJ,OAAOzB,OAAO4D,KAAK+P,GAAWC,MAAK,SAAUC,EAAGC,GAC9C,OAAOH,EAAUE,GAAKF,EAAUG,EAClC,GACF,CDC6DC,CAAqBpQ,EAAO,CACnFjC,UAAWA,EACXuP,SAAUA,EACVE,aAAcA,EACdjH,QAASA,EACTgJ,eAAgBA,EAChBC,sBAAuBA,IACpBzR,EACP,GAAG,IACCsS,EAAgBrQ,EAAMwG,MAAM7I,UAC5BoK,EAAa/H,EAAMwG,MAAM9I,OACzB4S,EAAY,IAAIC,IAChBC,GAAqB,EACrBC,EAAwBb,EAAW,GAE9Bc,EAAI,EAAGA,EAAId,EAAWG,OAAQW,IAAK,CAC1C,IAAI3S,EAAY6R,EAAWc,GAEvBC,EAAiBrP,EAAiBvD,GAElC6S,EAAmBjJ,EAAa5J,KAAeT,EAC/CuT,EAAa,CAAC,EAAK5T,GAAQuH,QAAQmM,IAAmB,EACtDrK,EAAMuK,EAAa,QAAU,SAC7B1F,EAAW8B,GAAejN,EAAO,CACnCjC,UAAWA,EACXuP,SAAUA,EACVE,aAAcA,EACdI,YAAaA,EACbrH,QAASA,IAEPuK,EAAoBD,EAAaD,EAAmB1T,EAAQC,EAAOyT,EAAmB3T,EAAS,EAE/FoT,EAAc/J,GAAOyB,EAAWzB,KAClCwK,EAAoBvG,GAAqBuG,IAG3C,IAAIC,EAAmBxG,GAAqBuG,GACxCE,EAAS,GAUb,GARIhC,GACFgC,EAAOC,KAAK9F,EAASwF,IAAmB,GAGtCxB,GACF6B,EAAOC,KAAK9F,EAAS2F,IAAsB,EAAG3F,EAAS4F,IAAqB,GAG1EC,EAAOE,OAAM,SAAUC,GACzB,OAAOA,CACT,IAAI,CACFV,EAAwB1S,EACxByS,GAAqB,EACrB,KACF,CAEAF,EAAUc,IAAIrT,EAAWiT,EAC3B,CAEA,GAAIR,EAqBF,IAnBA,IAEIa,EAAQ,SAAeC,GACzB,IAAIC,EAAmB3B,EAAW4B,MAAK,SAAUzT,GAC/C,IAAIiT,EAASV,EAAU9T,IAAIuB,GAE3B,GAAIiT,EACF,OAAOA,EAAOS,MAAM,EAAGH,GAAIJ,OAAM,SAAUC,GACzC,OAAOA,CACT,GAEJ,IAEA,GAAII,EAEF,OADAd,EAAwBc,EACjB,OAEX,EAESD,EAnBY/B,EAAiB,EAAI,EAmBZ+B,EAAK,GAGpB,UAFFD,EAAMC,GADmBA,KAOpCtR,EAAMjC,YAAc0S,IACtBzQ,EAAMmG,cAAcxG,GAAMmP,OAAQ,EAClC9O,EAAMjC,UAAY0S,EAClBzQ,EAAM0R,OAAQ,EA5GhB,CA8GF,EAQEhK,iBAAkB,CAAC,UACnBgC,KAAM,CACJoF,OAAO,IE7IX,SAAS6C,GAAexG,EAAUY,EAAM6F,GAQtC,YAPyB,IAArBA,IACFA,EAAmB,CACjBrO,EAAG,EACHE,EAAG,IAIA,CACLzC,IAAKmK,EAASnK,IAAM+K,EAAK3I,OAASwO,EAAiBnO,EACnDvG,MAAOiO,EAASjO,MAAQ6O,EAAK7I,MAAQ0O,EAAiBrO,EACtDtG,OAAQkO,EAASlO,OAAS8O,EAAK3I,OAASwO,EAAiBnO,EACzDtG,KAAMgO,EAAShO,KAAO4O,EAAK7I,MAAQ0O,EAAiBrO,EAExD,CAEA,SAASsO,GAAsB1G,GAC7B,MAAO,CAAC,EAAKjO,EAAOD,EAAQE,GAAM2U,MAAK,SAAUC,GAC/C,OAAO5G,EAAS4G,IAAS,CAC3B,GACF,CA+BA,UACEpS,KAAM,OACNC,SAAS,EACTC,MAAO,OACP6H,iBAAkB,CAAC,mBACnB5H,GAlCF,SAAcC,GACZ,IAAIC,EAAQD,EAAKC,MACbL,EAAOI,EAAKJ,KACZ0Q,EAAgBrQ,EAAMwG,MAAM7I,UAC5BoK,EAAa/H,EAAMwG,MAAM9I,OACzBkU,EAAmB5R,EAAMmG,cAAc6L,gBACvCC,EAAoBhF,GAAejN,EAAO,CAC5C0N,eAAgB,cAEdwE,EAAoBjF,GAAejN,EAAO,CAC5C4N,aAAa,IAEXuE,EAA2BR,GAAeM,EAAmB5B,GAC7D+B,EAAsBT,GAAeO,EAAmBnK,EAAY6J,GACpES,EAAoBR,GAAsBM,GAC1CG,EAAmBT,GAAsBO,GAC7CpS,EAAMmG,cAAcxG,GAAQ,CAC1BwS,yBAA0BA,EAC1BC,oBAAqBA,EACrBC,kBAAmBA,EACnBC,iBAAkBA,GAEpBtS,EAAMM,WAAW5C,OAASrB,OAAOkE,OAAO,CAAC,EAAGP,EAAMM,WAAW5C,OAAQ,CACnE,+BAAgC2U,EAChC,sBAAuBC,GAE3B,GCJA,IACE3S,KAAM,SACNC,SAAS,EACTC,MAAO,OACPwB,SAAU,CAAC,iBACXvB,GA5BF,SAAgBa,GACd,IAAIX,EAAQW,EAAMX,MACdc,EAAUH,EAAMG,QAChBnB,EAAOgB,EAAMhB,KACb4S,EAAkBzR,EAAQuG,OAC1BA,OAA6B,IAApBkL,EAA6B,CAAC,EAAG,GAAKA,EAC/C7I,EAAO,EAAW7L,QAAO,SAAUC,EAAKC,GAE1C,OADAD,EAAIC,GA5BD,SAAiCA,EAAWyI,EAAOa,GACxD,IAAIjB,EAAgB9E,EAAiBvD,GACjCyU,EAAiB,CAACrV,EAAM,GAAKqH,QAAQ4B,IAAkB,GAAK,EAAI,EAEhErG,EAAyB,mBAAXsH,EAAwBA,EAAOhL,OAAOkE,OAAO,CAAC,EAAGiG,EAAO,CACxEzI,UAAWA,KACPsJ,EACFoL,EAAW1S,EAAK,GAChB2S,EAAW3S,EAAK,GAIpB,OAFA0S,EAAWA,GAAY,EACvBC,GAAYA,GAAY,GAAKF,EACtB,CAACrV,EAAMD,GAAOsH,QAAQ4B,IAAkB,EAAI,CACjD7C,EAAGmP,EACHjP,EAAGgP,GACD,CACFlP,EAAGkP,EACHhP,EAAGiP,EAEP,CASqBC,CAAwB5U,EAAWiC,EAAMwG,MAAOa,GAC1DvJ,CACT,GAAG,CAAC,GACA8U,EAAwBlJ,EAAK1J,EAAMjC,WACnCwF,EAAIqP,EAAsBrP,EAC1BE,EAAImP,EAAsBnP,EAEW,MAArCzD,EAAMmG,cAAcD,gBACtBlG,EAAMmG,cAAcD,cAAc3C,GAAKA,EACvCvD,EAAMmG,cAAcD,cAAczC,GAAKA,GAGzCzD,EAAMmG,cAAcxG,GAAQ+J,CAC9B,GC1BA,IACE/J,KAAM,gBACNC,SAAS,EACTC,MAAO,OACPC,GApBF,SAAuBC,GACrB,IAAIC,EAAQD,EAAKC,MACbL,EAAOI,EAAKJ,KAKhBK,EAAMmG,cAAcxG,GAAQkN,GAAe,CACzClP,UAAWqC,EAAMwG,MAAM7I,UACvBiB,QAASoB,EAAMwG,MAAM9I,OACrBqD,SAAU,WACVhD,UAAWiC,EAAMjC,WAErB,EAQE2L,KAAM,CAAC,GCgHT,IACE/J,KAAM,kBACNC,SAAS,EACTC,MAAO,OACPC,GA/HF,SAAyBC,GACvB,IAAIC,EAAQD,EAAKC,MACbc,EAAUf,EAAKe,QACfnB,EAAOI,EAAKJ,KACZoP,EAAoBjO,EAAQkM,SAC5BgC,OAAsC,IAAtBD,GAAsCA,EACtDE,EAAmBnO,EAAQoO,QAC3BC,OAAoC,IAArBF,GAAsCA,EACrD3B,EAAWxM,EAAQwM,SACnBE,EAAe1M,EAAQ0M,aACvBI,EAAc9M,EAAQ8M,YACtBrH,EAAUzF,EAAQyF,QAClBsM,EAAkB/R,EAAQgS,OAC1BA,OAA6B,IAApBD,GAAoCA,EAC7CE,EAAwBjS,EAAQkS,aAChCA,OAAyC,IAA1BD,EAAmC,EAAIA,EACtD5H,EAAW8B,GAAejN,EAAO,CACnCsN,SAAUA,EACVE,aAAcA,EACdjH,QAASA,EACTqH,YAAaA,IAEXxH,EAAgB9E,EAAiBtB,EAAMjC,WACvCiK,EAAYL,EAAa3H,EAAMjC,WAC/BkV,GAAmBjL,EACnBgF,EAAWtH,EAAyBU,GACpC8I,ECrCY,MDqCSlC,ECrCH,IAAM,IDsCxB9G,EAAgBlG,EAAMmG,cAAcD,cACpCmK,EAAgBrQ,EAAMwG,MAAM7I,UAC5BoK,EAAa/H,EAAMwG,MAAM9I,OACzBwV,EAA4C,mBAAjBF,EAA8BA,EAAa3W,OAAOkE,OAAO,CAAC,EAAGP,EAAMwG,MAAO,CACvGzI,UAAWiC,EAAMjC,aACbiV,EACFG,EAA2D,iBAAtBD,EAAiC,CACxElG,SAAUkG,EACVhE,QAASgE,GACP7W,OAAOkE,OAAO,CAChByM,SAAU,EACVkC,QAAS,GACRgE,GACCE,EAAsBpT,EAAMmG,cAAckB,OAASrH,EAAMmG,cAAckB,OAAOrH,EAAMjC,WAAa,KACjG2L,EAAO,CACTnG,EAAG,EACHE,EAAG,GAGL,GAAKyC,EAAL,CAIA,GAAI8I,EAAe,CACjB,IAAIqE,EAEAC,EAAwB,MAAbtG,EAAmB,EAAM7P,EACpCoW,EAAuB,MAAbvG,EAAmB/P,EAASC,EACtCoJ,EAAmB,MAAb0G,EAAmB,SAAW,QACpC3F,EAASnB,EAAc8G,GACvBtL,EAAM2F,EAAS8D,EAASmI,GACxB7R,EAAM4F,EAAS8D,EAASoI,GACxBC,EAAWV,GAAU/K,EAAWzB,GAAO,EAAI,EAC3CmN,EAASzL,IAAc1K,EAAQ+S,EAAc/J,GAAOyB,EAAWzB,GAC/DoN,EAAS1L,IAAc1K,GAASyK,EAAWzB,IAAQ+J,EAAc/J,GAGjEL,EAAejG,EAAME,SAASgB,MAC9BwF,EAAYoM,GAAU7M,EAAetC,EAAcsC,GAAgB,CACrE/C,MAAO,EACPE,OAAQ,GAENuQ,GAAqB3T,EAAMmG,cAAc,oBAAsBnG,EAAMmG,cAAc,oBAAoBI,QxBhFtG,CACLvF,IAAK,EACL9D,MAAO,EACPD,OAAQ,EACRE,KAAM,GwB6EFyW,GAAkBD,GAAmBL,GACrCO,GAAkBF,GAAmBJ,GAMrCO,GAAWnO,EAAO,EAAG0K,EAAc/J,GAAMI,EAAUJ,IACnDyN,GAAYd,EAAkB5C,EAAc/J,GAAO,EAAIkN,EAAWM,GAAWF,GAAkBT,EAA4BnG,SAAWyG,EAASK,GAAWF,GAAkBT,EAA4BnG,SACxMgH,GAAYf,GAAmB5C,EAAc/J,GAAO,EAAIkN,EAAWM,GAAWD,GAAkBV,EAA4BnG,SAAW0G,EAASI,GAAWD,GAAkBV,EAA4BnG,SACzMjG,GAAoB/G,EAAME,SAASgB,OAAS8D,EAAgBhF,EAAME,SAASgB,OAC3E+S,GAAelN,GAAiC,MAAbiG,EAAmBjG,GAAkBsF,WAAa,EAAItF,GAAkBuF,YAAc,EAAI,EAC7H4H,GAAwH,OAAjGb,EAA+C,MAAvBD,OAA8B,EAASA,EAAoBpG,IAAqBqG,EAAwB,EAEvJc,GAAY9M,EAAS2M,GAAYE,GACjCE,GAAkBzO,EAAOmN,EAAS,EAAQpR,EAF9B2F,EAAS0M,GAAYG,GAAsBD,IAEKvS,EAAK2F,EAAQyL,EAAS,EAAQrR,EAAK0S,IAAa1S,GAChHyE,EAAc8G,GAAYoH,GAC1B1K,EAAKsD,GAAYoH,GAAkB/M,CACrC,CAEA,GAAI8H,EAAc,CAChB,IAAIkF,GAEAC,GAAyB,MAAbtH,EAAmB,EAAM7P,EAErCoX,GAAwB,MAAbvH,EAAmB/P,EAASC,EAEvCsX,GAAUtO,EAAcgJ,GAExBuF,GAAmB,MAAZvF,EAAkB,SAAW,QAEpCwF,GAAOF,GAAUrJ,EAASmJ,IAE1BK,GAAOH,GAAUrJ,EAASoJ,IAE1BK,IAAuD,IAAxC,CAAC,EAAKzX,GAAMqH,QAAQ4B,GAEnCyO,GAAyH,OAAjGR,GAAgD,MAAvBjB,OAA8B,EAASA,EAAoBlE,IAAoBmF,GAAyB,EAEzJS,GAAaF,GAAeF,GAAOF,GAAUnE,EAAcoE,IAAQ1M,EAAW0M,IAAQI,GAAuB1B,EAA4BjE,QAEzI6F,GAAaH,GAAeJ,GAAUnE,EAAcoE,IAAQ1M,EAAW0M,IAAQI,GAAuB1B,EAA4BjE,QAAUyF,GAE5IK,GAAmBlC,GAAU8B,G1BzH9B,SAAwBlT,EAAK1E,EAAOyE,GACzC,IAAIwT,EAAItP,EAAOjE,EAAK1E,EAAOyE,GAC3B,OAAOwT,EAAIxT,EAAMA,EAAMwT,CACzB,C0BsHoDC,CAAeJ,GAAYN,GAASO,IAAcpP,EAAOmN,EAASgC,GAAaJ,GAAMF,GAAS1B,EAASiC,GAAaJ,IAEpKzO,EAAcgJ,GAAW8F,GACzBtL,EAAKwF,GAAW8F,GAAmBR,EACrC,CAEAxU,EAAMmG,cAAcxG,GAAQ+J,CAvE5B,CAwEF,EAQEhC,iBAAkB,CAAC,WE1HN,SAASyN,GAAiBC,EAAyBrQ,EAAcsD,QAC9D,IAAZA,IACFA,GAAU,GAGZ,ICnBoCrJ,ECJOJ,EFuBvCyW,EAA0B9V,EAAcwF,GACxCuQ,EAAuB/V,EAAcwF,IAf3C,SAAyBnG,GACvB,IAAImN,EAAOnN,EAAQ+D,wBACfI,EAASpB,EAAMoK,EAAK7I,OAAStE,EAAQqE,aAAe,EACpDD,EAASrB,EAAMoK,EAAK3I,QAAUxE,EAAQuE,cAAgB,EAC1D,OAAkB,IAAXJ,GAA2B,IAAXC,CACzB,CAU4DuS,CAAgBxQ,GACtEJ,EAAkBF,EAAmBM,GACrCgH,EAAOpJ,EAAsByS,EAAyBE,EAAsBjN,GAC5EyB,EAAS,CACXc,WAAY,EACZE,UAAW,GAET7C,EAAU,CACZ1E,EAAG,EACHE,EAAG,GAkBL,OAfI4R,IAA4BA,IAA4BhN,MACxB,SAA9B1J,EAAYoG,IAChBkG,GAAetG,MACbmF,GCnCgC9K,EDmCT+F,KClCdhG,EAAUC,IAAUO,EAAcP,GCJxC,CACL4L,YAFyChM,EDQbI,GCNR4L,WACpBE,UAAWlM,EAAQkM,WDGZH,GAAgB3L,IDoCnBO,EAAcwF,KAChBkD,EAAUtF,EAAsBoC,GAAc,IACtCxB,GAAKwB,EAAauH,WAC1BrE,EAAQxE,GAAKsB,EAAasH,WACjB1H,IACTsD,EAAQ1E,EAAIyH,GAAoBrG,KAI7B,CACLpB,EAAGwI,EAAK5O,KAAO2M,EAAOc,WAAa3C,EAAQ1E,EAC3CE,EAAGsI,EAAK/K,IAAM8I,EAAOgB,UAAY7C,EAAQxE,EACzCP,MAAO6I,EAAK7I,MACZE,OAAQ2I,EAAK3I,OAEjB,CGvDA,SAASoS,GAAMC,GACb,IAAItT,EAAM,IAAIoO,IACVmF,EAAU,IAAIC,IACdC,EAAS,GAKb,SAAS3F,EAAK4F,GACZH,EAAQI,IAAID,EAASlW,MACN,GAAG3B,OAAO6X,EAASxU,UAAY,GAAIwU,EAASnO,kBAAoB,IACtEvH,SAAQ,SAAU4V,GACzB,IAAKL,EAAQM,IAAID,GAAM,CACrB,IAAIE,EAAc9T,EAAI3F,IAAIuZ,GAEtBE,GACFhG,EAAKgG,EAET,CACF,IACAL,EAAO3E,KAAK4E,EACd,CAQA,OAzBAJ,EAAUtV,SAAQ,SAAU0V,GAC1B1T,EAAIiP,IAAIyE,EAASlW,KAAMkW,EACzB,IAiBAJ,EAAUtV,SAAQ,SAAU0V,GACrBH,EAAQM,IAAIH,EAASlW,OAExBsQ,EAAK4F,EAET,IACOD,CACT,CCvBA,IAAIM,GAAkB,CACpBnY,UAAW,SACX0X,UAAW,GACX1U,SAAU,YAGZ,SAASoV,KACP,IAAK,IAAI1B,EAAO2B,UAAUrG,OAAQsG,EAAO,IAAIpU,MAAMwS,GAAO6B,EAAO,EAAGA,EAAO7B,EAAM6B,IAC/ED,EAAKC,GAAQF,UAAUE,GAGzB,OAAQD,EAAKvE,MAAK,SAAUlT,GAC1B,QAASA,GAAoD,mBAAlCA,EAAQ+D,sBACrC,GACF,CAEO,SAAS4T,GAAgBC,QACL,IAArBA,IACFA,EAAmB,CAAC,GAGtB,IAAIC,EAAoBD,EACpBE,EAAwBD,EAAkBE,iBAC1CA,OAA6C,IAA1BD,EAAmC,GAAKA,EAC3DE,EAAyBH,EAAkBI,eAC3CA,OAA4C,IAA3BD,EAAoCV,GAAkBU,EAC3E,OAAO,SAAsBjZ,EAAWD,EAAQoD,QAC9B,IAAZA,IACFA,EAAU+V,GAGZ,ICxC6B/W,EAC3BgX,EDuCE9W,EAAQ,CACVjC,UAAW,SACXgZ,iBAAkB,GAClBjW,QAASzE,OAAOkE,OAAO,CAAC,EAAG2V,GAAiBW,GAC5C1Q,cAAe,CAAC,EAChBjG,SAAU,CACRvC,UAAWA,EACXD,OAAQA,GAEV4C,WAAY,CAAC,EACbD,OAAQ,CAAC,GAEP2W,EAAmB,GACnBC,GAAc,EACdrN,EAAW,CACb5J,MAAOA,EACPkX,WAAY,SAAoBC,GAC9B,IAAIrW,EAAsC,mBAArBqW,EAAkCA,EAAiBnX,EAAMc,SAAWqW,EACzFC,IACApX,EAAMc,QAAUzE,OAAOkE,OAAO,CAAC,EAAGsW,EAAgB7W,EAAMc,QAASA,GACjEd,EAAMiK,cAAgB,CACpBtM,UAAW0B,EAAU1B,GAAa6N,GAAkB7N,GAAaA,EAAU4Q,eAAiB/C,GAAkB7N,EAAU4Q,gBAAkB,GAC1I7Q,OAAQ8N,GAAkB9N,IAI5B,IElE4B+X,EAC9B4B,EFiEMN,EDhCG,SAAwBtB,GAErC,IAAIsB,EAAmBvB,GAAMC,GAE7B,OAAO/W,EAAeb,QAAO,SAAUC,EAAK+B,GAC1C,OAAO/B,EAAIE,OAAO+Y,EAAiBvR,QAAO,SAAUqQ,GAClD,OAAOA,EAAShW,QAAUA,CAC5B,IACF,GAAG,GACL,CCuB+ByX,EElEK7B,EFkEsB,GAAGzX,OAAO2Y,EAAkB3W,EAAMc,QAAQ2U,WEjE9F4B,EAAS5B,EAAU5X,QAAO,SAAUwZ,EAAQE,GAC9C,IAAIC,EAAWH,EAAOE,EAAQ5X,MAK9B,OAJA0X,EAAOE,EAAQ5X,MAAQ6X,EAAWnb,OAAOkE,OAAO,CAAC,EAAGiX,EAAUD,EAAS,CACrEzW,QAASzE,OAAOkE,OAAO,CAAC,EAAGiX,EAAS1W,QAASyW,EAAQzW,SACrD4I,KAAMrN,OAAOkE,OAAO,CAAC,EAAGiX,EAAS9N,KAAM6N,EAAQ7N,QAC5C6N,EACEF,CACT,GAAG,CAAC,GAEGhb,OAAO4D,KAAKoX,GAAQlV,KAAI,SAAUhG,GACvC,OAAOkb,EAAOlb,EAChB,MF4DM,OAJA6D,EAAM+W,iBAAmBA,EAAiBvR,QAAO,SAAUiS,GACzD,OAAOA,EAAE7X,OACX,IA+FFI,EAAM+W,iBAAiB5W,SAAQ,SAAUJ,GACvC,IAAIJ,EAAOI,EAAKJ,KACZ+X,EAAe3X,EAAKe,QACpBA,OAA2B,IAAjB4W,EAA0B,CAAC,EAAIA,EACzChX,EAASX,EAAKW,OAElB,GAAsB,mBAAXA,EAAuB,CAChC,IAAIiX,EAAYjX,EAAO,CACrBV,MAAOA,EACPL,KAAMA,EACNiK,SAAUA,EACV9I,QAASA,IAKXkW,EAAiB/F,KAAK0G,GAFT,WAAmB,EAGlC,CACF,IA/GS/N,EAASQ,QAClB,EAMAwN,YAAa,WACX,IAAIX,EAAJ,CAIA,IAAIY,EAAkB7X,EAAME,SACxBvC,EAAYka,EAAgBla,UAC5BD,EAASma,EAAgBna,OAG7B,GAAKyY,GAAiBxY,EAAWD,GAAjC,CAKAsC,EAAMwG,MAAQ,CACZ7I,UAAWwX,GAAiBxX,EAAWqH,EAAgBtH,GAAoC,UAA3BsC,EAAMc,QAAQC,UAC9ErD,OAAQiG,EAAcjG,IAOxBsC,EAAM0R,OAAQ,EACd1R,EAAMjC,UAAYiC,EAAMc,QAAQ/C,UAKhCiC,EAAM+W,iBAAiB5W,SAAQ,SAAU0V,GACvC,OAAO7V,EAAMmG,cAAc0P,EAASlW,MAAQtD,OAAOkE,OAAO,CAAC,EAAGsV,EAASnM,KACzE,IAEA,IAAK,IAAIoO,EAAQ,EAAGA,EAAQ9X,EAAM+W,iBAAiBhH,OAAQ+H,IACzD,IAAoB,IAAhB9X,EAAM0R,MAAV,CAMA,IAAIqG,EAAwB/X,EAAM+W,iBAAiBe,GAC/ChY,EAAKiY,EAAsBjY,GAC3BkY,EAAyBD,EAAsBjX,QAC/CoM,OAAsC,IAA3B8K,EAAoC,CAAC,EAAIA,EACpDrY,EAAOoY,EAAsBpY,KAEf,mBAAPG,IACTE,EAAQF,EAAG,CACTE,MAAOA,EACPc,QAASoM,EACTvN,KAAMA,EACNiK,SAAUA,KACN5J,EAdR,MAHEA,EAAM0R,OAAQ,EACdoG,GAAS,CAzBb,CATA,CAqDF,EAGA1N,QC1I2BtK,ED0IV,WACf,OAAO,IAAImY,SAAQ,SAAUC,GAC3BtO,EAASgO,cACTM,EAAQlY,EACV,GACF,EC7IG,WAUL,OATK8W,IACHA,EAAU,IAAImB,SAAQ,SAAUC,GAC9BD,QAAQC,UAAUC,MAAK,WACrBrB,OAAUsB,EACVF,EAAQpY,IACV,GACF,KAGKgX,CACT,GDmIIuB,QAAS,WACPjB,IACAH,GAAc,CAChB,GAGF,IAAKd,GAAiBxY,EAAWD,GAC/B,OAAOkM,EAmCT,SAASwN,IACPJ,EAAiB7W,SAAQ,SAAUL,GACjC,OAAOA,GACT,IACAkX,EAAmB,EACrB,CAEA,OAvCApN,EAASsN,WAAWpW,GAASqX,MAAK,SAAUnY,IACrCiX,GAAenW,EAAQwX,eAC1BxX,EAAQwX,cAActY,EAE1B,IAmCO4J,CACT,CACF,CACO,IAAI2O,GAA4BhC,KGzLnC,GAA4BA,GAAgB,CAC9CI,iBAFqB,CAAC6B,GAAgB,GAAe,GAAe,EAAa,GAAQ,GAAM,GAAiB,EAAO,MCJrH,GAA4BjC,GAAgB,CAC9CI,iBAFqB,CAAC6B,GAAgB,GAAe,GAAe,KCatE,MAAMC,GAAa,IAAIlI,IACjBmI,GAAO,CACX,GAAAtH,CAAIxS,EAASzC,EAAKyN,GACX6O,GAAWzC,IAAIpX,IAClB6Z,GAAWrH,IAAIxS,EAAS,IAAI2R,KAE9B,MAAMoI,EAAcF,GAAWjc,IAAIoC,GAI9B+Z,EAAY3C,IAAI7Z,IAA6B,IAArBwc,EAAYC,KAKzCD,EAAYvH,IAAIjV,EAAKyN,GAHnBiP,QAAQC,MAAM,+EAA+E7W,MAAM8W,KAAKJ,EAAY1Y,QAAQ,MAIhI,EACAzD,IAAG,CAACoC,EAASzC,IACPsc,GAAWzC,IAAIpX,IACV6Z,GAAWjc,IAAIoC,GAASpC,IAAIL,IAE9B,KAET,MAAA6c,CAAOpa,EAASzC,GACd,IAAKsc,GAAWzC,IAAIpX,GAClB,OAEF,MAAM+Z,EAAcF,GAAWjc,IAAIoC,GACnC+Z,EAAYM,OAAO9c,GAGM,IAArBwc,EAAYC,MACdH,GAAWQ,OAAOra,EAEtB,GAYIsa,GAAiB,gBAOjBC,GAAgBC,IAChBA,GAAYna,OAAOoa,KAAOpa,OAAOoa,IAAIC,SAEvCF,EAAWA,EAAS5O,QAAQ,iBAAiB,CAAC+O,EAAOC,IAAO,IAAIH,IAAIC,OAAOE,QAEtEJ,GA4CHK,GAAuB7a,IAC3BA,EAAQ8a,cAAc,IAAIC,MAAMT,IAAgB,EAE5C,GAAYU,MACXA,GAA4B,iBAAXA,UAGO,IAAlBA,EAAOC,SAChBD,EAASA,EAAO,SAEgB,IAApBA,EAAOE,UAEjBC,GAAaH,GAEb,GAAUA,GACLA,EAAOC,OAASD,EAAO,GAAKA,EAEf,iBAAXA,GAAuBA,EAAO7J,OAAS,EACzCrL,SAAS+C,cAAc0R,GAAcS,IAEvC,KAEHI,GAAYpb,IAChB,IAAK,GAAUA,IAAgD,IAApCA,EAAQqb,iBAAiBlK,OAClD,OAAO,EAET,MAAMmK,EAAgF,YAA7D5V,iBAAiB1F,GAASub,iBAAiB,cAE9DC,EAAgBxb,EAAQyb,QAAQ,uBACtC,IAAKD,EACH,OAAOF,EAET,GAAIE,IAAkBxb,EAAS,CAC7B,MAAM0b,EAAU1b,EAAQyb,QAAQ,WAChC,GAAIC,GAAWA,EAAQlW,aAAegW,EACpC,OAAO,EAET,GAAgB,OAAZE,EACF,OAAO,CAEX,CACA,OAAOJ,CAAgB,EAEnBK,GAAa3b,IACZA,GAAWA,EAAQkb,WAAaU,KAAKC,gBAGtC7b,EAAQ8b,UAAU7W,SAAS,mBAGC,IAArBjF,EAAQ+b,SACV/b,EAAQ+b,SAEV/b,EAAQgc,aAAa,aAAoD,UAArChc,EAAQic,aAAa,aAE5DC,GAAiBlc,IACrB,IAAK8F,SAASC,gBAAgBoW,aAC5B,OAAO,KAIT,GAAmC,mBAAxBnc,EAAQqF,YAA4B,CAC7C,MAAM+W,EAAOpc,EAAQqF,cACrB,OAAO+W,aAAgBtb,WAAasb,EAAO,IAC7C,CACA,OAAIpc,aAAmBc,WACdd,EAIJA,EAAQwF,WAGN0W,GAAelc,EAAQwF,YAFrB,IAEgC,EAErC6W,GAAO,OAUPC,GAAStc,IACbA,EAAQuE,YAAY,EAGhBgY,GAAY,IACZlc,OAAOmc,SAAW1W,SAAS6G,KAAKqP,aAAa,qBACxC3b,OAAOmc,OAET,KAEHC,GAA4B,GAgB5BC,GAAQ,IAAuC,QAAjC5W,SAASC,gBAAgB4W,IACvCC,GAAqBC,IAhBAC,QAiBN,KACjB,MAAMC,EAAIR,KAEV,GAAIQ,EAAG,CACL,MAAMhc,EAAO8b,EAAOG,KACdC,EAAqBF,EAAE7b,GAAGH,GAChCgc,EAAE7b,GAAGH,GAAQ8b,EAAOK,gBACpBH,EAAE7b,GAAGH,GAAMoc,YAAcN,EACzBE,EAAE7b,GAAGH,GAAMqc,WAAa,KACtBL,EAAE7b,GAAGH,GAAQkc,EACNJ,EAAOK,gBAElB,GA5B0B,YAAxBpX,SAASuX,YAENZ,GAA0BtL,QAC7BrL,SAASyF,iBAAiB,oBAAoB,KAC5C,IAAK,MAAMuR,KAAYL,GACrBK,GACF,IAGJL,GAA0BpK,KAAKyK,IAE/BA,GAkBA,EAEEQ,GAAU,CAACC,EAAkB9F,EAAO,GAAI+F,EAAeD,IACxB,mBAArBA,EAAkCA,KAAoB9F,GAAQ+F,EAExEC,GAAyB,CAACX,EAAUY,EAAmBC,GAAoB,KAC/E,IAAKA,EAEH,YADAL,GAAQR,GAGV,MACMc,EAhKiC5d,KACvC,IAAKA,EACH,OAAO,EAIT,IAAI,mBACF6d,EAAkB,gBAClBC,GACEzd,OAAOqF,iBAAiB1F,GAC5B,MAAM+d,EAA0BC,OAAOC,WAAWJ,GAC5CK,EAAuBF,OAAOC,WAAWH,GAG/C,OAAKC,GAA4BG,GAKjCL,EAAqBA,EAAmBlb,MAAM,KAAK,GACnDmb,EAAkBA,EAAgBnb,MAAM,KAAK,GAtDf,KAuDtBqb,OAAOC,WAAWJ,GAAsBG,OAAOC,WAAWH,KANzD,CAMoG,EA2IpFK,CAAiCT,GADlC,EAExB,IAAIU,GAAS,EACb,MAAMC,EAAU,EACdrR,aAEIA,IAAW0Q,IAGfU,GAAS,EACTV,EAAkBjS,oBAAoB6O,GAAgB+D,GACtDf,GAAQR,GAAS,EAEnBY,EAAkBnS,iBAAiB+O,GAAgB+D,GACnDC,YAAW,KACJF,GACHvD,GAAqB6C,EACvB,GACCE,EAAiB,EAYhBW,GAAuB,CAAC1R,EAAM2R,EAAeC,EAAeC,KAChE,MAAMC,EAAa9R,EAAKsE,OACxB,IAAI+H,EAAQrM,EAAKjH,QAAQ4Y,GAIzB,OAAe,IAAXtF,GACMuF,GAAiBC,EAAiB7R,EAAK8R,EAAa,GAAK9R,EAAK,IAExEqM,GAASuF,EAAgB,GAAK,EAC1BC,IACFxF,GAASA,EAAQyF,GAAcA,GAE1B9R,EAAKjK,KAAKC,IAAI,EAAGD,KAAKE,IAAIoW,EAAOyF,EAAa,KAAI,EAerDC,GAAiB,qBACjBC,GAAiB,OACjBC,GAAgB,SAChBC,GAAgB,CAAC,EACvB,IAAIC,GAAW,EACf,MAAMC,GAAe,CACnBC,WAAY,YACZC,WAAY,YAERC,GAAe,IAAIrI,IAAI,CAAC,QAAS,WAAY,UAAW,YAAa,cAAe,aAAc,iBAAkB,YAAa,WAAY,YAAa,cAAe,YAAa,UAAW,WAAY,QAAS,oBAAqB,aAAc,YAAa,WAAY,cAAe,cAAe,cAAe,YAAa,eAAgB,gBAAiB,eAAgB,gBAAiB,aAAc,QAAS,OAAQ,SAAU,QAAS,SAAU,SAAU,UAAW,WAAY,OAAQ,SAAU,eAAgB,SAAU,OAAQ,mBAAoB,mBAAoB,QAAS,QAAS,WAM/lB,SAASsI,GAAarf,EAASsf,GAC7B,OAAOA,GAAO,GAAGA,MAAQN,QAAgBhf,EAAQgf,UAAYA,IAC/D,CACA,SAASO,GAAiBvf,GACxB,MAAMsf,EAAMD,GAAarf,GAGzB,OAFAA,EAAQgf,SAAWM,EACnBP,GAAcO,GAAOP,GAAcO,IAAQ,CAAC,EACrCP,GAAcO,EACvB,CAiCA,SAASE,GAAYC,EAAQC,EAAUC,EAAqB,MAC1D,OAAOliB,OAAOmiB,OAAOH,GAAQ7M,MAAKiN,GAASA,EAAMH,WAAaA,GAAYG,EAAMF,qBAAuBA,GACzG,CACA,SAASG,GAAoBC,EAAmB1B,EAAS2B,GACvD,MAAMC,EAAiC,iBAAZ5B,EAErBqB,EAAWO,EAAcD,EAAqB3B,GAAW2B,EAC/D,IAAIE,EAAYC,GAAaJ,GAI7B,OAHKX,GAAahI,IAAI8I,KACpBA,EAAYH,GAEP,CAACE,EAAaP,EAAUQ,EACjC,CACA,SAASE,GAAWpgB,EAAS+f,EAAmB1B,EAAS2B,EAAoBK,GAC3E,GAAiC,iBAAtBN,IAAmC/f,EAC5C,OAEF,IAAKigB,EAAaP,EAAUQ,GAAaJ,GAAoBC,EAAmB1B,EAAS2B,GAIzF,GAAID,KAAqBd,GAAc,CACrC,MAAMqB,EAAepf,GACZ,SAAU2e,GACf,IAAKA,EAAMU,eAAiBV,EAAMU,gBAAkBV,EAAMW,iBAAmBX,EAAMW,eAAevb,SAAS4a,EAAMU,eAC/G,OAAOrf,EAAGjD,KAAKwiB,KAAMZ,EAEzB,EAEFH,EAAWY,EAAaZ,EAC1B,CACA,MAAMD,EAASF,GAAiBvf,GAC1B0gB,EAAWjB,EAAOS,KAAeT,EAAOS,GAAa,CAAC,GACtDS,EAAmBnB,GAAYkB,EAAUhB,EAAUO,EAAc5B,EAAU,MACjF,GAAIsC,EAEF,YADAA,EAAiBN,OAASM,EAAiBN,QAAUA,GAGvD,MAAMf,EAAMD,GAAaK,EAAUK,EAAkBnU,QAAQgT,GAAgB,KACvE1d,EAAK+e,EA5Db,SAAoCjgB,EAASwa,EAAUtZ,GACrD,OAAO,SAASmd,EAAQwB,GACtB,MAAMe,EAAc5gB,EAAQ6gB,iBAAiBrG,GAC7C,IAAK,IAAI,OACPxN,GACE6S,EAAO7S,GAAUA,IAAWyT,KAAMzT,EAASA,EAAOxH,WACpD,IAAK,MAAMsb,KAAcF,EACvB,GAAIE,IAAe9T,EASnB,OANA+T,GAAWlB,EAAO,CAChBW,eAAgBxT,IAEdqR,EAAQgC,QACVW,GAAaC,IAAIjhB,EAAS6f,EAAMqB,KAAM1G,EAAUtZ,GAE3CA,EAAGigB,MAAMnU,EAAQ,CAAC6S,GAG/B,CACF,CAwC2BuB,CAA2BphB,EAASqe,EAASqB,GAvExE,SAA0B1f,EAASkB,GACjC,OAAO,SAASmd,EAAQwB,GAOtB,OANAkB,GAAWlB,EAAO,CAChBW,eAAgBxgB,IAEdqe,EAAQgC,QACVW,GAAaC,IAAIjhB,EAAS6f,EAAMqB,KAAMhgB,GAEjCA,EAAGigB,MAAMnhB,EAAS,CAAC6f,GAC5B,CACF,CA6DoFwB,CAAiBrhB,EAAS0f,GAC5Gxe,EAAGye,mBAAqBM,EAAc5B,EAAU,KAChDnd,EAAGwe,SAAWA,EACdxe,EAAGmf,OAASA,EACZnf,EAAG8d,SAAWM,EACdoB,EAASpB,GAAOpe,EAChBlB,EAAQuL,iBAAiB2U,EAAWhf,EAAI+e,EAC1C,CACA,SAASqB,GAActhB,EAASyf,EAAQS,EAAW7B,EAASsB,GAC1D,MAAMze,EAAKse,GAAYC,EAAOS,GAAY7B,EAASsB,GAC9Cze,IAGLlB,EAAQyL,oBAAoByU,EAAWhf,EAAIqgB,QAAQ5B,WAC5CF,EAAOS,GAAWhf,EAAG8d,UAC9B,CACA,SAASwC,GAAyBxhB,EAASyf,EAAQS,EAAWuB,GAC5D,MAAMC,EAAoBjC,EAAOS,IAAc,CAAC,EAChD,IAAK,MAAOyB,EAAY9B,KAAUpiB,OAAOmkB,QAAQF,GAC3CC,EAAWE,SAASJ,IACtBH,GAActhB,EAASyf,EAAQS,EAAWL,EAAMH,SAAUG,EAAMF,mBAGtE,CACA,SAASQ,GAAaN,GAGpB,OADAA,EAAQA,EAAMjU,QAAQiT,GAAgB,IAC/BI,GAAaY,IAAUA,CAChC,CACA,MAAMmB,GAAe,CACnB,EAAAc,CAAG9hB,EAAS6f,EAAOxB,EAAS2B,GAC1BI,GAAWpgB,EAAS6f,EAAOxB,EAAS2B,GAAoB,EAC1D,EACA,GAAA+B,CAAI/hB,EAAS6f,EAAOxB,EAAS2B,GAC3BI,GAAWpgB,EAAS6f,EAAOxB,EAAS2B,GAAoB,EAC1D,EACA,GAAAiB,CAAIjhB,EAAS+f,EAAmB1B,EAAS2B,GACvC,GAAiC,iBAAtBD,IAAmC/f,EAC5C,OAEF,MAAOigB,EAAaP,EAAUQ,GAAaJ,GAAoBC,EAAmB1B,EAAS2B,GACrFgC,EAAc9B,IAAcH,EAC5BN,EAASF,GAAiBvf,GAC1B0hB,EAAoBjC,EAAOS,IAAc,CAAC,EAC1C+B,EAAclC,EAAkBmC,WAAW,KACjD,QAAwB,IAAbxC,EAAX,CAQA,GAAIuC,EACF,IAAK,MAAME,KAAgB1kB,OAAO4D,KAAKoe,GACrC+B,GAAyBxhB,EAASyf,EAAQ0C,EAAcpC,EAAkBlN,MAAM,IAGpF,IAAK,MAAOuP,EAAavC,KAAUpiB,OAAOmkB,QAAQF,GAAoB,CACpE,MAAMC,EAAaS,EAAYxW,QAAQkT,GAAe,IACjDkD,IAAejC,EAAkB8B,SAASF,IAC7CL,GAActhB,EAASyf,EAAQS,EAAWL,EAAMH,SAAUG,EAAMF,mBAEpE,CAXA,KAPA,CAEE,IAAKliB,OAAO4D,KAAKqgB,GAAmBvQ,OAClC,OAEFmQ,GAActhB,EAASyf,EAAQS,EAAWR,EAAUO,EAAc5B,EAAU,KAE9E,CAYF,EACA,OAAAgE,CAAQriB,EAAS6f,EAAOpI,GACtB,GAAqB,iBAAVoI,IAAuB7f,EAChC,OAAO,KAET,MAAM+c,EAAIR,KAGV,IAAI+F,EAAc,KACdC,GAAU,EACVC,GAAiB,EACjBC,GAAmB,EAJH5C,IADFM,GAAaN,IAMZ9C,IACjBuF,EAAcvF,EAAEhC,MAAM8E,EAAOpI,GAC7BsF,EAAE/c,GAASqiB,QAAQC,GACnBC,GAAWD,EAAYI,uBACvBF,GAAkBF,EAAYK,gCAC9BF,EAAmBH,EAAYM,sBAEjC,MAAMC,EAAM9B,GAAW,IAAIhG,MAAM8E,EAAO,CACtC0C,UACAO,YAAY,IACVrL,GAUJ,OATIgL,GACFI,EAAIE,iBAEFP,GACFxiB,EAAQ8a,cAAc+H,GAEpBA,EAAIJ,kBAAoBH,GAC1BA,EAAYS,iBAEPF,CACT,GAEF,SAAS9B,GAAWljB,EAAKmlB,EAAO,CAAC,GAC/B,IAAK,MAAOzlB,EAAKa,KAAUX,OAAOmkB,QAAQoB,GACxC,IACEnlB,EAAIN,GAAOa,CACb,CAAE,MAAO6kB,GACPxlB,OAAOC,eAAeG,EAAKN,EAAK,CAC9B2lB,cAAc,EACdtlB,IAAG,IACMQ,GAGb,CAEF,OAAOP,CACT,CASA,SAASslB,GAAc/kB,GACrB,GAAc,SAAVA,EACF,OAAO,EAET,GAAc,UAAVA,EACF,OAAO,EAET,GAAIA,IAAU4f,OAAO5f,GAAOkC,WAC1B,OAAO0d,OAAO5f,GAEhB,GAAc,KAAVA,GAA0B,SAAVA,EAClB,OAAO,KAET,GAAqB,iBAAVA,EACT,OAAOA,EAET,IACE,OAAOglB,KAAKC,MAAMC,mBAAmBllB,GACvC,CAAE,MAAO6kB,GACP,OAAO7kB,CACT,CACF,CACA,SAASmlB,GAAiBhmB,GACxB,OAAOA,EAAIqO,QAAQ,UAAU4X,GAAO,IAAIA,EAAItjB,iBAC9C,CACA,MAAMujB,GAAc,CAClB,gBAAAC,CAAiB1jB,EAASzC,EAAKa,GAC7B4B,EAAQ6B,aAAa,WAAW0hB,GAAiBhmB,KAAQa,EAC3D,EACA,mBAAAulB,CAAoB3jB,EAASzC,GAC3ByC,EAAQ4B,gBAAgB,WAAW2hB,GAAiBhmB,KACtD,EACA,iBAAAqmB,CAAkB5jB,GAChB,IAAKA,EACH,MAAO,CAAC,EAEV,MAAM0B,EAAa,CAAC,EACdmiB,EAASpmB,OAAO4D,KAAKrB,EAAQ8jB,SAASld,QAAOrJ,GAAOA,EAAI2kB,WAAW,QAAU3kB,EAAI2kB,WAAW,cAClG,IAAK,MAAM3kB,KAAOsmB,EAAQ,CACxB,IAAIE,EAAUxmB,EAAIqO,QAAQ,MAAO,IACjCmY,EAAUA,EAAQC,OAAO,GAAG9jB,cAAgB6jB,EAAQlR,MAAM,EAAGkR,EAAQ5S,QACrEzP,EAAWqiB,GAAWZ,GAAcnjB,EAAQ8jB,QAAQvmB,GACtD,CACA,OAAOmE,CACT,EACAuiB,iBAAgB,CAACjkB,EAASzC,IACjB4lB,GAAcnjB,EAAQic,aAAa,WAAWsH,GAAiBhmB,QAgB1E,MAAM2mB,GAEJ,kBAAWC,GACT,MAAO,CAAC,CACV,CACA,sBAAWC,GACT,MAAO,CAAC,CACV,CACA,eAAWpH,GACT,MAAM,IAAIqH,MAAM,sEAClB,CACA,UAAAC,CAAWC,GAIT,OAHAA,EAAS9D,KAAK+D,gBAAgBD,GAC9BA,EAAS9D,KAAKgE,kBAAkBF,GAChC9D,KAAKiE,iBAAiBH,GACfA,CACT,CACA,iBAAAE,CAAkBF,GAChB,OAAOA,CACT,CACA,eAAAC,CAAgBD,EAAQvkB,GACtB,MAAM2kB,EAAa,GAAU3kB,GAAWyjB,GAAYQ,iBAAiBjkB,EAAS,UAAY,CAAC,EAE3F,MAAO,IACFygB,KAAKmE,YAAYT,WACM,iBAAfQ,EAA0BA,EAAa,CAAC,KAC/C,GAAU3kB,GAAWyjB,GAAYG,kBAAkB5jB,GAAW,CAAC,KAC7C,iBAAXukB,EAAsBA,EAAS,CAAC,EAE/C,CACA,gBAAAG,CAAiBH,EAAQM,EAAcpE,KAAKmE,YAAYR,aACtD,IAAK,MAAO7hB,EAAUuiB,KAAkBrnB,OAAOmkB,QAAQiD,GAAc,CACnE,MAAMzmB,EAAQmmB,EAAOhiB,GACfwiB,EAAY,GAAU3mB,GAAS,UAjiBrC4c,OADSA,EAkiB+C5c,GAhiBnD,GAAG4c,IAELvd,OAAOM,UAAUuC,SAASrC,KAAK+c,GAAQL,MAAM,eAAe,GAAGza,cA+hBlE,IAAK,IAAI8kB,OAAOF,GAAehhB,KAAKihB,GAClC,MAAM,IAAIE,UAAU,GAAGxE,KAAKmE,YAAY5H,KAAKkI,0BAA0B3iB,qBAA4BwiB,yBAAiCD,MAExI,CAtiBW9J,KAuiBb,EAqBF,MAAMmK,WAAsBjB,GAC1B,WAAAU,CAAY5kB,EAASukB,GACnBa,SACAplB,EAAUmb,GAAWnb,MAIrBygB,KAAK4E,SAAWrlB,EAChBygB,KAAK6E,QAAU7E,KAAK6D,WAAWC,GAC/BzK,GAAKtH,IAAIiO,KAAK4E,SAAU5E,KAAKmE,YAAYW,SAAU9E,MACrD,CAGA,OAAA+E,GACE1L,GAAKM,OAAOqG,KAAK4E,SAAU5E,KAAKmE,YAAYW,UAC5CvE,GAAaC,IAAIR,KAAK4E,SAAU5E,KAAKmE,YAAYa,WACjD,IAAK,MAAMC,KAAgBjoB,OAAOkoB,oBAAoBlF,MACpDA,KAAKiF,GAAgB,IAEzB,CACA,cAAAE,CAAe9I,EAAU9c,EAAS6lB,GAAa,GAC7CpI,GAAuBX,EAAU9c,EAAS6lB,EAC5C,CACA,UAAAvB,CAAWC,GAIT,OAHAA,EAAS9D,KAAK+D,gBAAgBD,EAAQ9D,KAAK4E,UAC3Cd,EAAS9D,KAAKgE,kBAAkBF,GAChC9D,KAAKiE,iBAAiBH,GACfA,CACT,CAGA,kBAAOuB,CAAY9lB,GACjB,OAAO8Z,GAAKlc,IAAIud,GAAWnb,GAAUygB,KAAK8E,SAC5C,CACA,0BAAOQ,CAAoB/lB,EAASukB,EAAS,CAAC,GAC5C,OAAO9D,KAAKqF,YAAY9lB,IAAY,IAAIygB,KAAKzgB,EAA2B,iBAAXukB,EAAsBA,EAAS,KAC9F,CACA,kBAAWyB,GACT,MA5CY,OA6Cd,CACA,mBAAWT,GACT,MAAO,MAAM9E,KAAKzD,MACpB,CACA,oBAAWyI,GACT,MAAO,IAAIhF,KAAK8E,UAClB,CACA,gBAAOU,CAAUllB,GACf,MAAO,GAAGA,IAAO0f,KAAKgF,WACxB,EAUF,MAAMS,GAAclmB,IAClB,IAAIwa,EAAWxa,EAAQic,aAAa,kBACpC,IAAKzB,GAAyB,MAAbA,EAAkB,CACjC,IAAI2L,EAAgBnmB,EAAQic,aAAa,QAMzC,IAAKkK,IAAkBA,EAActE,SAAS,OAASsE,EAAcjE,WAAW,KAC9E,OAAO,KAILiE,EAActE,SAAS,OAASsE,EAAcjE,WAAW,OAC3DiE,EAAgB,IAAIA,EAAcxjB,MAAM,KAAK,MAE/C6X,EAAW2L,GAAmC,MAAlBA,EAAwB5L,GAAc4L,EAAcC,QAAU,IAC5F,CACA,OAAO5L,CAAQ,EAEX6L,GAAiB,CACrBzT,KAAI,CAAC4H,EAAUxa,EAAU8F,SAASC,kBACzB,GAAG3G,UAAUsB,QAAQ3C,UAAU8iB,iBAAiB5iB,KAAK+B,EAASwa,IAEvE8L,QAAO,CAAC9L,EAAUxa,EAAU8F,SAASC,kBAC5BrF,QAAQ3C,UAAU8K,cAAc5K,KAAK+B,EAASwa,GAEvD+L,SAAQ,CAACvmB,EAASwa,IACT,GAAGpb,UAAUY,EAAQumB,UAAU3f,QAAOzB,GAASA,EAAMqhB,QAAQhM,KAEtE,OAAAiM,CAAQzmB,EAASwa,GACf,MAAMiM,EAAU,GAChB,IAAIC,EAAW1mB,EAAQwF,WAAWiW,QAAQjB,GAC1C,KAAOkM,GACLD,EAAQpU,KAAKqU,GACbA,EAAWA,EAASlhB,WAAWiW,QAAQjB,GAEzC,OAAOiM,CACT,EACA,IAAAE,CAAK3mB,EAASwa,GACZ,IAAIoM,EAAW5mB,EAAQ6mB,uBACvB,KAAOD,GAAU,CACf,GAAIA,EAASJ,QAAQhM,GACnB,MAAO,CAACoM,GAEVA,EAAWA,EAASC,sBACtB,CACA,MAAO,EACT,EAEA,IAAAvhB,CAAKtF,EAASwa,GACZ,IAAIlV,EAAOtF,EAAQ8mB,mBACnB,KAAOxhB,GAAM,CACX,GAAIA,EAAKkhB,QAAQhM,GACf,MAAO,CAAClV,GAEVA,EAAOA,EAAKwhB,kBACd,CACA,MAAO,EACT,EACA,iBAAAC,CAAkB/mB,GAChB,MAAMgnB,EAAa,CAAC,IAAK,SAAU,QAAS,WAAY,SAAU,UAAW,aAAc,4BAA4BzjB,KAAIiX,GAAY,GAAGA,2BAAiC7W,KAAK,KAChL,OAAO8c,KAAK7N,KAAKoU,EAAYhnB,GAAS4G,QAAOqgB,IAAOtL,GAAWsL,IAAO7L,GAAU6L,IAClF,EACA,sBAAAC,CAAuBlnB,GACrB,MAAMwa,EAAW0L,GAAYlmB,GAC7B,OAAIwa,GACK6L,GAAeC,QAAQ9L,GAAYA,EAErC,IACT,EACA,sBAAA2M,CAAuBnnB,GACrB,MAAMwa,EAAW0L,GAAYlmB,GAC7B,OAAOwa,EAAW6L,GAAeC,QAAQ9L,GAAY,IACvD,EACA,+BAAA4M,CAAgCpnB,GAC9B,MAAMwa,EAAW0L,GAAYlmB,GAC7B,OAAOwa,EAAW6L,GAAezT,KAAK4H,GAAY,EACpD,GAUI6M,GAAuB,CAACC,EAAWC,EAAS,UAChD,MAAMC,EAAa,gBAAgBF,EAAU7B,YACvC1kB,EAAOumB,EAAUtK,KACvBgE,GAAac,GAAGhc,SAAU0hB,EAAY,qBAAqBzmB,OAAU,SAAU8e,GAI7E,GAHI,CAAC,IAAK,QAAQgC,SAASpB,KAAKgH,UAC9B5H,EAAMkD,iBAEJpH,GAAW8E,MACb,OAEF,MAAMzT,EAASqZ,GAAec,uBAAuB1G,OAASA,KAAKhF,QAAQ,IAAI1a,KAC9DumB,EAAUvB,oBAAoB/Y,GAGtCua,IACX,GAAE,EAiBEG,GAAc,YACdC,GAAc,QAAQD,KACtBE,GAAe,SAASF,KAQ9B,MAAMG,WAAc1C,GAElB,eAAWnI,GACT,MAfW,OAgBb,CAGA,KAAA8K,GAEE,GADmB9G,GAAaqB,QAAQ5B,KAAK4E,SAAUsC,IACxClF,iBACb,OAEFhC,KAAK4E,SAASvJ,UAAU1B,OAlBF,QAmBtB,MAAMyL,EAAapF,KAAK4E,SAASvJ,UAAU7W,SApBrB,QAqBtBwb,KAAKmF,gBAAe,IAAMnF,KAAKsH,mBAAmBtH,KAAK4E,SAAUQ,EACnE,CAGA,eAAAkC,GACEtH,KAAK4E,SAASjL,SACd4G,GAAaqB,QAAQ5B,KAAK4E,SAAUuC,IACpCnH,KAAK+E,SACP,CAGA,sBAAOtI,CAAgBqH,GACrB,OAAO9D,KAAKuH,MAAK,WACf,MAAMld,EAAO+c,GAAM9B,oBAAoBtF,MACvC,GAAsB,iBAAX8D,EAAX,CAGA,QAAqB/K,IAAjB1O,EAAKyZ,IAAyBA,EAAOrC,WAAW,MAAmB,gBAAXqC,EAC1D,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,GAAQ9D,KAJb,CAKF,GACF,EAOF4G,GAAqBQ,GAAO,SAM5BjL,GAAmBiL,IAcnB,MAKMI,GAAyB,4BAO/B,MAAMC,WAAe/C,GAEnB,eAAWnI,GACT,MAfW,QAgBb,CAGA,MAAAmL,GAEE1H,KAAK4E,SAASxjB,aAAa,eAAgB4e,KAAK4E,SAASvJ,UAAUqM,OAjB3C,UAkB1B,CAGA,sBAAOjL,CAAgBqH,GACrB,OAAO9D,KAAKuH,MAAK,WACf,MAAMld,EAAOod,GAAOnC,oBAAoBtF,MACzB,WAAX8D,GACFzZ,EAAKyZ,IAET,GACF,EAOFvD,GAAac,GAAGhc,SAjCe,2BAiCmBmiB,IAAwBpI,IACxEA,EAAMkD,iBACN,MAAMqF,EAASvI,EAAM7S,OAAOyO,QAAQwM,IACvBC,GAAOnC,oBAAoBqC,GACnCD,QAAQ,IAOfvL,GAAmBsL,IAcnB,MACMG,GAAc,YACdC,GAAmB,aAAaD,KAChCE,GAAkB,YAAYF,KAC9BG,GAAiB,WAAWH,KAC5BI,GAAoB,cAAcJ,KAClCK,GAAkB,YAAYL,KAK9BM,GAAY,CAChBC,YAAa,KACbC,aAAc,KACdC,cAAe,MAEXC,GAAgB,CACpBH,YAAa,kBACbC,aAAc,kBACdC,cAAe,mBAOjB,MAAME,WAAc9E,GAClB,WAAAU,CAAY5kB,EAASukB,GACnBa,QACA3E,KAAK4E,SAAWrlB,EACXA,GAAYgpB,GAAMC,gBAGvBxI,KAAK6E,QAAU7E,KAAK6D,WAAWC,GAC/B9D,KAAKyI,QAAU,EACfzI,KAAK0I,sBAAwB5H,QAAQlhB,OAAO+oB,cAC5C3I,KAAK4I,cACP,CAGA,kBAAWlF,GACT,OAAOwE,EACT,CACA,sBAAWvE,GACT,OAAO2E,EACT,CACA,eAAW/L,GACT,MA/CW,OAgDb,CAGA,OAAAwI,GACExE,GAAaC,IAAIR,KAAK4E,SAAUgD,GAClC,CAGA,MAAAiB,CAAOzJ,GACAY,KAAK0I,sBAIN1I,KAAK8I,wBAAwB1J,KAC/BY,KAAKyI,QAAUrJ,EAAM2J,SAJrB/I,KAAKyI,QAAUrJ,EAAM4J,QAAQ,GAAGD,OAMpC,CACA,IAAAE,CAAK7J,GACCY,KAAK8I,wBAAwB1J,KAC/BY,KAAKyI,QAAUrJ,EAAM2J,QAAU/I,KAAKyI,SAEtCzI,KAAKkJ,eACLrM,GAAQmD,KAAK6E,QAAQsD,YACvB,CACA,KAAAgB,CAAM/J,GACJY,KAAKyI,QAAUrJ,EAAM4J,SAAW5J,EAAM4J,QAAQtY,OAAS,EAAI,EAAI0O,EAAM4J,QAAQ,GAAGD,QAAU/I,KAAKyI,OACjG,CACA,YAAAS,GACE,MAAME,EAAYjnB,KAAKoC,IAAIyb,KAAKyI,SAChC,GAAIW,GAnEgB,GAoElB,OAEF,MAAM9b,EAAY8b,EAAYpJ,KAAKyI,QACnCzI,KAAKyI,QAAU,EACVnb,GAGLuP,GAAQvP,EAAY,EAAI0S,KAAK6E,QAAQwD,cAAgBrI,KAAK6E,QAAQuD,aACpE,CACA,WAAAQ,GACM5I,KAAK0I,uBACPnI,GAAac,GAAGrB,KAAK4E,SAAUoD,IAAmB5I,GAASY,KAAK6I,OAAOzJ,KACvEmB,GAAac,GAAGrB,KAAK4E,SAAUqD,IAAiB7I,GAASY,KAAKiJ,KAAK7J,KACnEY,KAAK4E,SAASvJ,UAAU5E,IAlFG,mBAoF3B8J,GAAac,GAAGrB,KAAK4E,SAAUiD,IAAkBzI,GAASY,KAAK6I,OAAOzJ,KACtEmB,GAAac,GAAGrB,KAAK4E,SAAUkD,IAAiB1I,GAASY,KAAKmJ,MAAM/J,KACpEmB,GAAac,GAAGrB,KAAK4E,SAAUmD,IAAgB3I,GAASY,KAAKiJ,KAAK7J,KAEtE,CACA,uBAAA0J,CAAwB1J,GACtB,OAAOY,KAAK0I,wBA3FS,QA2FiBtJ,EAAMiK,aA5FrB,UA4FyDjK,EAAMiK,YACxF,CAGA,kBAAOb,GACL,MAAO,iBAAkBnjB,SAASC,iBAAmB7C,UAAU6mB,eAAiB,CAClF,EAeF,MAEMC,GAAc,eACdC,GAAiB,YAKjBC,GAAa,OACbC,GAAa,OACbC,GAAiB,OACjBC,GAAkB,QAClBC,GAAc,QAAQN,KACtBO,GAAa,OAAOP,KACpBQ,GAAkB,UAAUR,KAC5BS,GAAqB,aAAaT,KAClCU,GAAqB,aAAaV,KAClCW,GAAmB,YAAYX,KAC/BY,GAAwB,OAAOZ,KAAcC,KAC7CY,GAAyB,QAAQb,KAAcC,KAC/Ca,GAAsB,WACtBC,GAAsB,SAMtBC,GAAkB,UAClBC,GAAgB,iBAChBC,GAAuBF,GAAkBC,GAKzCE,GAAmB,CACvB,UAAoBd,GACpB,WAAqBD,IAEjBgB,GAAY,CAChBC,SAAU,IACVC,UAAU,EACVC,MAAO,QACPC,MAAM,EACNC,OAAO,EACPC,MAAM,GAEFC,GAAgB,CACpBN,SAAU,mBAEVC,SAAU,UACVC,MAAO,mBACPC,KAAM,mBACNC,MAAO,UACPC,KAAM,WAOR,MAAME,WAAiBzG,GACrB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GACf9D,KAAKoL,UAAY,KACjBpL,KAAKqL,eAAiB,KACtBrL,KAAKsL,YAAa,EAClBtL,KAAKuL,aAAe,KACpBvL,KAAKwL,aAAe,KACpBxL,KAAKyL,mBAAqB7F,GAAeC,QArCjB,uBAqC8C7F,KAAK4E,UAC3E5E,KAAK0L,qBACD1L,KAAK6E,QAAQkG,OAASV,IACxBrK,KAAK2L,OAET,CAGA,kBAAWjI,GACT,OAAOiH,EACT,CACA,sBAAWhH,GACT,OAAOuH,EACT,CACA,eAAW3O,GACT,MAnFW,UAoFb,CAGA,IAAA1X,GACEmb,KAAK4L,OAAOnC,GACd,CACA,eAAAoC,IAIOxmB,SAASymB,QAAUnR,GAAUqF,KAAK4E,WACrC5E,KAAKnb,MAET,CACA,IAAAqhB,GACElG,KAAK4L,OAAOlC,GACd,CACA,KAAAoB,GACM9K,KAAKsL,YACPlR,GAAqB4F,KAAK4E,UAE5B5E,KAAK+L,gBACP,CACA,KAAAJ,GACE3L,KAAK+L,iBACL/L,KAAKgM,kBACLhM,KAAKoL,UAAYa,aAAY,IAAMjM,KAAK6L,mBAAmB7L,KAAK6E,QAAQ+F,SAC1E,CACA,iBAAAsB,GACOlM,KAAK6E,QAAQkG,OAGd/K,KAAKsL,WACP/K,GAAae,IAAItB,KAAK4E,SAAUkF,IAAY,IAAM9J,KAAK2L,UAGzD3L,KAAK2L,QACP,CACA,EAAAQ,CAAG1T,GACD,MAAM2T,EAAQpM,KAAKqM,YACnB,GAAI5T,EAAQ2T,EAAM1b,OAAS,GAAK+H,EAAQ,EACtC,OAEF,GAAIuH,KAAKsL,WAEP,YADA/K,GAAae,IAAItB,KAAK4E,SAAUkF,IAAY,IAAM9J,KAAKmM,GAAG1T,KAG5D,MAAM6T,EAActM,KAAKuM,cAAcvM,KAAKwM,cAC5C,GAAIF,IAAgB7T,EAClB,OAEF,MAAMtC,EAAQsC,EAAQ6T,EAAc7C,GAAaC,GACjD1J,KAAK4L,OAAOzV,EAAOiW,EAAM3T,GAC3B,CACA,OAAAsM,GACM/E,KAAKwL,cACPxL,KAAKwL,aAAazG,UAEpBJ,MAAMI,SACR,CAGA,iBAAAf,CAAkBF,GAEhB,OADAA,EAAO2I,gBAAkB3I,EAAO8G,SACzB9G,CACT,CACA,kBAAA4H,GACM1L,KAAK6E,QAAQgG,UACftK,GAAac,GAAGrB,KAAK4E,SAAUmF,IAAiB3K,GAASY,KAAK0M,SAAStN,KAE9C,UAAvBY,KAAK6E,QAAQiG,QACfvK,GAAac,GAAGrB,KAAK4E,SAAUoF,IAAoB,IAAMhK,KAAK8K,UAC9DvK,GAAac,GAAGrB,KAAK4E,SAAUqF,IAAoB,IAAMjK,KAAKkM,uBAE5DlM,KAAK6E,QAAQmG,OAASzC,GAAMC,eAC9BxI,KAAK2M,yBAET,CACA,uBAAAA,GACE,IAAK,MAAMC,KAAOhH,GAAezT,KArIX,qBAqImC6N,KAAK4E,UAC5DrE,GAAac,GAAGuL,EAAK1C,IAAkB9K,GAASA,EAAMkD,mBAExD,MAmBMuK,EAAc,CAClBzE,aAAc,IAAMpI,KAAK4L,OAAO5L,KAAK8M,kBAAkBnD,KACvDtB,cAAe,IAAMrI,KAAK4L,OAAO5L,KAAK8M,kBAAkBlD,KACxDzB,YAtBkB,KACS,UAAvBnI,KAAK6E,QAAQiG,QAYjB9K,KAAK8K,QACD9K,KAAKuL,cACPwB,aAAa/M,KAAKuL,cAEpBvL,KAAKuL,aAAe1N,YAAW,IAAMmC,KAAKkM,qBAjLjB,IAiL+DlM,KAAK6E,QAAQ+F,UAAS,GAOhH5K,KAAKwL,aAAe,IAAIjD,GAAMvI,KAAK4E,SAAUiI,EAC/C,CACA,QAAAH,CAAStN,GACP,GAAI,kBAAkB/b,KAAK+b,EAAM7S,OAAOya,SACtC,OAEF,MAAM1Z,EAAYod,GAAiBtL,EAAMtiB,KACrCwQ,IACF8R,EAAMkD,iBACNtC,KAAK4L,OAAO5L,KAAK8M,kBAAkBxf,IAEvC,CACA,aAAAif,CAAchtB,GACZ,OAAOygB,KAAKqM,YAAYlnB,QAAQ5F,EAClC,CACA,0BAAAytB,CAA2BvU,GACzB,IAAKuH,KAAKyL,mBACR,OAEF,MAAMwB,EAAkBrH,GAAeC,QAAQ0E,GAAiBvK,KAAKyL,oBACrEwB,EAAgB5R,UAAU1B,OAAO2Q,IACjC2C,EAAgB9rB,gBAAgB,gBAChC,MAAM+rB,EAAqBtH,GAAeC,QAAQ,sBAAsBpN,MAAWuH,KAAKyL,oBACpFyB,IACFA,EAAmB7R,UAAU5E,IAAI6T,IACjC4C,EAAmB9rB,aAAa,eAAgB,QAEpD,CACA,eAAA4qB,GACE,MAAMzsB,EAAUygB,KAAKqL,gBAAkBrL,KAAKwM,aAC5C,IAAKjtB,EACH,OAEF,MAAM4tB,EAAkB5P,OAAO6P,SAAS7tB,EAAQic,aAAa,oBAAqB,IAClFwE,KAAK6E,QAAQ+F,SAAWuC,GAAmBnN,KAAK6E,QAAQ4H,eAC1D,CACA,MAAAb,CAAOzV,EAAO5W,EAAU,MACtB,GAAIygB,KAAKsL,WACP,OAEF,MAAMvN,EAAgBiC,KAAKwM,aACrBa,EAASlX,IAAUsT,GACnB6D,EAAc/tB,GAAWue,GAAqBkC,KAAKqM,YAAatO,EAAesP,EAAQrN,KAAK6E,QAAQoG,MAC1G,GAAIqC,IAAgBvP,EAClB,OAEF,MAAMwP,EAAmBvN,KAAKuM,cAAce,GACtCE,EAAehI,GACZjF,GAAaqB,QAAQ5B,KAAK4E,SAAUY,EAAW,CACpD1F,cAAewN,EACfhgB,UAAW0S,KAAKyN,kBAAkBtX,GAClCuD,KAAMsG,KAAKuM,cAAcxO,GACzBoO,GAAIoB,IAIR,GADmBC,EAAa3D,IACjB7H,iBACb,OAEF,IAAKjE,IAAkBuP,EAGrB,OAEF,MAAMI,EAAY5M,QAAQd,KAAKoL,WAC/BpL,KAAK8K,QACL9K,KAAKsL,YAAa,EAClBtL,KAAKgN,2BAA2BO,GAChCvN,KAAKqL,eAAiBiC,EACtB,MAAMK,EAAuBN,EA3OR,sBADF,oBA6ObO,EAAiBP,EA3OH,qBACA,qBA2OpBC,EAAYjS,UAAU5E,IAAImX,GAC1B/R,GAAOyR,GACPvP,EAAc1C,UAAU5E,IAAIkX,GAC5BL,EAAYjS,UAAU5E,IAAIkX,GAQ1B3N,KAAKmF,gBAPoB,KACvBmI,EAAYjS,UAAU1B,OAAOgU,EAAsBC,GACnDN,EAAYjS,UAAU5E,IAAI6T,IAC1BvM,EAAc1C,UAAU1B,OAAO2Q,GAAqBsD,EAAgBD,GACpE3N,KAAKsL,YAAa,EAClBkC,EAAa1D,GAAW,GAEY/L,EAAeiC,KAAK6N,eACtDH,GACF1N,KAAK2L,OAET,CACA,WAAAkC,GACE,OAAO7N,KAAK4E,SAASvJ,UAAU7W,SAhQV,QAiQvB,CACA,UAAAgoB,GACE,OAAO5G,GAAeC,QAAQ4E,GAAsBzK,KAAK4E,SAC3D,CACA,SAAAyH,GACE,OAAOzG,GAAezT,KAAKqY,GAAexK,KAAK4E,SACjD,CACA,cAAAmH,GACM/L,KAAKoL,YACP0C,cAAc9N,KAAKoL,WACnBpL,KAAKoL,UAAY,KAErB,CACA,iBAAA0B,CAAkBxf,GAChB,OAAI2O,KACK3O,IAAcqc,GAAiBD,GAAaD,GAE9Cnc,IAAcqc,GAAiBF,GAAaC,EACrD,CACA,iBAAA+D,CAAkBtX,GAChB,OAAI8F,KACK9F,IAAUuT,GAAaC,GAAiBC,GAE1CzT,IAAUuT,GAAaE,GAAkBD,EAClD,CAGA,sBAAOlN,CAAgBqH,GACrB,OAAO9D,KAAKuH,MAAK,WACf,MAAMld,EAAO8gB,GAAS7F,oBAAoBtF,KAAM8D,GAChD,GAAsB,iBAAXA,GAIX,GAAsB,iBAAXA,EAAqB,CAC9B,QAAqB/K,IAAjB1O,EAAKyZ,IAAyBA,EAAOrC,WAAW,MAAmB,gBAAXqC,EAC1D,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IACP,OAREzZ,EAAK8hB,GAAGrI,EASZ,GACF,EAOFvD,GAAac,GAAGhc,SAAU+kB,GAvSE,uCAuS2C,SAAUhL,GAC/E,MAAM7S,EAASqZ,GAAec,uBAAuB1G,MACrD,IAAKzT,IAAWA,EAAO8O,UAAU7W,SAAS6lB,IACxC,OAEFjL,EAAMkD,iBACN,MAAMyL,EAAW5C,GAAS7F,oBAAoB/Y,GACxCyhB,EAAahO,KAAKxE,aAAa,oBACrC,OAAIwS,GACFD,EAAS5B,GAAG6B,QACZD,EAAS7B,qBAGyC,SAAhDlJ,GAAYQ,iBAAiBxD,KAAM,UACrC+N,EAASlpB,YACTkpB,EAAS7B,sBAGX6B,EAAS7H,YACT6H,EAAS7B,oBACX,IACA3L,GAAac,GAAGzhB,OAAQuqB,IAAuB,KAC7C,MAAM8D,EAAYrI,GAAezT,KA5TR,6BA6TzB,IAAK,MAAM4b,KAAYE,EACrB9C,GAAS7F,oBAAoByI,EAC/B,IAOF5R,GAAmBgP,IAcnB,MAEM+C,GAAc,eAEdC,GAAe,OAAOD,KACtBE,GAAgB,QAAQF,KACxBG,GAAe,OAAOH,KACtBI,GAAiB,SAASJ,KAC1BK,GAAyB,QAAQL,cACjCM,GAAoB,OACpBC,GAAsB,WACtBC,GAAwB,aAExBC,GAA6B,WAAWF,OAAwBA,KAKhEG,GAAyB,8BACzBC,GAAY,CAChBpqB,OAAQ,KACRijB,QAAQ,GAEJoH,GAAgB,CACpBrqB,OAAQ,iBACRijB,OAAQ,WAOV,MAAMqH,WAAiBrK,GACrB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GACf9D,KAAKgP,kBAAmB,EACxBhP,KAAKiP,cAAgB,GACrB,MAAMC,EAAatJ,GAAezT,KAAKyc,IACvC,IAAK,MAAMO,KAAQD,EAAY,CAC7B,MAAMnV,EAAW6L,GAAea,uBAAuB0I,GACjDC,EAAgBxJ,GAAezT,KAAK4H,GAAU5T,QAAOkpB,GAAgBA,IAAiBrP,KAAK4E,WAChF,OAAb7K,GAAqBqV,EAAc1e,QACrCsP,KAAKiP,cAAcrd,KAAKud,EAE5B,CACAnP,KAAKsP,sBACAtP,KAAK6E,QAAQpgB,QAChBub,KAAKuP,0BAA0BvP,KAAKiP,cAAejP,KAAKwP,YAEtDxP,KAAK6E,QAAQ6C,QACf1H,KAAK0H,QAET,CAGA,kBAAWhE,GACT,OAAOmL,EACT,CACA,sBAAWlL,GACT,OAAOmL,EACT,CACA,eAAWvS,GACT,MA9DW,UA+Db,CAGA,MAAAmL,GACM1H,KAAKwP,WACPxP,KAAKyP,OAELzP,KAAK0P,MAET,CACA,IAAAA,GACE,GAAI1P,KAAKgP,kBAAoBhP,KAAKwP,WAChC,OAEF,IAAIG,EAAiB,GAQrB,GALI3P,KAAK6E,QAAQpgB,SACfkrB,EAAiB3P,KAAK4P,uBAhEH,wCAgE4CzpB,QAAO5G,GAAWA,IAAYygB,KAAK4E,WAAU9hB,KAAIvD,GAAWwvB,GAASzJ,oBAAoB/lB,EAAS,CAC/JmoB,QAAQ,OAGRiI,EAAejf,QAAUif,EAAe,GAAGX,iBAC7C,OAGF,GADmBzO,GAAaqB,QAAQ5B,KAAK4E,SAAUuJ,IACxCnM,iBACb,OAEF,IAAK,MAAM6N,KAAkBF,EAC3BE,EAAeJ,OAEjB,MAAMK,EAAY9P,KAAK+P,gBACvB/P,KAAK4E,SAASvJ,UAAU1B,OAAO8U,IAC/BzO,KAAK4E,SAASvJ,UAAU5E,IAAIiY,IAC5B1O,KAAK4E,SAAS7jB,MAAM+uB,GAAa,EACjC9P,KAAKuP,0BAA0BvP,KAAKiP,eAAe,GACnDjP,KAAKgP,kBAAmB,EACxB,MAQMgB,EAAa,SADUF,EAAU,GAAGrL,cAAgBqL,EAAU1d,MAAM,KAE1E4N,KAAKmF,gBATY,KACfnF,KAAKgP,kBAAmB,EACxBhP,KAAK4E,SAASvJ,UAAU1B,OAAO+U,IAC/B1O,KAAK4E,SAASvJ,UAAU5E,IAAIgY,GAAqBD,IACjDxO,KAAK4E,SAAS7jB,MAAM+uB,GAAa,GACjCvP,GAAaqB,QAAQ5B,KAAK4E,SAAUwJ,GAAc,GAItBpO,KAAK4E,UAAU,GAC7C5E,KAAK4E,SAAS7jB,MAAM+uB,GAAa,GAAG9P,KAAK4E,SAASoL,MACpD,CACA,IAAAP,GACE,GAAIzP,KAAKgP,mBAAqBhP,KAAKwP,WACjC,OAGF,GADmBjP,GAAaqB,QAAQ5B,KAAK4E,SAAUyJ,IACxCrM,iBACb,OAEF,MAAM8N,EAAY9P,KAAK+P,gBACvB/P,KAAK4E,SAAS7jB,MAAM+uB,GAAa,GAAG9P,KAAK4E,SAASthB,wBAAwBwsB,OAC1EjU,GAAOmE,KAAK4E,UACZ5E,KAAK4E,SAASvJ,UAAU5E,IAAIiY,IAC5B1O,KAAK4E,SAASvJ,UAAU1B,OAAO8U,GAAqBD,IACpD,IAAK,MAAM5M,KAAW5B,KAAKiP,cAAe,CACxC,MAAM1vB,EAAUqmB,GAAec,uBAAuB9E,GAClDriB,IAAYygB,KAAKwP,SAASjwB,IAC5BygB,KAAKuP,0BAA0B,CAAC3N,IAAU,EAE9C,CACA5B,KAAKgP,kBAAmB,EAOxBhP,KAAK4E,SAAS7jB,MAAM+uB,GAAa,GACjC9P,KAAKmF,gBAPY,KACfnF,KAAKgP,kBAAmB,EACxBhP,KAAK4E,SAASvJ,UAAU1B,OAAO+U,IAC/B1O,KAAK4E,SAASvJ,UAAU5E,IAAIgY,IAC5BlO,GAAaqB,QAAQ5B,KAAK4E,SAAU0J,GAAe,GAGvBtO,KAAK4E,UAAU,EAC/C,CACA,QAAA4K,CAASjwB,EAAUygB,KAAK4E,UACtB,OAAOrlB,EAAQ8b,UAAU7W,SAASgqB,GACpC,CAGA,iBAAAxK,CAAkBF,GAGhB,OAFAA,EAAO4D,OAAS5G,QAAQgD,EAAO4D,QAC/B5D,EAAOrf,OAASiW,GAAWoJ,EAAOrf,QAC3Bqf,CACT,CACA,aAAAiM,GACE,OAAO/P,KAAK4E,SAASvJ,UAAU7W,SA3IL,uBAChB,QACC,QA0Ib,CACA,mBAAA8qB,GACE,IAAKtP,KAAK6E,QAAQpgB,OAChB,OAEF,MAAMqhB,EAAW9F,KAAK4P,uBAAuBhB,IAC7C,IAAK,MAAMrvB,KAAWumB,EAAU,CAC9B,MAAMmK,EAAWrK,GAAec,uBAAuBnnB,GACnD0wB,GACFjQ,KAAKuP,0BAA0B,CAAChwB,GAAUygB,KAAKwP,SAASS,GAE5D,CACF,CACA,sBAAAL,CAAuB7V,GACrB,MAAM+L,EAAWF,GAAezT,KAAKwc,GAA4B3O,KAAK6E,QAAQpgB,QAE9E,OAAOmhB,GAAezT,KAAK4H,EAAUiG,KAAK6E,QAAQpgB,QAAQ0B,QAAO5G,IAAYumB,EAAS1E,SAAS7hB,IACjG,CACA,yBAAAgwB,CAA0BW,EAAcC,GACtC,GAAKD,EAAaxf,OAGlB,IAAK,MAAMnR,KAAW2wB,EACpB3wB,EAAQ8b,UAAUqM,OArKK,aAqKyByI,GAChD5wB,EAAQ6B,aAAa,gBAAiB+uB,EAE1C,CAGA,sBAAO1T,CAAgBqH,GACrB,MAAMe,EAAU,CAAC,EAIjB,MAHsB,iBAAXf,GAAuB,YAAYzgB,KAAKygB,KACjDe,EAAQ6C,QAAS,GAEZ1H,KAAKuH,MAAK,WACf,MAAMld,EAAO0kB,GAASzJ,oBAAoBtF,KAAM6E,GAChD,GAAsB,iBAAXf,EAAqB,CAC9B,QAA4B,IAAjBzZ,EAAKyZ,GACd,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IACP,CACF,GACF,EAOFvD,GAAac,GAAGhc,SAAUkpB,GAAwBK,IAAwB,SAAUxP,IAErD,MAAzBA,EAAM7S,OAAOya,SAAmB5H,EAAMW,gBAAmD,MAAjCX,EAAMW,eAAeiH,UAC/E5H,EAAMkD,iBAER,IAAK,MAAM/iB,KAAWqmB,GAAee,gCAAgC3G,MACnE+O,GAASzJ,oBAAoB/lB,EAAS,CACpCmoB,QAAQ,IACPA,QAEP,IAMAvL,GAAmB4S,IAcnB,MAAMqB,GAAS,WAETC,GAAc,eACdC,GAAiB,YAGjBC,GAAiB,UACjBC,GAAmB,YAGnBC,GAAe,OAAOJ,KACtBK,GAAiB,SAASL,KAC1BM,GAAe,OAAON,KACtBO,GAAgB,QAAQP,KACxBQ,GAAyB,QAAQR,KAAcC,KAC/CQ,GAAyB,UAAUT,KAAcC,KACjDS,GAAuB,QAAQV,KAAcC,KAC7CU,GAAoB,OAMpBC,GAAyB,4DACzBC,GAA6B,GAAGD,MAA0BD,KAC1DG,GAAgB,iBAIhBC,GAAgBnV,KAAU,UAAY,YACtCoV,GAAmBpV,KAAU,YAAc,UAC3CqV,GAAmBrV,KAAU,aAAe,eAC5CsV,GAAsBtV,KAAU,eAAiB,aACjDuV,GAAkBvV,KAAU,aAAe,cAC3CwV,GAAiBxV,KAAU,cAAgB,aAG3CyV,GAAY,CAChBC,WAAW,EACX1jB,SAAU,kBACV2jB,QAAS,UACT5pB,OAAQ,CAAC,EAAG,GACZ6pB,aAAc,KACdvzB,UAAW,UAEPwzB,GAAgB,CACpBH,UAAW,mBACX1jB,SAAU,mBACV2jB,QAAS,SACT5pB,OAAQ,0BACR6pB,aAAc,yBACdvzB,UAAW,2BAOb,MAAMyzB,WAAiBrN,GACrB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GACf9D,KAAKgS,QAAU,KACfhS,KAAKiS,QAAUjS,KAAK4E,SAAS7f,WAE7Bib,KAAKkS,MAAQtM,GAAe/gB,KAAKmb,KAAK4E,SAAUuM,IAAe,IAAMvL,GAAeM,KAAKlG,KAAK4E,SAAUuM,IAAe,IAAMvL,GAAeC,QAAQsL,GAAenR,KAAKiS,SACxKjS,KAAKmS,UAAYnS,KAAKoS,eACxB,CAGA,kBAAW1O,GACT,OAAOgO,EACT,CACA,sBAAW/N,GACT,OAAOmO,EACT,CACA,eAAWvV,GACT,OAAO6T,EACT,CAGA,MAAA1I,GACE,OAAO1H,KAAKwP,WAAaxP,KAAKyP,OAASzP,KAAK0P,MAC9C,CACA,IAAAA,GACE,GAAIxU,GAAW8E,KAAK4E,WAAa5E,KAAKwP,WACpC,OAEF,MAAM1P,EAAgB,CACpBA,cAAeE,KAAK4E,UAGtB,IADkBrE,GAAaqB,QAAQ5B,KAAK4E,SAAU+L,GAAc7Q,GACtDkC,iBAAd,CASA,GANAhC,KAAKqS,gBAMD,iBAAkBhtB,SAASC,kBAAoB0a,KAAKiS,QAAQjX,QAzExC,eA0EtB,IAAK,MAAMzb,IAAW,GAAGZ,UAAU0G,SAAS6G,KAAK4Z,UAC/CvF,GAAac,GAAG9hB,EAAS,YAAaqc,IAG1CoE,KAAK4E,SAAS0N,QACdtS,KAAK4E,SAASxjB,aAAa,iBAAiB,GAC5C4e,KAAKkS,MAAM7W,UAAU5E,IAAIua,IACzBhR,KAAK4E,SAASvJ,UAAU5E,IAAIua,IAC5BzQ,GAAaqB,QAAQ5B,KAAK4E,SAAUgM,GAAe9Q,EAhBnD,CAiBF,CACA,IAAA2P,GACE,GAAIvU,GAAW8E,KAAK4E,YAAc5E,KAAKwP,WACrC,OAEF,MAAM1P,EAAgB,CACpBA,cAAeE,KAAK4E,UAEtB5E,KAAKuS,cAAczS,EACrB,CACA,OAAAiF,GACM/E,KAAKgS,SACPhS,KAAKgS,QAAQhZ,UAEf2L,MAAMI,SACR,CACA,MAAAha,GACEiV,KAAKmS,UAAYnS,KAAKoS,gBAClBpS,KAAKgS,SACPhS,KAAKgS,QAAQjnB,QAEjB,CAGA,aAAAwnB,CAAczS,GAEZ,IADkBS,GAAaqB,QAAQ5B,KAAK4E,SAAU6L,GAAc3Q,GACtDkC,iBAAd,CAMA,GAAI,iBAAkB3c,SAASC,gBAC7B,IAAK,MAAM/F,IAAW,GAAGZ,UAAU0G,SAAS6G,KAAK4Z,UAC/CvF,GAAaC,IAAIjhB,EAAS,YAAaqc,IAGvCoE,KAAKgS,SACPhS,KAAKgS,QAAQhZ,UAEfgH,KAAKkS,MAAM7W,UAAU1B,OAAOqX,IAC5BhR,KAAK4E,SAASvJ,UAAU1B,OAAOqX,IAC/BhR,KAAK4E,SAASxjB,aAAa,gBAAiB,SAC5C4hB,GAAYE,oBAAoBlD,KAAKkS,MAAO,UAC5C3R,GAAaqB,QAAQ5B,KAAK4E,SAAU8L,GAAgB5Q,EAhBpD,CAiBF,CACA,UAAA+D,CAAWC,GAET,GAAgC,iBADhCA,EAASa,MAAMd,WAAWC,IACRxlB,YAA2B,GAAUwlB,EAAOxlB,YAAgE,mBAA3CwlB,EAAOxlB,UAAUgF,sBAElG,MAAM,IAAIkhB,UAAU,GAAG4L,GAAO3L,+GAEhC,OAAOX,CACT,CACA,aAAAuO,GACE,QAAsB,IAAX,EACT,MAAM,IAAI7N,UAAU,gEAEtB,IAAIgO,EAAmBxS,KAAK4E,SACG,WAA3B5E,KAAK6E,QAAQvmB,UACfk0B,EAAmBxS,KAAKiS,QACf,GAAUjS,KAAK6E,QAAQvmB,WAChCk0B,EAAmB9X,GAAWsF,KAAK6E,QAAQvmB,WACA,iBAA3B0hB,KAAK6E,QAAQvmB,YAC7Bk0B,EAAmBxS,KAAK6E,QAAQvmB,WAElC,MAAMuzB,EAAe7R,KAAKyS,mBAC1BzS,KAAKgS,QAAU,GAAoBQ,EAAkBxS,KAAKkS,MAAOL,EACnE,CACA,QAAArC,GACE,OAAOxP,KAAKkS,MAAM7W,UAAU7W,SAASwsB,GACvC,CACA,aAAA0B,GACE,MAAMC,EAAiB3S,KAAKiS,QAC5B,GAAIU,EAAetX,UAAU7W,SArKN,WAsKrB,OAAOgtB,GAET,GAAImB,EAAetX,UAAU7W,SAvKJ,aAwKvB,OAAOitB,GAET,GAAIkB,EAAetX,UAAU7W,SAzKA,iBA0K3B,MA5JsB,MA8JxB,GAAImuB,EAAetX,UAAU7W,SA3KE,mBA4K7B,MA9JyB,SAkK3B,MAAMouB,EAAkF,QAA1E3tB,iBAAiB+a,KAAKkS,OAAOpX,iBAAiB,iBAAiB6K,OAC7E,OAAIgN,EAAetX,UAAU7W,SArLP,UAsLbouB,EAAQvB,GAAmBD,GAE7BwB,EAAQrB,GAAsBD,EACvC,CACA,aAAAc,GACE,OAAkD,OAA3CpS,KAAK4E,SAAS5J,QAnLD,UAoLtB,CACA,UAAA6X,GACE,MAAM,OACJ7qB,GACEgY,KAAK6E,QACT,MAAsB,iBAAX7c,EACFA,EAAO9F,MAAM,KAAKY,KAAInF,GAAS4f,OAAO6P,SAASzvB,EAAO,MAEzC,mBAAXqK,EACF8qB,GAAc9qB,EAAO8qB,EAAY9S,KAAK4E,UAExC5c,CACT,CACA,gBAAAyqB,GACE,MAAMM,EAAwB,CAC5Br0B,UAAWshB,KAAK0S,gBAChBtc,UAAW,CAAC,CACV9V,KAAM,kBACNmB,QAAS,CACPwM,SAAU+R,KAAK6E,QAAQ5W,WAExB,CACD3N,KAAM,SACNmB,QAAS,CACPuG,OAAQgY,KAAK6S,iBAanB,OAPI7S,KAAKmS,WAAsC,WAAzBnS,KAAK6E,QAAQ+M,WACjC5O,GAAYC,iBAAiBjD,KAAKkS,MAAO,SAAU,UACnDa,EAAsB3c,UAAY,CAAC,CACjC9V,KAAM,cACNC,SAAS,KAGN,IACFwyB,KACAlW,GAAQmD,KAAK6E,QAAQgN,aAAc,CAACkB,IAE3C,CACA,eAAAC,EAAgB,IACdl2B,EAAG,OACHyP,IAEA,MAAM6f,EAAQxG,GAAezT,KAhOF,8DAgO+B6N,KAAKkS,OAAO/rB,QAAO5G,GAAWob,GAAUpb,KAC7F6sB,EAAM1b,QAMXoN,GAAqBsO,EAAO7f,EAAQzP,IAAQ0zB,IAAmBpE,EAAMhL,SAAS7U,IAAS+lB,OACzF,CAGA,sBAAO7V,CAAgBqH,GACrB,OAAO9D,KAAKuH,MAAK,WACf,MAAMld,EAAO0nB,GAASzM,oBAAoBtF,KAAM8D,GAChD,GAAsB,iBAAXA,EAAX,CAGA,QAA4B,IAAjBzZ,EAAKyZ,GACd,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IAJL,CAKF,GACF,CACA,iBAAOmP,CAAW7T,GAChB,GA5QuB,IA4QnBA,EAAMuI,QAAgD,UAAfvI,EAAMqB,MA/QnC,QA+QuDrB,EAAMtiB,IACzE,OAEF,MAAMo2B,EAActN,GAAezT,KAAK+e,IACxC,IAAK,MAAMxJ,KAAUwL,EAAa,CAChC,MAAMC,EAAUpB,GAAS1M,YAAYqC,GACrC,IAAKyL,IAAyC,IAA9BA,EAAQtO,QAAQ8M,UAC9B,SAEF,MAAMyB,EAAehU,EAAMgU,eACrBC,EAAeD,EAAahS,SAAS+R,EAAQjB,OACnD,GAAIkB,EAAahS,SAAS+R,EAAQvO,WAA2C,WAA9BuO,EAAQtO,QAAQ8M,YAA2B0B,GAA8C,YAA9BF,EAAQtO,QAAQ8M,WAA2B0B,EACnJ,SAIF,GAAIF,EAAQjB,MAAM1tB,SAAS4a,EAAM7S,UAA2B,UAAf6S,EAAMqB,MA/RvC,QA+R2DrB,EAAMtiB,KAAqB,qCAAqCuG,KAAK+b,EAAM7S,OAAOya,UACvJ,SAEF,MAAMlH,EAAgB,CACpBA,cAAeqT,EAAQvO,UAEN,UAAfxF,EAAMqB,OACRX,EAAciH,WAAa3H,GAE7B+T,EAAQZ,cAAczS,EACxB,CACF,CACA,4BAAOwT,CAAsBlU,GAI3B,MAAMmU,EAAU,kBAAkBlwB,KAAK+b,EAAM7S,OAAOya,SAC9CwM,EAjTW,WAiTKpU,EAAMtiB,IACtB22B,EAAkB,CAAClD,GAAgBC,IAAkBpP,SAAShC,EAAMtiB,KAC1E,IAAK22B,IAAoBD,EACvB,OAEF,GAAID,IAAYC,EACd,OAEFpU,EAAMkD,iBAGN,MAAMoR,EAAkB1T,KAAK+F,QAAQkL,IAA0BjR,KAAO4F,GAAeM,KAAKlG,KAAMiR,IAAwB,IAAMrL,GAAe/gB,KAAKmb,KAAMiR,IAAwB,IAAMrL,GAAeC,QAAQoL,GAAwB7R,EAAMW,eAAehb,YACpPwF,EAAWwnB,GAASzM,oBAAoBoO,GAC9C,GAAID,EAIF,OAHArU,EAAMuU,kBACNppB,EAASmlB,YACTnlB,EAASyoB,gBAAgB5T,GAGvB7U,EAASilB,aAEXpQ,EAAMuU,kBACNppB,EAASklB,OACTiE,EAAgBpB,QAEpB,EAOF/R,GAAac,GAAGhc,SAAUyrB,GAAwBG,GAAwBc,GAASuB,uBACnF/S,GAAac,GAAGhc,SAAUyrB,GAAwBK,GAAeY,GAASuB,uBAC1E/S,GAAac,GAAGhc,SAAUwrB,GAAwBkB,GAASkB,YAC3D1S,GAAac,GAAGhc,SAAU0rB,GAAsBgB,GAASkB,YACzD1S,GAAac,GAAGhc,SAAUwrB,GAAwBI,IAAwB,SAAU7R,GAClFA,EAAMkD,iBACNyP,GAASzM,oBAAoBtF,MAAM0H,QACrC,IAMAvL,GAAmB4V,IAcnB,MAAM6B,GAAS,WAETC,GAAoB,OACpBC,GAAkB,gBAAgBF,KAClCG,GAAY,CAChBC,UAAW,iBACXC,cAAe,KACf7O,YAAY,EACZzK,WAAW,EAEXuZ,YAAa,QAGTC,GAAgB,CACpBH,UAAW,SACXC,cAAe,kBACf7O,WAAY,UACZzK,UAAW,UACXuZ,YAAa,oBAOf,MAAME,WAAiB3Q,GACrB,WAAAU,CAAYL,GACVa,QACA3E,KAAK6E,QAAU7E,KAAK6D,WAAWC,GAC/B9D,KAAKqU,aAAc,EACnBrU,KAAK4E,SAAW,IAClB,CAGA,kBAAWlB,GACT,OAAOqQ,EACT,CACA,sBAAWpQ,GACT,OAAOwQ,EACT,CACA,eAAW5X,GACT,OAAOqX,EACT,CAGA,IAAAlE,CAAKrT,GACH,IAAK2D,KAAK6E,QAAQlK,UAEhB,YADAkC,GAAQR,GAGV2D,KAAKsU,UACL,MAAM/0B,EAAUygB,KAAKuU,cACjBvU,KAAK6E,QAAQO,YACfvJ,GAAOtc,GAETA,EAAQ8b,UAAU5E,IAAIod,IACtB7T,KAAKwU,mBAAkB,KACrB3X,GAAQR,EAAS,GAErB,CACA,IAAAoT,CAAKpT,GACE2D,KAAK6E,QAAQlK,WAIlBqF,KAAKuU,cAAclZ,UAAU1B,OAAOka,IACpC7T,KAAKwU,mBAAkB,KACrBxU,KAAK+E,UACLlI,GAAQR,EAAS,KANjBQ,GAAQR,EAQZ,CACA,OAAA0I,GACO/E,KAAKqU,cAGV9T,GAAaC,IAAIR,KAAK4E,SAAUkP,IAChC9T,KAAK4E,SAASjL,SACdqG,KAAKqU,aAAc,EACrB,CAGA,WAAAE,GACE,IAAKvU,KAAK4E,SAAU,CAClB,MAAM6P,EAAWpvB,SAASqvB,cAAc,OACxCD,EAAST,UAAYhU,KAAK6E,QAAQmP,UAC9BhU,KAAK6E,QAAQO,YACfqP,EAASpZ,UAAU5E,IArFD,QAuFpBuJ,KAAK4E,SAAW6P,CAClB,CACA,OAAOzU,KAAK4E,QACd,CACA,iBAAAZ,CAAkBF,GAGhB,OADAA,EAAOoQ,YAAcxZ,GAAWoJ,EAAOoQ,aAChCpQ,CACT,CACA,OAAAwQ,GACE,GAAItU,KAAKqU,YACP,OAEF,MAAM90B,EAAUygB,KAAKuU,cACrBvU,KAAK6E,QAAQqP,YAAYS,OAAOp1B,GAChCghB,GAAac,GAAG9hB,EAASu0B,IAAiB,KACxCjX,GAAQmD,KAAK6E,QAAQoP,cAAc,IAErCjU,KAAKqU,aAAc,CACrB,CACA,iBAAAG,CAAkBnY,GAChBW,GAAuBX,EAAU2D,KAAKuU,cAAevU,KAAK6E,QAAQO,WACpE,EAeF,MAEMwP,GAAc,gBACdC,GAAkB,UAAUD,KAC5BE,GAAoB,cAAcF,KAGlCG,GAAmB,WACnBC,GAAY,CAChBC,WAAW,EACXC,YAAa,MAGTC,GAAgB,CACpBF,UAAW,UACXC,YAAa,WAOf,MAAME,WAAkB3R,GACtB,WAAAU,CAAYL,GACVa,QACA3E,KAAK6E,QAAU7E,KAAK6D,WAAWC,GAC/B9D,KAAKqV,WAAY,EACjBrV,KAAKsV,qBAAuB,IAC9B,CAGA,kBAAW5R,GACT,OAAOsR,EACT,CACA,sBAAWrR,GACT,OAAOwR,EACT,CACA,eAAW5Y,GACT,MAtCW,WAuCb,CAGA,QAAAgZ,GACMvV,KAAKqV,YAGLrV,KAAK6E,QAAQoQ,WACfjV,KAAK6E,QAAQqQ,YAAY5C,QAE3B/R,GAAaC,IAAInb,SAAUuvB,IAC3BrU,GAAac,GAAGhc,SAAUwvB,IAAiBzV,GAASY,KAAKwV,eAAepW,KACxEmB,GAAac,GAAGhc,SAAUyvB,IAAmB1V,GAASY,KAAKyV,eAAerW,KAC1EY,KAAKqV,WAAY,EACnB,CACA,UAAAK,GACO1V,KAAKqV,YAGVrV,KAAKqV,WAAY,EACjB9U,GAAaC,IAAInb,SAAUuvB,IAC7B,CAGA,cAAAY,CAAepW,GACb,MAAM,YACJ8V,GACElV,KAAK6E,QACT,GAAIzF,EAAM7S,SAAWlH,UAAY+Z,EAAM7S,SAAW2oB,GAAeA,EAAY1wB,SAAS4a,EAAM7S,QAC1F,OAEF,MAAM1L,EAAW+kB,GAAeU,kBAAkB4O,GAC1B,IAApBr0B,EAAS6P,OACXwkB,EAAY5C,QACHtS,KAAKsV,uBAAyBP,GACvCl0B,EAASA,EAAS6P,OAAS,GAAG4hB,QAE9BzxB,EAAS,GAAGyxB,OAEhB,CACA,cAAAmD,CAAerW,GA1ED,QA2ERA,EAAMtiB,MAGVkjB,KAAKsV,qBAAuBlW,EAAMuW,SAAWZ,GA7EzB,UA8EtB,EAeF,MAAMa,GAAyB,oDACzBC,GAA0B,cAC1BC,GAAmB,gBACnBC,GAAkB,eAMxB,MAAMC,GACJ,WAAA7R,GACEnE,KAAK4E,SAAWvf,SAAS6G,IAC3B,CAGA,QAAA+pB,GAEE,MAAMC,EAAgB7wB,SAASC,gBAAgBuC,YAC/C,OAAO1F,KAAKoC,IAAI3E,OAAOu2B,WAAaD,EACtC,CACA,IAAAzG,GACE,MAAM5rB,EAAQmc,KAAKiW,WACnBjW,KAAKoW,mBAELpW,KAAKqW,sBAAsBrW,KAAK4E,SAAUkR,IAAkBQ,GAAmBA,EAAkBzyB,IAEjGmc,KAAKqW,sBAAsBT,GAAwBE,IAAkBQ,GAAmBA,EAAkBzyB,IAC1Gmc,KAAKqW,sBAAsBR,GAAyBE,IAAiBO,GAAmBA,EAAkBzyB,GAC5G,CACA,KAAAwO,GACE2N,KAAKuW,wBAAwBvW,KAAK4E,SAAU,YAC5C5E,KAAKuW,wBAAwBvW,KAAK4E,SAAUkR,IAC5C9V,KAAKuW,wBAAwBX,GAAwBE,IACrD9V,KAAKuW,wBAAwBV,GAAyBE,GACxD,CACA,aAAAS,GACE,OAAOxW,KAAKiW,WAAa,CAC3B,CAGA,gBAAAG,GACEpW,KAAKyW,sBAAsBzW,KAAK4E,SAAU,YAC1C5E,KAAK4E,SAAS7jB,MAAM+K,SAAW,QACjC,CACA,qBAAAuqB,CAAsBtc,EAAU2c,EAAera,GAC7C,MAAMsa,EAAiB3W,KAAKiW,WAS5BjW,KAAK4W,2BAA2B7c,GARHxa,IAC3B,GAAIA,IAAYygB,KAAK4E,UAAYhlB,OAAOu2B,WAAa52B,EAAQsI,YAAc8uB,EACzE,OAEF3W,KAAKyW,sBAAsBl3B,EAASm3B,GACpC,MAAMJ,EAAkB12B,OAAOqF,iBAAiB1F,GAASub,iBAAiB4b,GAC1En3B,EAAQwB,MAAM81B,YAAYH,EAAe,GAAGra,EAASkB,OAAOC,WAAW8Y,QAAsB,GAGjG,CACA,qBAAAG,CAAsBl3B,EAASm3B,GAC7B,MAAMI,EAAcv3B,EAAQwB,MAAM+Z,iBAAiB4b,GAC/CI,GACF9T,GAAYC,iBAAiB1jB,EAASm3B,EAAeI,EAEzD,CACA,uBAAAP,CAAwBxc,EAAU2c,GAWhC1W,KAAK4W,2BAA2B7c,GAVHxa,IAC3B,MAAM5B,EAAQqlB,GAAYQ,iBAAiBjkB,EAASm3B,GAEtC,OAAV/4B,GAIJqlB,GAAYE,oBAAoB3jB,EAASm3B,GACzCn3B,EAAQwB,MAAM81B,YAAYH,EAAe/4B,IAJvC4B,EAAQwB,MAAMg2B,eAAeL,EAIgB,GAGnD,CACA,0BAAAE,CAA2B7c,EAAUid,GACnC,GAAI,GAAUjd,GACZid,EAASjd,QAGX,IAAK,MAAMkd,KAAOrR,GAAezT,KAAK4H,EAAUiG,KAAK4E,UACnDoS,EAASC,EAEb,EAeF,MAEMC,GAAc,YAGdC,GAAe,OAAOD,KACtBE,GAAyB,gBAAgBF,KACzCG,GAAiB,SAASH,KAC1BI,GAAe,OAAOJ,KACtBK,GAAgB,QAAQL,KACxBM,GAAiB,SAASN,KAC1BO,GAAsB,gBAAgBP,KACtCQ,GAA0B,oBAAoBR,KAC9CS,GAA0B,kBAAkBT,KAC5CU,GAAyB,QAAQV,cACjCW,GAAkB,aAElBC,GAAoB,OACpBC,GAAoB,eAKpBC,GAAY,CAChBvD,UAAU,EACVnC,OAAO,EACPzH,UAAU,GAENoN,GAAgB,CACpBxD,SAAU,mBACVnC,MAAO,UACPzH,SAAU,WAOZ,MAAMqN,WAAcxT,GAClB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GACf9D,KAAKmY,QAAUvS,GAAeC,QArBV,gBAqBmC7F,KAAK4E,UAC5D5E,KAAKoY,UAAYpY,KAAKqY,sBACtBrY,KAAKsY,WAAatY,KAAKuY,uBACvBvY,KAAKwP,UAAW,EAChBxP,KAAKgP,kBAAmB,EACxBhP,KAAKwY,WAAa,IAAIxC,GACtBhW,KAAK0L,oBACP,CAGA,kBAAWhI,GACT,OAAOsU,EACT,CACA,sBAAWrU,GACT,OAAOsU,EACT,CACA,eAAW1b,GACT,MA1DW,OA2Db,CAGA,MAAAmL,CAAO5H,GACL,OAAOE,KAAKwP,SAAWxP,KAAKyP,OAASzP,KAAK0P,KAAK5P,EACjD,CACA,IAAA4P,CAAK5P,GACCE,KAAKwP,UAAYxP,KAAKgP,kBAGRzO,GAAaqB,QAAQ5B,KAAK4E,SAAU0S,GAAc,CAClExX,kBAEYkC,mBAGdhC,KAAKwP,UAAW,EAChBxP,KAAKgP,kBAAmB,EACxBhP,KAAKwY,WAAW/I,OAChBpqB,SAAS6G,KAAKmP,UAAU5E,IAAIohB,IAC5B7X,KAAKyY,gBACLzY,KAAKoY,UAAU1I,MAAK,IAAM1P,KAAK0Y,aAAa5Y,KAC9C,CACA,IAAA2P,GACOzP,KAAKwP,WAAYxP,KAAKgP,mBAGTzO,GAAaqB,QAAQ5B,KAAK4E,SAAUuS,IACxCnV,mBAGdhC,KAAKwP,UAAW,EAChBxP,KAAKgP,kBAAmB,EACxBhP,KAAKsY,WAAW5C,aAChB1V,KAAK4E,SAASvJ,UAAU1B,OAAOme,IAC/B9X,KAAKmF,gBAAe,IAAMnF,KAAK2Y,cAAc3Y,KAAK4E,SAAU5E,KAAK6N,gBACnE,CACA,OAAA9I,GACExE,GAAaC,IAAI5gB,OAAQs3B,IACzB3W,GAAaC,IAAIR,KAAKmY,QAASjB,IAC/BlX,KAAKoY,UAAUrT,UACf/E,KAAKsY,WAAW5C,aAChB/Q,MAAMI,SACR,CACA,YAAA6T,GACE5Y,KAAKyY,eACP,CAGA,mBAAAJ,GACE,OAAO,IAAIjE,GAAS,CAClBzZ,UAAWmG,QAAQd,KAAK6E,QAAQ4P,UAEhCrP,WAAYpF,KAAK6N,eAErB,CACA,oBAAA0K,GACE,OAAO,IAAInD,GAAU,CACnBF,YAAalV,KAAK4E,UAEtB,CACA,YAAA8T,CAAa5Y,GAENza,SAAS6G,KAAK1H,SAASwb,KAAK4E,WAC/Bvf,SAAS6G,KAAKyoB,OAAO3U,KAAK4E,UAE5B5E,KAAK4E,SAAS7jB,MAAM6wB,QAAU,QAC9B5R,KAAK4E,SAASzjB,gBAAgB,eAC9B6e,KAAK4E,SAASxjB,aAAa,cAAc,GACzC4e,KAAK4E,SAASxjB,aAAa,OAAQ,UACnC4e,KAAK4E,SAASnZ,UAAY,EAC1B,MAAMotB,EAAYjT,GAAeC,QA7GT,cA6GsC7F,KAAKmY,SAC/DU,IACFA,EAAUptB,UAAY,GAExBoQ,GAAOmE,KAAK4E,UACZ5E,KAAK4E,SAASvJ,UAAU5E,IAAIqhB,IAU5B9X,KAAKmF,gBATsB,KACrBnF,KAAK6E,QAAQyN,OACftS,KAAKsY,WAAW/C,WAElBvV,KAAKgP,kBAAmB,EACxBzO,GAAaqB,QAAQ5B,KAAK4E,SAAU2S,GAAe,CACjDzX,iBACA,GAEoCE,KAAKmY,QAASnY,KAAK6N,cAC7D,CACA,kBAAAnC,GACEnL,GAAac,GAAGrB,KAAK4E,SAAU+S,IAAyBvY,IAhJvC,WAiJXA,EAAMtiB,MAGNkjB,KAAK6E,QAAQgG,SACf7K,KAAKyP,OAGPzP,KAAK8Y,6BAA4B,IAEnCvY,GAAac,GAAGzhB,OAAQ43B,IAAgB,KAClCxX,KAAKwP,WAAaxP,KAAKgP,kBACzBhP,KAAKyY,eACP,IAEFlY,GAAac,GAAGrB,KAAK4E,SAAU8S,IAAyBtY,IAEtDmB,GAAae,IAAItB,KAAK4E,SAAU6S,IAAqBsB,IAC/C/Y,KAAK4E,WAAaxF,EAAM7S,QAAUyT,KAAK4E,WAAamU,EAAOxsB,SAGjC,WAA1ByT,KAAK6E,QAAQ4P,SAIbzU,KAAK6E,QAAQ4P,UACfzU,KAAKyP,OAJLzP,KAAK8Y,6BAKP,GACA,GAEN,CACA,UAAAH,GACE3Y,KAAK4E,SAAS7jB,MAAM6wB,QAAU,OAC9B5R,KAAK4E,SAASxjB,aAAa,eAAe,GAC1C4e,KAAK4E,SAASzjB,gBAAgB,cAC9B6e,KAAK4E,SAASzjB,gBAAgB,QAC9B6e,KAAKgP,kBAAmB,EACxBhP,KAAKoY,UAAU3I,MAAK,KAClBpqB,SAAS6G,KAAKmP,UAAU1B,OAAOke,IAC/B7X,KAAKgZ,oBACLhZ,KAAKwY,WAAWnmB,QAChBkO,GAAaqB,QAAQ5B,KAAK4E,SAAUyS,GAAe,GAEvD,CACA,WAAAxJ,GACE,OAAO7N,KAAK4E,SAASvJ,UAAU7W,SAjLT,OAkLxB,CACA,0BAAAs0B,GAEE,GADkBvY,GAAaqB,QAAQ5B,KAAK4E,SAAUwS,IACxCpV,iBACZ,OAEF,MAAMiX,EAAqBjZ,KAAK4E,SAASvX,aAAehI,SAASC,gBAAgBsC,aAC3EsxB,EAAmBlZ,KAAK4E,SAAS7jB,MAAMiL,UAEpB,WAArBktB,GAAiClZ,KAAK4E,SAASvJ,UAAU7W,SAASuzB,MAGjEkB,IACHjZ,KAAK4E,SAAS7jB,MAAMiL,UAAY,UAElCgU,KAAK4E,SAASvJ,UAAU5E,IAAIshB,IAC5B/X,KAAKmF,gBAAe,KAClBnF,KAAK4E,SAASvJ,UAAU1B,OAAOoe,IAC/B/X,KAAKmF,gBAAe,KAClBnF,KAAK4E,SAAS7jB,MAAMiL,UAAYktB,CAAgB,GAC/ClZ,KAAKmY,QAAQ,GACfnY,KAAKmY,SACRnY,KAAK4E,SAAS0N,QAChB,CAMA,aAAAmG,GACE,MAAMQ,EAAqBjZ,KAAK4E,SAASvX,aAAehI,SAASC,gBAAgBsC,aAC3E+uB,EAAiB3W,KAAKwY,WAAWvC,WACjCkD,EAAoBxC,EAAiB,EAC3C,GAAIwC,IAAsBF,EAAoB,CAC5C,MAAMn3B,EAAWma,KAAU,cAAgB,eAC3C+D,KAAK4E,SAAS7jB,MAAMe,GAAY,GAAG60B,KACrC,CACA,IAAKwC,GAAqBF,EAAoB,CAC5C,MAAMn3B,EAAWma,KAAU,eAAiB,cAC5C+D,KAAK4E,SAAS7jB,MAAMe,GAAY,GAAG60B,KACrC,CACF,CACA,iBAAAqC,GACEhZ,KAAK4E,SAAS7jB,MAAMq4B,YAAc,GAClCpZ,KAAK4E,SAAS7jB,MAAMs4B,aAAe,EACrC,CAGA,sBAAO5c,CAAgBqH,EAAQhE,GAC7B,OAAOE,KAAKuH,MAAK,WACf,MAAMld,EAAO6tB,GAAM5S,oBAAoBtF,KAAM8D,GAC7C,GAAsB,iBAAXA,EAAX,CAGA,QAA4B,IAAjBzZ,EAAKyZ,GACd,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,GAAQhE,EAJb,CAKF,GACF,EAOFS,GAAac,GAAGhc,SAAUuyB,GA9OK,4BA8O2C,SAAUxY,GAClF,MAAM7S,EAASqZ,GAAec,uBAAuB1G,MACjD,CAAC,IAAK,QAAQoB,SAASpB,KAAKgH,UAC9B5H,EAAMkD,iBAER/B,GAAae,IAAI/U,EAAQ+qB,IAAcgC,IACjCA,EAAUtX,kBAIdzB,GAAae,IAAI/U,EAAQ8qB,IAAgB,KACnC1c,GAAUqF,OACZA,KAAKsS,OACP,GACA,IAIJ,MAAMiH,EAAc3T,GAAeC,QAnQb,eAoQlB0T,GACFrB,GAAM7S,YAAYkU,GAAa9J,OAEpByI,GAAM5S,oBAAoB/Y,GAClCmb,OAAO1H,KACd,IACA4G,GAAqBsR,IAMrB/b,GAAmB+b,IAcnB,MAEMsB,GAAc,gBACdC,GAAiB,YACjBC,GAAwB,OAAOF,KAAcC,KAE7CE,GAAoB,OACpBC,GAAuB,UACvBC,GAAoB,SAEpBC,GAAgB,kBAChBC,GAAe,OAAOP,KACtBQ,GAAgB,QAAQR,KACxBS,GAAe,OAAOT,KACtBU,GAAuB,gBAAgBV,KACvCW,GAAiB,SAASX,KAC1BY,GAAe,SAASZ,KACxBa,GAAyB,QAAQb,KAAcC,KAC/Ca,GAAwB,kBAAkBd,KAE1Ce,GAAY,CAChB9F,UAAU,EACV5J,UAAU,EACVpgB,QAAQ,GAEJ+vB,GAAgB,CACpB/F,SAAU,mBACV5J,SAAU,UACVpgB,OAAQ,WAOV,MAAMgwB,WAAkB/V,GACtB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GACf9D,KAAKwP,UAAW,EAChBxP,KAAKoY,UAAYpY,KAAKqY,sBACtBrY,KAAKsY,WAAatY,KAAKuY,uBACvBvY,KAAK0L,oBACP,CAGA,kBAAWhI,GACT,OAAO6W,EACT,CACA,sBAAW5W,GACT,OAAO6W,EACT,CACA,eAAWje,GACT,MApDW,WAqDb,CAGA,MAAAmL,CAAO5H,GACL,OAAOE,KAAKwP,SAAWxP,KAAKyP,OAASzP,KAAK0P,KAAK5P,EACjD,CACA,IAAA4P,CAAK5P,GACCE,KAAKwP,UAGSjP,GAAaqB,QAAQ5B,KAAK4E,SAAUmV,GAAc,CAClEja,kBAEYkC,mBAGdhC,KAAKwP,UAAW,EAChBxP,KAAKoY,UAAU1I,OACV1P,KAAK6E,QAAQpa,SAChB,IAAIurB,IAAkBvG,OAExBzP,KAAK4E,SAASxjB,aAAa,cAAc,GACzC4e,KAAK4E,SAASxjB,aAAa,OAAQ,UACnC4e,KAAK4E,SAASvJ,UAAU5E,IAAImjB,IAW5B5Z,KAAKmF,gBAVoB,KAClBnF,KAAK6E,QAAQpa,SAAUuV,KAAK6E,QAAQ4P,UACvCzU,KAAKsY,WAAW/C,WAElBvV,KAAK4E,SAASvJ,UAAU5E,IAAIkjB,IAC5B3Z,KAAK4E,SAASvJ,UAAU1B,OAAOigB,IAC/BrZ,GAAaqB,QAAQ5B,KAAK4E,SAAUoV,GAAe,CACjDla,iBACA,GAEkCE,KAAK4E,UAAU,GACvD,CACA,IAAA6K,GACOzP,KAAKwP,WAGQjP,GAAaqB,QAAQ5B,KAAK4E,SAAUqV,IACxCjY,mBAGdhC,KAAKsY,WAAW5C,aAChB1V,KAAK4E,SAAS8V,OACd1a,KAAKwP,UAAW,EAChBxP,KAAK4E,SAASvJ,UAAU5E,IAAIojB,IAC5B7Z,KAAKoY,UAAU3I,OAUfzP,KAAKmF,gBAToB,KACvBnF,KAAK4E,SAASvJ,UAAU1B,OAAOggB,GAAmBE,IAClD7Z,KAAK4E,SAASzjB,gBAAgB,cAC9B6e,KAAK4E,SAASzjB,gBAAgB,QACzB6e,KAAK6E,QAAQpa,SAChB,IAAIurB,IAAkB3jB,QAExBkO,GAAaqB,QAAQ5B,KAAK4E,SAAUuV,GAAe,GAEfna,KAAK4E,UAAU,IACvD,CACA,OAAAG,GACE/E,KAAKoY,UAAUrT,UACf/E,KAAKsY,WAAW5C,aAChB/Q,MAAMI,SACR,CAGA,mBAAAsT,GACE,MASM1d,EAAYmG,QAAQd,KAAK6E,QAAQ4P,UACvC,OAAO,IAAIL,GAAS,CAClBJ,UA3HsB,qBA4HtBrZ,YACAyK,YAAY,EACZ8O,YAAalU,KAAK4E,SAAS7f,WAC3BkvB,cAAetZ,EAfK,KACU,WAA1BqF,KAAK6E,QAAQ4P,SAIjBzU,KAAKyP,OAHHlP,GAAaqB,QAAQ5B,KAAK4E,SAAUsV,GAG3B,EAUgC,MAE/C,CACA,oBAAA3B,GACE,OAAO,IAAInD,GAAU,CACnBF,YAAalV,KAAK4E,UAEtB,CACA,kBAAA8G,GACEnL,GAAac,GAAGrB,KAAK4E,SAAU0V,IAAuBlb,IA5IvC,WA6ITA,EAAMtiB,MAGNkjB,KAAK6E,QAAQgG,SACf7K,KAAKyP,OAGPlP,GAAaqB,QAAQ5B,KAAK4E,SAAUsV,IAAqB,GAE7D,CAGA,sBAAOzd,CAAgBqH,GACrB,OAAO9D,KAAKuH,MAAK,WACf,MAAMld,EAAOowB,GAAUnV,oBAAoBtF,KAAM8D,GACjD,GAAsB,iBAAXA,EAAX,CAGA,QAAqB/K,IAAjB1O,EAAKyZ,IAAyBA,EAAOrC,WAAW,MAAmB,gBAAXqC,EAC1D,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,GAAQ9D,KAJb,CAKF,GACF,EAOFO,GAAac,GAAGhc,SAAUg1B,GA7JK,gCA6J2C,SAAUjb,GAClF,MAAM7S,EAASqZ,GAAec,uBAAuB1G,MAIrD,GAHI,CAAC,IAAK,QAAQoB,SAASpB,KAAKgH,UAC9B5H,EAAMkD,iBAEJpH,GAAW8E,MACb,OAEFO,GAAae,IAAI/U,EAAQ4tB,IAAgB,KAEnCxf,GAAUqF,OACZA,KAAKsS,OACP,IAIF,MAAMiH,EAAc3T,GAAeC,QAAQiU,IACvCP,GAAeA,IAAgBhtB,GACjCkuB,GAAUpV,YAAYkU,GAAa9J,OAExBgL,GAAUnV,oBAAoB/Y,GACtCmb,OAAO1H,KACd,IACAO,GAAac,GAAGzhB,OAAQ85B,IAAuB,KAC7C,IAAK,MAAM3f,KAAY6L,GAAezT,KAAK2nB,IACzCW,GAAUnV,oBAAoBvL,GAAU2V,MAC1C,IAEFnP,GAAac,GAAGzhB,OAAQw6B,IAAc,KACpC,IAAK,MAAM76B,KAAWqmB,GAAezT,KAAK,gDACG,UAAvClN,iBAAiB1F,GAASiC,UAC5Bi5B,GAAUnV,oBAAoB/lB,GAASkwB,MAE3C,IAEF7I,GAAqB6T,IAMrBte,GAAmBse,IAUnB,MACME,GAAmB,CAEvB,IAAK,CAAC,QAAS,MAAO,KAAM,OAAQ,OAHP,kBAI7B9pB,EAAG,CAAC,SAAU,OAAQ,QAAS,OAC/B+pB,KAAM,GACN9pB,EAAG,GACH+pB,GAAI,GACJC,IAAK,GACLC,KAAM,GACNC,IAAK,GACLC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJnqB,EAAG,GACHub,IAAK,CAAC,MAAO,SAAU,MAAO,QAAS,QAAS,UAChD6O,GAAI,GACJC,GAAI,GACJC,EAAG,GACHC,IAAK,GACLC,EAAG,GACHC,MAAO,GACPC,KAAM,GACNC,IAAK,GACLC,IAAK,GACLC,OAAQ,GACRC,EAAG,GACHC,GAAI,IAIAC,GAAgB,IAAI/lB,IAAI,CAAC,aAAc,OAAQ,OAAQ,WAAY,WAAY,SAAU,MAAO,eAShGgmB,GAAmB,0DACnBC,GAAmB,CAACx6B,EAAWy6B,KACnC,MAAMC,EAAgB16B,EAAUvC,SAASC,cACzC,OAAI+8B,EAAqBpb,SAASqb,IAC5BJ,GAAc1lB,IAAI8lB,IACb3b,QAAQwb,GAAiBj5B,KAAKtB,EAAU26B,YAM5CF,EAAqBr2B,QAAOw2B,GAAkBA,aAA0BpY,SAAQ9R,MAAKmqB,GAASA,EAAMv5B,KAAKo5B,IAAe,EA0C3HI,GAAY,CAChBC,UAAWnC,GACXoC,QAAS,CAAC,EAEVC,WAAY,GACZnwB,MAAM,EACNowB,UAAU,EACVC,WAAY,KACZC,SAAU,eAENC,GAAgB,CACpBN,UAAW,SACXC,QAAS,SACTC,WAAY,oBACZnwB,KAAM,UACNowB,SAAU,UACVC,WAAY,kBACZC,SAAU,UAENE,GAAqB,CACzBC,MAAO,iCACPvjB,SAAU,oBAOZ,MAAMwjB,WAAwB9Z,GAC5B,WAAAU,CAAYL,GACVa,QACA3E,KAAK6E,QAAU7E,KAAK6D,WAAWC,EACjC,CAGA,kBAAWJ,GACT,OAAOmZ,EACT,CACA,sBAAWlZ,GACT,OAAOyZ,EACT,CACA,eAAW7gB,GACT,MA3CW,iBA4Cb,CAGA,UAAAihB,GACE,OAAOxgC,OAAOmiB,OAAOa,KAAK6E,QAAQkY,SAASj6B,KAAIghB,GAAU9D,KAAKyd,yBAAyB3Z,KAAS3d,OAAO2a,QACzG,CACA,UAAA4c,GACE,OAAO1d,KAAKwd,aAAa9sB,OAAS,CACpC,CACA,aAAAitB,CAAcZ,GAMZ,OALA/c,KAAK4d,cAAcb,GACnB/c,KAAK6E,QAAQkY,QAAU,IAClB/c,KAAK6E,QAAQkY,WACbA,GAEE/c,IACT,CACA,MAAA6d,GACE,MAAMC,EAAkBz4B,SAASqvB,cAAc,OAC/CoJ,EAAgBC,UAAY/d,KAAKge,eAAehe,KAAK6E,QAAQsY,UAC7D,IAAK,MAAOpjB,EAAUkkB,KAASjhC,OAAOmkB,QAAQnB,KAAK6E,QAAQkY,SACzD/c,KAAKke,YAAYJ,EAAiBG,EAAMlkB,GAE1C,MAAMojB,EAAWW,EAAgBhY,SAAS,GACpCkX,EAAahd,KAAKyd,yBAAyBzd,KAAK6E,QAAQmY,YAI9D,OAHIA,GACFG,EAAS9hB,UAAU5E,OAAOumB,EAAW96B,MAAM,MAEtCi7B,CACT,CAGA,gBAAAlZ,CAAiBH,GACfa,MAAMV,iBAAiBH,GACvB9D,KAAK4d,cAAc9Z,EAAOiZ,QAC5B,CACA,aAAAa,CAAcO,GACZ,IAAK,MAAOpkB,EAAUgjB,KAAY//B,OAAOmkB,QAAQgd,GAC/CxZ,MAAMV,iBAAiB,CACrBlK,WACAujB,MAAOP,GACNM,GAEP,CACA,WAAAa,CAAYf,EAAUJ,EAAShjB,GAC7B,MAAMqkB,EAAkBxY,GAAeC,QAAQ9L,EAAUojB,GACpDiB,KAGLrB,EAAU/c,KAAKyd,yBAAyBV,IAKpC,GAAUA,GACZ/c,KAAKqe,sBAAsB3jB,GAAWqiB,GAAUqB,GAG9Cpe,KAAK6E,QAAQhY,KACfuxB,EAAgBL,UAAY/d,KAAKge,eAAejB,GAGlDqB,EAAgBE,YAAcvB,EAX5BqB,EAAgBzkB,SAYpB,CACA,cAAAqkB,CAAeG,GACb,OAAOne,KAAK6E,QAAQoY,SApJxB,SAAsBsB,EAAYzB,EAAW0B,GAC3C,IAAKD,EAAW7tB,OACd,OAAO6tB,EAET,GAAIC,GAAgD,mBAArBA,EAC7B,OAAOA,EAAiBD,GAE1B,MACME,GADY,IAAI7+B,OAAO8+B,WACKC,gBAAgBJ,EAAY,aACxD19B,EAAW,GAAGlC,UAAU8/B,EAAgBvyB,KAAKkU,iBAAiB,MACpE,IAAK,MAAM7gB,KAAWsB,EAAU,CAC9B,MAAM+9B,EAAcr/B,EAAQC,SAASC,cACrC,IAAKzC,OAAO4D,KAAKk8B,GAAW1b,SAASwd,GAAc,CACjDr/B,EAAQoa,SACR,QACF,CACA,MAAMklB,EAAgB,GAAGlgC,UAAUY,EAAQ0B,YACrC69B,EAAoB,GAAGngC,OAAOm+B,EAAU,MAAQ,GAAIA,EAAU8B,IAAgB,IACpF,IAAK,MAAM78B,KAAa88B,EACjBtC,GAAiBx6B,EAAW+8B,IAC/Bv/B,EAAQ4B,gBAAgBY,EAAUvC,SAGxC,CACA,OAAOi/B,EAAgBvyB,KAAK6xB,SAC9B,CA2HmCgB,CAAaZ,EAAKne,KAAK6E,QAAQiY,UAAW9c,KAAK6E,QAAQqY,YAAciB,CACtG,CACA,wBAAAV,CAAyBU,GACvB,OAAOthB,GAAQshB,EAAK,CAACne,MACvB,CACA,qBAAAqe,CAAsB9+B,EAAS6+B,GAC7B,GAAIpe,KAAK6E,QAAQhY,KAGf,OAFAuxB,EAAgBL,UAAY,QAC5BK,EAAgBzJ,OAAOp1B,GAGzB6+B,EAAgBE,YAAc/+B,EAAQ++B,WACxC,EAeF,MACMU,GAAwB,IAAI1oB,IAAI,CAAC,WAAY,YAAa,eAC1D2oB,GAAoB,OAEpBC,GAAoB,OAEpBC,GAAiB,SACjBC,GAAmB,gBACnBC,GAAgB,QAChBC,GAAgB,QAahBC,GAAgB,CACpBC,KAAM,OACNC,IAAK,MACLC,MAAOzjB,KAAU,OAAS,QAC1B0jB,OAAQ,SACRC,KAAM3jB,KAAU,QAAU,QAEtB4jB,GAAY,CAChB/C,UAAWnC,GACXmF,WAAW,EACX7xB,SAAU,kBACV8xB,WAAW,EACXC,YAAa,GACbC,MAAO,EACPjwB,mBAAoB,CAAC,MAAO,QAAS,SAAU,QAC/CnD,MAAM,EACN7E,OAAQ,CAAC,EAAG,GACZtJ,UAAW,MACXmzB,aAAc,KACdoL,UAAU,EACVC,WAAY,KACZnjB,UAAU,EACVojB,SAAU,+GACV+C,MAAO,GACPte,QAAS,eAELue,GAAgB,CACpBrD,UAAW,SACXgD,UAAW,UACX7xB,SAAU,mBACV8xB,UAAW,2BACXC,YAAa,oBACbC,MAAO,kBACPjwB,mBAAoB,QACpBnD,KAAM,UACN7E,OAAQ,0BACRtJ,UAAW,oBACXmzB,aAAc,yBACdoL,SAAU,UACVC,WAAY,kBACZnjB,SAAU,mBACVojB,SAAU,SACV+C,MAAO,4BACPte,QAAS,UAOX,MAAMwe,WAAgB1b,GACpB,WAAAP,CAAY5kB,EAASukB,GACnB,QAAsB,IAAX,EACT,MAAM,IAAIU,UAAU,+DAEtBG,MAAMplB,EAASukB,GAGf9D,KAAKqgB,YAAa,EAClBrgB,KAAKsgB,SAAW,EAChBtgB,KAAKugB,WAAa,KAClBvgB,KAAKwgB,eAAiB,CAAC,EACvBxgB,KAAKgS,QAAU,KACfhS,KAAKygB,iBAAmB,KACxBzgB,KAAK0gB,YAAc,KAGnB1gB,KAAK2gB,IAAM,KACX3gB,KAAK4gB,gBACA5gB,KAAK6E,QAAQ9K,UAChBiG,KAAK6gB,WAET,CAGA,kBAAWnd,GACT,OAAOmc,EACT,CACA,sBAAWlc,GACT,OAAOwc,EACT,CACA,eAAW5jB,GACT,MAxGW,SAyGb,CAGA,MAAAukB,GACE9gB,KAAKqgB,YAAa,CACpB,CACA,OAAAU,GACE/gB,KAAKqgB,YAAa,CACpB,CACA,aAAAW,GACEhhB,KAAKqgB,YAAcrgB,KAAKqgB,UAC1B,CACA,MAAA3Y,GACO1H,KAAKqgB,aAGVrgB,KAAKwgB,eAAeS,OAASjhB,KAAKwgB,eAAeS,MAC7CjhB,KAAKwP,WACPxP,KAAKkhB,SAGPlhB,KAAKmhB,SACP,CACA,OAAApc,GACEgI,aAAa/M,KAAKsgB,UAClB/f,GAAaC,IAAIR,KAAK4E,SAAS5J,QAAQmkB,IAAiBC,GAAkBpf,KAAKohB,mBAC3EphB,KAAK4E,SAASpJ,aAAa,2BAC7BwE,KAAK4E,SAASxjB,aAAa,QAAS4e,KAAK4E,SAASpJ,aAAa,2BAEjEwE,KAAKqhB,iBACL1c,MAAMI,SACR,CACA,IAAA2K,GACE,GAAoC,SAAhC1P,KAAK4E,SAAS7jB,MAAM6wB,QACtB,MAAM,IAAIhO,MAAM,uCAElB,IAAM5D,KAAKshB,mBAAoBthB,KAAKqgB,WAClC,OAEF,MAAM/G,EAAY/Y,GAAaqB,QAAQ5B,KAAK4E,SAAU5E,KAAKmE,YAAYqB,UAlItD,SAoIX+b,GADa9lB,GAAeuE,KAAK4E,WACL5E,KAAK4E,SAAS9kB,cAAcwF,iBAAiBd,SAASwb,KAAK4E,UAC7F,GAAI0U,EAAUtX,mBAAqBuf,EACjC,OAIFvhB,KAAKqhB,iBACL,MAAMV,EAAM3gB,KAAKwhB,iBACjBxhB,KAAK4E,SAASxjB,aAAa,mBAAoBu/B,EAAInlB,aAAa,OAChE,MAAM,UACJukB,GACE/f,KAAK6E,QAYT,GAXK7E,KAAK4E,SAAS9kB,cAAcwF,gBAAgBd,SAASwb,KAAK2gB,OAC7DZ,EAAUpL,OAAOgM,GACjBpgB,GAAaqB,QAAQ5B,KAAK4E,SAAU5E,KAAKmE,YAAYqB,UAhJpC,cAkJnBxF,KAAKgS,QAAUhS,KAAKqS,cAAcsO,GAClCA,EAAItlB,UAAU5E,IAAIyoB,IAMd,iBAAkB75B,SAASC,gBAC7B,IAAK,MAAM/F,IAAW,GAAGZ,UAAU0G,SAAS6G,KAAK4Z,UAC/CvF,GAAac,GAAG9hB,EAAS,YAAaqc,IAU1CoE,KAAKmF,gBAPY,KACf5E,GAAaqB,QAAQ5B,KAAK4E,SAAU5E,KAAKmE,YAAYqB,UAhKrC,WAiKQ,IAApBxF,KAAKugB,YACPvgB,KAAKkhB,SAEPlhB,KAAKugB,YAAa,CAAK,GAEKvgB,KAAK2gB,IAAK3gB,KAAK6N,cAC/C,CACA,IAAA4B,GACE,GAAKzP,KAAKwP,aAGQjP,GAAaqB,QAAQ5B,KAAK4E,SAAU5E,KAAKmE,YAAYqB,UA/KtD,SAgLHxD,iBAAd,CAQA,GALYhC,KAAKwhB,iBACbnmB,UAAU1B,OAAOulB,IAIjB,iBAAkB75B,SAASC,gBAC7B,IAAK,MAAM/F,IAAW,GAAGZ,UAAU0G,SAAS6G,KAAK4Z,UAC/CvF,GAAaC,IAAIjhB,EAAS,YAAaqc,IAG3CoE,KAAKwgB,eAA4B,OAAI,EACrCxgB,KAAKwgB,eAAelB,KAAiB,EACrCtf,KAAKwgB,eAAenB,KAAiB,EACrCrf,KAAKugB,WAAa,KAYlBvgB,KAAKmF,gBAVY,KACXnF,KAAKyhB,yBAGJzhB,KAAKugB,YACRvgB,KAAKqhB,iBAEPrhB,KAAK4E,SAASzjB,gBAAgB,oBAC9Bof,GAAaqB,QAAQ5B,KAAK4E,SAAU5E,KAAKmE,YAAYqB,UAzMpC,WAyM8D,GAEnDxF,KAAK2gB,IAAK3gB,KAAK6N,cA1B7C,CA2BF,CACA,MAAA9iB,GACMiV,KAAKgS,SACPhS,KAAKgS,QAAQjnB,QAEjB,CAGA,cAAAu2B,GACE,OAAOxgB,QAAQd,KAAK0hB,YACtB,CACA,cAAAF,GAIE,OAHKxhB,KAAK2gB,MACR3gB,KAAK2gB,IAAM3gB,KAAK2hB,kBAAkB3hB,KAAK0gB,aAAe1gB,KAAK4hB,2BAEtD5hB,KAAK2gB,GACd,CACA,iBAAAgB,CAAkB5E,GAChB,MAAM4D,EAAM3gB,KAAK6hB,oBAAoB9E,GAASc,SAG9C,IAAK8C,EACH,OAAO,KAETA,EAAItlB,UAAU1B,OAAOslB,GAAmBC,IAExCyB,EAAItlB,UAAU5E,IAAI,MAAMuJ,KAAKmE,YAAY5H,aACzC,MAAMulB,EAvuGKC,KACb,GACEA,GAAU5/B,KAAK6/B,MA/BH,IA+BS7/B,KAAK8/B,gBACnB58B,SAAS68B,eAAeH,IACjC,OAAOA,CAAM,EAmuGGI,CAAOniB,KAAKmE,YAAY5H,MAAM1c,WAK5C,OAJA8gC,EAAIv/B,aAAa,KAAM0gC,GACnB9hB,KAAK6N,eACP8S,EAAItlB,UAAU5E,IAAIwoB,IAEb0B,CACT,CACA,UAAAyB,CAAWrF,GACT/c,KAAK0gB,YAAc3D,EACf/c,KAAKwP,aACPxP,KAAKqhB,iBACLrhB,KAAK0P,OAET,CACA,mBAAAmS,CAAoB9E,GAYlB,OAXI/c,KAAKygB,iBACPzgB,KAAKygB,iBAAiB9C,cAAcZ,GAEpC/c,KAAKygB,iBAAmB,IAAIlD,GAAgB,IACvCvd,KAAK6E,QAGRkY,UACAC,WAAYhd,KAAKyd,yBAAyBzd,KAAK6E,QAAQmb,eAGpDhgB,KAAKygB,gBACd,CACA,sBAAAmB,GACE,MAAO,CACL,iBAA0B5hB,KAAK0hB,YAEnC,CACA,SAAAA,GACE,OAAO1hB,KAAKyd,yBAAyBzd,KAAK6E,QAAQqb,QAAUlgB,KAAK4E,SAASpJ,aAAa,yBACzF,CAGA,4BAAA6mB,CAA6BjjB,GAC3B,OAAOY,KAAKmE,YAAYmB,oBAAoBlG,EAAMW,eAAgBC,KAAKsiB,qBACzE,CACA,WAAAzU,GACE,OAAO7N,KAAK6E,QAAQib,WAAa9f,KAAK2gB,KAAO3gB,KAAK2gB,IAAItlB,UAAU7W,SAASy6B,GAC3E,CACA,QAAAzP,GACE,OAAOxP,KAAK2gB,KAAO3gB,KAAK2gB,IAAItlB,UAAU7W,SAAS06B,GACjD,CACA,aAAA7M,CAAcsO,GACZ,MAAMjiC,EAAYme,GAAQmD,KAAK6E,QAAQnmB,UAAW,CAACshB,KAAM2gB,EAAK3gB,KAAK4E,WAC7D2d,EAAahD,GAAc7gC,EAAU+lB,eAC3C,OAAO,GAAoBzE,KAAK4E,SAAU+b,EAAK3gB,KAAKyS,iBAAiB8P,GACvE,CACA,UAAA1P,GACE,MAAM,OACJ7qB,GACEgY,KAAK6E,QACT,MAAsB,iBAAX7c,EACFA,EAAO9F,MAAM,KAAKY,KAAInF,GAAS4f,OAAO6P,SAASzvB,EAAO,MAEzC,mBAAXqK,EACF8qB,GAAc9qB,EAAO8qB,EAAY9S,KAAK4E,UAExC5c,CACT,CACA,wBAAAy1B,CAAyBU,GACvB,OAAOthB,GAAQshB,EAAK,CAACne,KAAK4E,UAC5B,CACA,gBAAA6N,CAAiB8P,GACf,MAAMxP,EAAwB,CAC5Br0B,UAAW6jC,EACXnsB,UAAW,CAAC,CACV9V,KAAM,OACNmB,QAAS,CACPuO,mBAAoBgQ,KAAK6E,QAAQ7U,qBAElC,CACD1P,KAAM,SACNmB,QAAS,CACPuG,OAAQgY,KAAK6S,eAEd,CACDvyB,KAAM,kBACNmB,QAAS,CACPwM,SAAU+R,KAAK6E,QAAQ5W,WAExB,CACD3N,KAAM,QACNmB,QAAS,CACPlC,QAAS,IAAIygB,KAAKmE,YAAY5H,eAE/B,CACDjc,KAAM,kBACNC,SAAS,EACTC,MAAO,aACPC,GAAI4J,IAGF2V,KAAKwhB,iBAAiBpgC,aAAa,wBAAyBiJ,EAAK1J,MAAMjC,UAAU,KAIvF,MAAO,IACFq0B,KACAlW,GAAQmD,KAAK6E,QAAQgN,aAAc,CAACkB,IAE3C,CACA,aAAA6N,GACE,MAAM4B,EAAWxiB,KAAK6E,QAAQjD,QAAQ1f,MAAM,KAC5C,IAAK,MAAM0f,KAAW4gB,EACpB,GAAgB,UAAZ5gB,EACFrB,GAAac,GAAGrB,KAAK4E,SAAU5E,KAAKmE,YAAYqB,UAjVlC,SAiV4DxF,KAAK6E,QAAQ9K,UAAUqF,IAC/EY,KAAKqiB,6BAA6BjjB,GAC1CsI,QAAQ,SAEb,GA3VU,WA2VN9F,EAA4B,CACrC,MAAM6gB,EAAU7gB,IAAYyd,GAAgBrf,KAAKmE,YAAYqB,UAnV5C,cAmV0ExF,KAAKmE,YAAYqB,UArV5F,WAsVVkd,EAAW9gB,IAAYyd,GAAgBrf,KAAKmE,YAAYqB,UAnV7C,cAmV2ExF,KAAKmE,YAAYqB,UArV5F,YAsVjBjF,GAAac,GAAGrB,KAAK4E,SAAU6d,EAASziB,KAAK6E,QAAQ9K,UAAUqF,IAC7D,MAAM+T,EAAUnT,KAAKqiB,6BAA6BjjB,GAClD+T,EAAQqN,eAA8B,YAAfphB,EAAMqB,KAAqB6e,GAAgBD,KAAiB,EACnFlM,EAAQgO,QAAQ,IAElB5gB,GAAac,GAAGrB,KAAK4E,SAAU8d,EAAU1iB,KAAK6E,QAAQ9K,UAAUqF,IAC9D,MAAM+T,EAAUnT,KAAKqiB,6BAA6BjjB,GAClD+T,EAAQqN,eAA8B,aAAfphB,EAAMqB,KAAsB6e,GAAgBD,IAAiBlM,EAAQvO,SAASpgB,SAAS4a,EAAMU,eACpHqT,EAAQ+N,QAAQ,GAEpB,CAEFlhB,KAAKohB,kBAAoB,KACnBphB,KAAK4E,UACP5E,KAAKyP,MACP,EAEFlP,GAAac,GAAGrB,KAAK4E,SAAS5J,QAAQmkB,IAAiBC,GAAkBpf,KAAKohB,kBAChF,CACA,SAAAP,GACE,MAAMX,EAAQlgB,KAAK4E,SAASpJ,aAAa,SACpC0kB,IAGAlgB,KAAK4E,SAASpJ,aAAa,eAAkBwE,KAAK4E,SAAS0Z,YAAY3Y,QAC1E3F,KAAK4E,SAASxjB,aAAa,aAAc8+B,GAE3ClgB,KAAK4E,SAASxjB,aAAa,yBAA0B8+B,GACrDlgB,KAAK4E,SAASzjB,gBAAgB,SAChC,CACA,MAAAggC,GACMnhB,KAAKwP,YAAcxP,KAAKugB,WAC1BvgB,KAAKugB,YAAa,GAGpBvgB,KAAKugB,YAAa,EAClBvgB,KAAK2iB,aAAY,KACX3iB,KAAKugB,YACPvgB,KAAK0P,MACP,GACC1P,KAAK6E,QAAQob,MAAMvQ,MACxB,CACA,MAAAwR,GACMlhB,KAAKyhB,yBAGTzhB,KAAKugB,YAAa,EAClBvgB,KAAK2iB,aAAY,KACV3iB,KAAKugB,YACRvgB,KAAKyP,MACP,GACCzP,KAAK6E,QAAQob,MAAMxQ,MACxB,CACA,WAAAkT,CAAY/kB,EAASglB,GACnB7V,aAAa/M,KAAKsgB,UAClBtgB,KAAKsgB,SAAWziB,WAAWD,EAASglB,EACtC,CACA,oBAAAnB,GACE,OAAOzkC,OAAOmiB,OAAOa,KAAKwgB,gBAAgBpf,UAAS,EACrD,CACA,UAAAyC,CAAWC,GACT,MAAM+e,EAAiB7f,GAAYG,kBAAkBnD,KAAK4E,UAC1D,IAAK,MAAMke,KAAiB9lC,OAAO4D,KAAKiiC,GAClC7D,GAAsBroB,IAAImsB,WACrBD,EAAeC,GAU1B,OAPAhf,EAAS,IACJ+e,KACmB,iBAAX/e,GAAuBA,EAASA,EAAS,CAAC,GAEvDA,EAAS9D,KAAK+D,gBAAgBD,GAC9BA,EAAS9D,KAAKgE,kBAAkBF,GAChC9D,KAAKiE,iBAAiBH,GACfA,CACT,CACA,iBAAAE,CAAkBF,GAchB,OAbAA,EAAOic,WAAiC,IAArBjc,EAAOic,UAAsB16B,SAAS6G,KAAOwO,GAAWoJ,EAAOic,WACtD,iBAAjBjc,EAAOmc,QAChBnc,EAAOmc,MAAQ,CACbvQ,KAAM5L,EAAOmc,MACbxQ,KAAM3L,EAAOmc,QAGW,iBAAjBnc,EAAOoc,QAChBpc,EAAOoc,MAAQpc,EAAOoc,MAAMrgC,YAEA,iBAAnBikB,EAAOiZ,UAChBjZ,EAAOiZ,QAAUjZ,EAAOiZ,QAAQl9B,YAE3BikB,CACT,CACA,kBAAAwe,GACE,MAAMxe,EAAS,CAAC,EAChB,IAAK,MAAOhnB,EAAKa,KAAUX,OAAOmkB,QAAQnB,KAAK6E,SACzC7E,KAAKmE,YAAYT,QAAQ5mB,KAASa,IACpCmmB,EAAOhnB,GAAOa,GASlB,OANAmmB,EAAO/J,UAAW,EAClB+J,EAAOlC,QAAU,SAKVkC,CACT,CACA,cAAAud,GACMrhB,KAAKgS,UACPhS,KAAKgS,QAAQhZ,UACbgH,KAAKgS,QAAU,MAEbhS,KAAK2gB,MACP3gB,KAAK2gB,IAAIhnB,SACTqG,KAAK2gB,IAAM,KAEf,CAGA,sBAAOlkB,CAAgBqH,GACrB,OAAO9D,KAAKuH,MAAK,WACf,MAAMld,EAAO+1B,GAAQ9a,oBAAoBtF,KAAM8D,GAC/C,GAAsB,iBAAXA,EAAX,CAGA,QAA4B,IAAjBzZ,EAAKyZ,GACd,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IAJL,CAKF,GACF,EAOF3H,GAAmBikB,IAcnB,MAGM2C,GAAY,IACb3C,GAAQ1c,QACXqZ,QAAS,GACT/0B,OAAQ,CAAC,EAAG,GACZtJ,UAAW,QACXy+B,SAAU,8IACVvb,QAAS,SAELohB,GAAgB,IACjB5C,GAAQzc,YACXoZ,QAAS,kCAOX,MAAMkG,WAAgB7C,GAEpB,kBAAW1c,GACT,OAAOqf,EACT,CACA,sBAAWpf,GACT,OAAOqf,EACT,CACA,eAAWzmB,GACT,MA7BW,SA8Bb,CAGA,cAAA+kB,GACE,OAAOthB,KAAK0hB,aAAe1hB,KAAKkjB,aAClC,CAGA,sBAAAtB,GACE,MAAO,CACL,kBAAkB5hB,KAAK0hB,YACvB,gBAAoB1hB,KAAKkjB,cAE7B,CACA,WAAAA,GACE,OAAOljB,KAAKyd,yBAAyBzd,KAAK6E,QAAQkY,QACpD,CAGA,sBAAOtgB,CAAgBqH,GACrB,OAAO9D,KAAKuH,MAAK,WACf,MAAMld,EAAO44B,GAAQ3d,oBAAoBtF,KAAM8D,GAC/C,GAAsB,iBAAXA,EAAX,CAGA,QAA4B,IAAjBzZ,EAAKyZ,GACd,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IAJL,CAKF,GACF,EAOF3H,GAAmB8mB,IAcnB,MAEME,GAAc,gBAEdC,GAAiB,WAAWD,KAC5BE,GAAc,QAAQF,KACtBG,GAAwB,OAAOH,cAE/BI,GAAsB,SAEtBC,GAAwB,SAExBC,GAAqB,YAGrBC,GAAsB,GAAGD,mBAA+CA,uBAGxEE,GAAY,CAChB37B,OAAQ,KAER47B,WAAY,eACZC,cAAc,EACdt3B,OAAQ,KACRu3B,UAAW,CAAC,GAAK,GAAK,IAElBC,GAAgB,CACpB/7B,OAAQ,gBAER47B,WAAY,SACZC,aAAc,UACdt3B,OAAQ,UACRu3B,UAAW,SAOb,MAAME,WAAkBtf,GACtB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GAGf9D,KAAKikB,aAAe,IAAI/yB,IACxB8O,KAAKkkB,oBAAsB,IAAIhzB,IAC/B8O,KAAKmkB,aAA6D,YAA9Cl/B,iBAAiB+a,KAAK4E,UAAU5Y,UAA0B,KAAOgU,KAAK4E,SAC1F5E,KAAKokB,cAAgB,KACrBpkB,KAAKqkB,UAAY,KACjBrkB,KAAKskB,oBAAsB,CACzBC,gBAAiB,EACjBC,gBAAiB,GAEnBxkB,KAAKykB,SACP,CAGA,kBAAW/gB,GACT,OAAOigB,EACT,CACA,sBAAWhgB,GACT,OAAOogB,EACT,CACA,eAAWxnB,GACT,MAhEW,WAiEb,CAGA,OAAAkoB,GACEzkB,KAAK0kB,mCACL1kB,KAAK2kB,2BACD3kB,KAAKqkB,UACPrkB,KAAKqkB,UAAUO,aAEf5kB,KAAKqkB,UAAYrkB,KAAK6kB,kBAExB,IAAK,MAAMC,KAAW9kB,KAAKkkB,oBAAoB/kB,SAC7Ca,KAAKqkB,UAAUU,QAAQD,EAE3B,CACA,OAAA/f,GACE/E,KAAKqkB,UAAUO,aACfjgB,MAAMI,SACR,CAGA,iBAAAf,CAAkBF,GAShB,OAPAA,EAAOvX,OAASmO,GAAWoJ,EAAOvX,SAAWlH,SAAS6G,KAGtD4X,EAAO8f,WAAa9f,EAAO9b,OAAS,GAAG8b,EAAO9b,oBAAsB8b,EAAO8f,WAC3C,iBAArB9f,EAAOggB,YAChBhgB,EAAOggB,UAAYhgB,EAAOggB,UAAU5hC,MAAM,KAAKY,KAAInF,GAAS4f,OAAOC,WAAW7f,MAEzEmmB,CACT,CACA,wBAAA6gB,GACO3kB,KAAK6E,QAAQgf,eAKlBtjB,GAAaC,IAAIR,KAAK6E,QAAQtY,OAAQ82B,IACtC9iB,GAAac,GAAGrB,KAAK6E,QAAQtY,OAAQ82B,GAAaG,IAAuBpkB,IACvE,MAAM4lB,EAAoBhlB,KAAKkkB,oBAAoB/mC,IAAIiiB,EAAM7S,OAAOtB,MACpE,GAAI+5B,EAAmB,CACrB5lB,EAAMkD,iBACN,MAAM3G,EAAOqE,KAAKmkB,cAAgBvkC,OAC5BmE,EAASihC,EAAkB3gC,UAAY2b,KAAK4E,SAASvgB,UAC3D,GAAIsX,EAAKspB,SAKP,YAJAtpB,EAAKspB,SAAS,CACZtjC,IAAKoC,EACLmhC,SAAU,WAMdvpB,EAAKlQ,UAAY1H,CACnB,KAEJ,CACA,eAAA8gC,GACE,MAAMpjC,EAAU,CACdka,KAAMqE,KAAKmkB,aACXL,UAAW9jB,KAAK6E,QAAQif,UACxBF,WAAY5jB,KAAK6E,QAAQ+e,YAE3B,OAAO,IAAIuB,sBAAqBhkB,GAAWnB,KAAKolB,kBAAkBjkB,IAAU1f,EAC9E,CAGA,iBAAA2jC,CAAkBjkB,GAChB,MAAMkkB,EAAgB/H,GAAStd,KAAKikB,aAAa9mC,IAAI,IAAImgC,EAAM/wB,OAAO4N,MAChEob,EAAW+H,IACftd,KAAKskB,oBAAoBC,gBAAkBjH,EAAM/wB,OAAOlI,UACxD2b,KAAKslB,SAASD,EAAc/H,GAAO,EAE/BkH,GAAmBxkB,KAAKmkB,cAAgB9+B,SAASC,iBAAiBmG,UAClE85B,EAAkBf,GAAmBxkB,KAAKskB,oBAAoBE,gBACpExkB,KAAKskB,oBAAoBE,gBAAkBA,EAC3C,IAAK,MAAMlH,KAASnc,EAAS,CAC3B,IAAKmc,EAAMkI,eAAgB,CACzBxlB,KAAKokB,cAAgB,KACrBpkB,KAAKylB,kBAAkBJ,EAAc/H,IACrC,QACF,CACA,MAAMoI,EAA2BpI,EAAM/wB,OAAOlI,WAAa2b,KAAKskB,oBAAoBC,gBAEpF,GAAIgB,GAAmBG,GAGrB,GAFAnQ,EAAS+H,IAEJkH,EACH,YAMCe,GAAoBG,GACvBnQ,EAAS+H,EAEb,CACF,CACA,gCAAAoH,GACE1kB,KAAKikB,aAAe,IAAI/yB,IACxB8O,KAAKkkB,oBAAsB,IAAIhzB,IAC/B,MAAMy0B,EAAc/f,GAAezT,KAAKqxB,GAAuBxjB,KAAK6E,QAAQtY,QAC5E,IAAK,MAAMq5B,KAAUD,EAAa,CAEhC,IAAKC,EAAO36B,MAAQiQ,GAAW0qB,GAC7B,SAEF,MAAMZ,EAAoBpf,GAAeC,QAAQggB,UAAUD,EAAO36B,MAAO+U,KAAK4E,UAG1EjK,GAAUqqB,KACZhlB,KAAKikB,aAAalyB,IAAI8zB,UAAUD,EAAO36B,MAAO26B,GAC9C5lB,KAAKkkB,oBAAoBnyB,IAAI6zB,EAAO36B,KAAM+5B,GAE9C,CACF,CACA,QAAAM,CAAS/4B,GACHyT,KAAKokB,gBAAkB73B,IAG3ByT,KAAKylB,kBAAkBzlB,KAAK6E,QAAQtY,QACpCyT,KAAKokB,cAAgB73B,EACrBA,EAAO8O,UAAU5E,IAAI8sB,IACrBvjB,KAAK8lB,iBAAiBv5B,GACtBgU,GAAaqB,QAAQ5B,KAAK4E,SAAUwe,GAAgB,CAClDtjB,cAAevT,IAEnB,CACA,gBAAAu5B,CAAiBv5B,GAEf,GAAIA,EAAO8O,UAAU7W,SA9LQ,iBA+L3BohB,GAAeC,QArLc,mBAqLsBtZ,EAAOyO,QAtLtC,cAsLkEK,UAAU5E,IAAI8sB,SAGtG,IAAK,MAAMwC,KAAangB,GAAeI,QAAQzZ,EA9LnB,qBAiM1B,IAAK,MAAMxJ,KAAQ6iB,GAAeM,KAAK6f,EAAWrC,IAChD3gC,EAAKsY,UAAU5E,IAAI8sB,GAGzB,CACA,iBAAAkC,CAAkBhhC,GAChBA,EAAO4W,UAAU1B,OAAO4pB,IACxB,MAAMyC,EAAcpgB,GAAezT,KAAK,GAAGqxB,MAAyBD,KAAuB9+B,GAC3F,IAAK,MAAM9E,KAAQqmC,EACjBrmC,EAAK0b,UAAU1B,OAAO4pB,GAE1B,CAGA,sBAAO9mB,CAAgBqH,GACrB,OAAO9D,KAAKuH,MAAK,WACf,MAAMld,EAAO25B,GAAU1e,oBAAoBtF,KAAM8D,GACjD,GAAsB,iBAAXA,EAAX,CAGA,QAAqB/K,IAAjB1O,EAAKyZ,IAAyBA,EAAOrC,WAAW,MAAmB,gBAAXqC,EAC1D,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IAJL,CAKF,GACF,EAOFvD,GAAac,GAAGzhB,OAAQ0jC,IAAuB,KAC7C,IAAK,MAAM2C,KAAOrgB,GAAezT,KApOT,0BAqOtB6xB,GAAU1e,oBAAoB2gB,EAChC,IAOF9pB,GAAmB6nB,IAcnB,MAEMkC,GAAc,UACdC,GAAe,OAAOD,KACtBE,GAAiB,SAASF,KAC1BG,GAAe,OAAOH,KACtBI,GAAgB,QAAQJ,KACxBK,GAAuB,QAAQL,KAC/BM,GAAgB,UAAUN,KAC1BO,GAAsB,OAAOP,KAC7BQ,GAAiB,YACjBC,GAAkB,aAClBC,GAAe,UACfC,GAAiB,YACjBC,GAAW,OACXC,GAAU,MACVC,GAAoB,SACpBC,GAAoB,OACpBC,GAAoB,OAEpBC,GAA2B,mBAE3BC,GAA+B,QAAQD,MAIvCE,GAAuB,2EACvBC,GAAsB,YAFOF,uBAAiDA,mBAA6CA,OAE/EC,KAC5CE,GAA8B,IAAIP,8BAA6CA,+BAA8CA,4BAMnI,MAAMQ,WAAY9iB,GAChB,WAAAP,CAAY5kB,GACVolB,MAAMplB,GACNygB,KAAKiS,QAAUjS,KAAK4E,SAAS5J,QAdN,uCAelBgF,KAAKiS,UAOVjS,KAAKynB,sBAAsBznB,KAAKiS,QAASjS,KAAK0nB,gBAC9CnnB,GAAac,GAAGrB,KAAK4E,SAAU4hB,IAAepnB,GAASY,KAAK0M,SAAStN,KACvE,CAGA,eAAW7C,GACT,MAnDW,KAoDb,CAGA,IAAAmT,GAEE,MAAMiY,EAAY3nB,KAAK4E,SACvB,GAAI5E,KAAK4nB,cAAcD,GACrB,OAIF,MAAME,EAAS7nB,KAAK8nB,iBACdC,EAAYF,EAAStnB,GAAaqB,QAAQimB,EAAQ1B,GAAc,CACpErmB,cAAe6nB,IACZ,KACapnB,GAAaqB,QAAQ+lB,EAAWtB,GAAc,CAC9DvmB,cAAe+nB,IAEH7lB,kBAAoB+lB,GAAaA,EAAU/lB,mBAGzDhC,KAAKgoB,YAAYH,EAAQF,GACzB3nB,KAAKioB,UAAUN,EAAWE,GAC5B,CAGA,SAAAI,CAAU1oC,EAAS2oC,GACZ3oC,IAGLA,EAAQ8b,UAAU5E,IAAIuwB,IACtBhnB,KAAKioB,UAAUriB,GAAec,uBAAuBnnB,IAcrDygB,KAAKmF,gBAZY,KACsB,QAAjC5lB,EAAQic,aAAa,SAIzBjc,EAAQ4B,gBAAgB,YACxB5B,EAAQ6B,aAAa,iBAAiB,GACtC4e,KAAKmoB,gBAAgB5oC,GAAS,GAC9BghB,GAAaqB,QAAQriB,EAAS+mC,GAAe,CAC3CxmB,cAAeooB,KAPf3oC,EAAQ8b,UAAU5E,IAAIywB,GAQtB,GAE0B3nC,EAASA,EAAQ8b,UAAU7W,SAASyiC,KACpE,CACA,WAAAe,CAAYzoC,EAAS2oC,GACd3oC,IAGLA,EAAQ8b,UAAU1B,OAAOqtB,IACzBznC,EAAQm7B,OACR1a,KAAKgoB,YAAYpiB,GAAec,uBAAuBnnB,IAcvDygB,KAAKmF,gBAZY,KACsB,QAAjC5lB,EAAQic,aAAa,SAIzBjc,EAAQ6B,aAAa,iBAAiB,GACtC7B,EAAQ6B,aAAa,WAAY,MACjC4e,KAAKmoB,gBAAgB5oC,GAAS,GAC9BghB,GAAaqB,QAAQriB,EAAS6mC,GAAgB,CAC5CtmB,cAAeooB,KAPf3oC,EAAQ8b,UAAU1B,OAAOutB,GAQzB,GAE0B3nC,EAASA,EAAQ8b,UAAU7W,SAASyiC,KACpE,CACA,QAAAva,CAAStN,GACP,IAAK,CAACsnB,GAAgBC,GAAiBC,GAAcC,GAAgBC,GAAUC,IAAS3lB,SAAShC,EAAMtiB,KACrG,OAEFsiB,EAAMuU,kBACNvU,EAAMkD,iBACN,MAAMwD,EAAW9F,KAAK0nB,eAAevhC,QAAO5G,IAAY2b,GAAW3b,KACnE,IAAI6oC,EACJ,GAAI,CAACtB,GAAUC,IAAS3lB,SAAShC,EAAMtiB,KACrCsrC,EAAoBtiB,EAAS1G,EAAMtiB,MAAQgqC,GAAW,EAAIhhB,EAASpV,OAAS,OACvE,CACL,MAAM2c,EAAS,CAACsZ,GAAiBE,IAAgBzlB,SAAShC,EAAMtiB,KAChEsrC,EAAoBtqB,GAAqBgI,EAAU1G,EAAM7S,OAAQ8gB,GAAQ,EAC3E,CACI+a,IACFA,EAAkB9V,MAAM,CACtB+V,eAAe,IAEjBb,GAAIliB,oBAAoB8iB,GAAmB1Y,OAE/C,CACA,YAAAgY,GAEE,OAAO9hB,GAAezT,KAAKm1B,GAAqBtnB,KAAKiS,QACvD,CACA,cAAA6V,GACE,OAAO9nB,KAAK0nB,eAAev1B,MAAKzN,GAASsb,KAAK4nB,cAAcljC,MAAW,IACzE,CACA,qBAAA+iC,CAAsBhjC,EAAQqhB,GAC5B9F,KAAKsoB,yBAAyB7jC,EAAQ,OAAQ,WAC9C,IAAK,MAAMC,KAASohB,EAClB9F,KAAKuoB,6BAA6B7jC,EAEtC,CACA,4BAAA6jC,CAA6B7jC,GAC3BA,EAAQsb,KAAKwoB,iBAAiB9jC,GAC9B,MAAM+jC,EAAWzoB,KAAK4nB,cAAcljC,GAC9BgkC,EAAY1oB,KAAK2oB,iBAAiBjkC,GACxCA,EAAMtD,aAAa,gBAAiBqnC,GAChCC,IAAchkC,GAChBsb,KAAKsoB,yBAAyBI,EAAW,OAAQ,gBAE9CD,GACH/jC,EAAMtD,aAAa,WAAY,MAEjC4e,KAAKsoB,yBAAyB5jC,EAAO,OAAQ,OAG7Csb,KAAK4oB,mCAAmClkC,EAC1C,CACA,kCAAAkkC,CAAmClkC,GACjC,MAAM6H,EAASqZ,GAAec,uBAAuBhiB,GAChD6H,IAGLyT,KAAKsoB,yBAAyB/7B,EAAQ,OAAQ,YAC1C7H,EAAMyV,IACR6F,KAAKsoB,yBAAyB/7B,EAAQ,kBAAmB,GAAG7H,EAAMyV,MAEtE,CACA,eAAAguB,CAAgB5oC,EAASspC,GACvB,MAAMH,EAAY1oB,KAAK2oB,iBAAiBppC,GACxC,IAAKmpC,EAAUrtB,UAAU7W,SApKN,YAqKjB,OAEF,MAAMkjB,EAAS,CAAC3N,EAAUia,KACxB,MAAMz0B,EAAUqmB,GAAeC,QAAQ9L,EAAU2uB,GAC7CnpC,GACFA,EAAQ8b,UAAUqM,OAAOsM,EAAW6U,EACtC,EAEFnhB,EAAOyf,GAA0BH,IACjCtf,EA5K2B,iBA4KIwf,IAC/BwB,EAAUtnC,aAAa,gBAAiBynC,EAC1C,CACA,wBAAAP,CAAyB/oC,EAASwC,EAAWpE,GACtC4B,EAAQgc,aAAaxZ,IACxBxC,EAAQ6B,aAAaW,EAAWpE,EAEpC,CACA,aAAAiqC,CAAczY,GACZ,OAAOA,EAAK9T,UAAU7W,SAASwiC,GACjC,CAGA,gBAAAwB,CAAiBrZ,GACf,OAAOA,EAAKpJ,QAAQuhB,IAAuBnY,EAAOvJ,GAAeC,QAAQyhB,GAAqBnY,EAChG,CAGA,gBAAAwZ,CAAiBxZ,GACf,OAAOA,EAAKnU,QA5LO,gCA4LoBmU,CACzC,CAGA,sBAAO1S,CAAgBqH,GACrB,OAAO9D,KAAKuH,MAAK,WACf,MAAMld,EAAOm9B,GAAIliB,oBAAoBtF,MACrC,GAAsB,iBAAX8D,EAAX,CAGA,QAAqB/K,IAAjB1O,EAAKyZ,IAAyBA,EAAOrC,WAAW,MAAmB,gBAAXqC,EAC1D,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IAJL,CAKF,GACF,EAOFvD,GAAac,GAAGhc,SAAUkhC,GAAsBc,IAAsB,SAAUjoB,GAC1E,CAAC,IAAK,QAAQgC,SAASpB,KAAKgH,UAC9B5H,EAAMkD,iBAEJpH,GAAW8E,OAGfwnB,GAAIliB,oBAAoBtF,MAAM0P,MAChC,IAKAnP,GAAac,GAAGzhB,OAAQ6mC,IAAqB,KAC3C,IAAK,MAAMlnC,KAAWqmB,GAAezT,KAAKo1B,IACxCC,GAAIliB,oBAAoB/lB,EAC1B,IAMF4c,GAAmBqrB,IAcnB,MAEMxiB,GAAY,YACZ8jB,GAAkB,YAAY9jB,KAC9B+jB,GAAiB,WAAW/jB,KAC5BgkB,GAAgB,UAAUhkB,KAC1BikB,GAAiB,WAAWjkB,KAC5BkkB,GAAa,OAAOlkB,KACpBmkB,GAAe,SAASnkB,KACxBokB,GAAa,OAAOpkB,KACpBqkB,GAAc,QAAQrkB,KAEtBskB,GAAkB,OAClBC,GAAkB,OAClBC,GAAqB,UACrB7lB,GAAc,CAClBmc,UAAW,UACX2J,SAAU,UACVxJ,MAAO,UAEHvc,GAAU,CACdoc,WAAW,EACX2J,UAAU,EACVxJ,MAAO,KAOT,MAAMyJ,WAAchlB,GAClB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GACf9D,KAAKsgB,SAAW,KAChBtgB,KAAK2pB,sBAAuB,EAC5B3pB,KAAK4pB,yBAA0B,EAC/B5pB,KAAK4gB,eACP,CAGA,kBAAWld,GACT,OAAOA,EACT,CACA,sBAAWC,GACT,OAAOA,EACT,CACA,eAAWpH,GACT,MA/CS,OAgDX,CAGA,IAAAmT,GACoBnP,GAAaqB,QAAQ5B,KAAK4E,SAAUwkB,IACxCpnB,mBAGdhC,KAAK6pB,gBACD7pB,KAAK6E,QAAQib,WACf9f,KAAK4E,SAASvJ,UAAU5E,IA/CN,QAsDpBuJ,KAAK4E,SAASvJ,UAAU1B,OAAO2vB,IAC/BztB,GAAOmE,KAAK4E,UACZ5E,KAAK4E,SAASvJ,UAAU5E,IAAI8yB,GAAiBC,IAC7CxpB,KAAKmF,gBARY,KACfnF,KAAK4E,SAASvJ,UAAU1B,OAAO6vB,IAC/BjpB,GAAaqB,QAAQ5B,KAAK4E,SAAUykB,IACpCrpB,KAAK8pB,oBAAoB,GAKG9pB,KAAK4E,SAAU5E,KAAK6E,QAAQib,WAC5D,CACA,IAAArQ,GACOzP,KAAK+pB,YAGQxpB,GAAaqB,QAAQ5B,KAAK4E,SAAUskB,IACxClnB,mBAQdhC,KAAK4E,SAASvJ,UAAU5E,IAAI+yB,IAC5BxpB,KAAKmF,gBANY,KACfnF,KAAK4E,SAASvJ,UAAU5E,IAAI6yB,IAC5BtpB,KAAK4E,SAASvJ,UAAU1B,OAAO6vB,GAAoBD,IACnDhpB,GAAaqB,QAAQ5B,KAAK4E,SAAUukB,GAAa,GAGrBnpB,KAAK4E,SAAU5E,KAAK6E,QAAQib,YAC5D,CACA,OAAA/a,GACE/E,KAAK6pB,gBACD7pB,KAAK+pB,WACP/pB,KAAK4E,SAASvJ,UAAU1B,OAAO4vB,IAEjC5kB,MAAMI,SACR,CACA,OAAAglB,GACE,OAAO/pB,KAAK4E,SAASvJ,UAAU7W,SAAS+kC,GAC1C,CAIA,kBAAAO,GACO9pB,KAAK6E,QAAQ4kB,WAGdzpB,KAAK2pB,sBAAwB3pB,KAAK4pB,0BAGtC5pB,KAAKsgB,SAAWziB,YAAW,KACzBmC,KAAKyP,MAAM,GACVzP,KAAK6E,QAAQob,QAClB,CACA,cAAA+J,CAAe5qB,EAAO6qB,GACpB,OAAQ7qB,EAAMqB,MACZ,IAAK,YACL,IAAK,WAEDT,KAAK2pB,qBAAuBM,EAC5B,MAEJ,IAAK,UACL,IAAK,WAEDjqB,KAAK4pB,wBAA0BK,EAIrC,GAAIA,EAEF,YADAjqB,KAAK6pB,gBAGP,MAAMvc,EAAclO,EAAMU,cACtBE,KAAK4E,WAAa0I,GAAetN,KAAK4E,SAASpgB,SAAS8oB,IAG5DtN,KAAK8pB,oBACP,CACA,aAAAlJ,GACErgB,GAAac,GAAGrB,KAAK4E,SAAUkkB,IAAiB1pB,GAASY,KAAKgqB,eAAe5qB,GAAO,KACpFmB,GAAac,GAAGrB,KAAK4E,SAAUmkB,IAAgB3pB,GAASY,KAAKgqB,eAAe5qB,GAAO,KACnFmB,GAAac,GAAGrB,KAAK4E,SAAUokB,IAAe5pB,GAASY,KAAKgqB,eAAe5qB,GAAO,KAClFmB,GAAac,GAAGrB,KAAK4E,SAAUqkB,IAAgB7pB,GAASY,KAAKgqB,eAAe5qB,GAAO,IACrF,CACA,aAAAyqB,GACE9c,aAAa/M,KAAKsgB,UAClBtgB,KAAKsgB,SAAW,IAClB,CAGA,sBAAO7jB,CAAgBqH,GACrB,OAAO9D,KAAKuH,MAAK,WACf,MAAMld,EAAOq/B,GAAMpkB,oBAAoBtF,KAAM8D,GAC7C,GAAsB,iBAAXA,EAAqB,CAC9B,QAA4B,IAAjBzZ,EAAKyZ,GACd,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,GAAQ9D,KACf,CACF,GACF,ECr0IK,SAASkqB,GAAc7tB,GACD,WAAvBhX,SAASuX,WAAyBP,IACjChX,SAASyF,iBAAiB,mBAAoBuR,EACrD,CDy0IAuK,GAAqB8iB,IAMrBvtB,GAAmButB,IEpyInBQ,IAzCA,WAC2B,GAAG93B,MAAM5U,KAChC6H,SAAS+a,iBAAiB,+BAETtd,KAAI,SAAUqnC,GAC/B,OAAO,IAAI,GAAkBA,EAAkB,CAC7ClK,MAAO,CAAEvQ,KAAM,IAAKD,KAAM,MAE9B,GACF,IAiCAya,IA5BA,WACY7kC,SAAS68B,eAAe,mBAC9Bp3B,iBAAiB,SAAS,WAC5BzF,SAAS6G,KAAKT,UAAY,EAC1BpG,SAASC,gBAAgBmG,UAAY,CACvC,GACF,IAuBAy+B,IArBA,WACE,IAAIE,EAAM/kC,SAAS68B,eAAe,mBAC9BmI,EAAShlC,SACVilC,uBAAuB,aAAa,GACpChnC,wBACH1D,OAAOkL,iBAAiB,UAAU,WAC5BkV,KAAKuqB,UAAYvqB,KAAKwqB,SAAWxqB,KAAKwqB,QAAUH,EAAOzsC,OACzDwsC,EAAIrpC,MAAM6wB,QAAU,QAEpBwY,EAAIrpC,MAAM6wB,QAAU,OAEtB5R,KAAKuqB,UAAYvqB,KAAKwqB,OACxB,GACF,IAUA5qC,OAAO6qC,UAAY","sources":["webpack://pydata_sphinx_theme/webpack/bootstrap","webpack://pydata_sphinx_theme/webpack/runtime/define property getters","webpack://pydata_sphinx_theme/webpack/runtime/hasOwnProperty shorthand","webpack://pydata_sphinx_theme/webpack/runtime/make namespace object","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/enums.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getNodeName.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getWindow.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/instanceOf.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/applyStyles.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getBasePlacement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/math.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/userAgent.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/isLayoutViewport.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getBoundingClientRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getLayoutRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/contains.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getComputedStyle.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/isTableElement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getDocumentElement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getParentNode.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getOffsetParent.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getMainAxisFromPlacement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/within.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/mergePaddingObject.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getFreshSideObject.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/expandToHashMap.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/arrow.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getVariation.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/computeStyles.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/eventListeners.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getOppositePlacement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getOppositeVariationPlacement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getWindowScroll.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getWindowScrollBarX.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/isScrollParent.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getScrollParent.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/listScrollParents.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/rectToClientRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getClippingRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getViewportRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getDocumentRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/computeOffsets.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/detectOverflow.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/flip.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/computeAutoPlacement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/hide.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/offset.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/popperOffsets.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/preventOverflow.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getAltAxis.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getCompositeRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getNodeScroll.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getHTMLElementScroll.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/orderModifiers.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/createPopper.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/debounce.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/mergeByName.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/popper.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/popper-lite.js","webpack://pydata_sphinx_theme/./node_modules/bootstrap/dist/js/bootstrap.esm.js","webpack://pydata_sphinx_theme/./src/pydata_sphinx_theme/assets/scripts/mixin.js","webpack://pydata_sphinx_theme/./src/pydata_sphinx_theme/assets/scripts/bootstrap.js"],"sourcesContent":["// The require scope\nvar __webpack_require__ = {};\n\n","// define getter functions for harmony exports\n__webpack_require__.d = (exports, definition) => {\n\tfor(var key in definition) {\n\t\tif(__webpack_require__.o(definition, key) && !__webpack_require__.o(exports, key)) {\n\t\t\tObject.defineProperty(exports, key, { enumerable: true, get: definition[key] });\n\t\t}\n\t}\n};","__webpack_require__.o = (obj, prop) => (Object.prototype.hasOwnProperty.call(obj, prop))","// define __esModule on exports\n__webpack_require__.r = (exports) => {\n\tif(typeof Symbol !== 'undefined' && Symbol.toStringTag) {\n\t\tObject.defineProperty(exports, Symbol.toStringTag, { value: 'Module' });\n\t}\n\tObject.defineProperty(exports, '__esModule', { value: true });\n};","export var top = 'top';\nexport var bottom = 'bottom';\nexport var right = 'right';\nexport var left = 'left';\nexport var auto = 'auto';\nexport var basePlacements = [top, bottom, right, left];\nexport var start = 'start';\nexport var end = 'end';\nexport var clippingParents = 'clippingParents';\nexport var viewport = 'viewport';\nexport var popper = 'popper';\nexport var reference = 'reference';\nexport var variationPlacements = /*#__PURE__*/basePlacements.reduce(function (acc, placement) {\n return acc.concat([placement + \"-\" + start, placement + \"-\" + end]);\n}, []);\nexport var placements = /*#__PURE__*/[].concat(basePlacements, [auto]).reduce(function (acc, placement) {\n return acc.concat([placement, placement + \"-\" + start, placement + \"-\" + end]);\n}, []); // modifiers that need to read the DOM\n\nexport var beforeRead = 'beforeRead';\nexport var read = 'read';\nexport var afterRead = 'afterRead'; // pure-logic modifiers\n\nexport var beforeMain = 'beforeMain';\nexport var main = 'main';\nexport var afterMain = 'afterMain'; // modifier with the purpose to write to the DOM (or write into a framework state)\n\nexport var beforeWrite = 'beforeWrite';\nexport var write = 'write';\nexport var afterWrite = 'afterWrite';\nexport var modifierPhases = [beforeRead, read, afterRead, beforeMain, main, afterMain, beforeWrite, write, afterWrite];","export default function getNodeName(element) {\n return element ? (element.nodeName || '').toLowerCase() : null;\n}","export default function getWindow(node) {\n if (node == null) {\n return window;\n }\n\n if (node.toString() !== '[object Window]') {\n var ownerDocument = node.ownerDocument;\n return ownerDocument ? ownerDocument.defaultView || window : window;\n }\n\n return node;\n}","import getWindow from \"./getWindow.js\";\n\nfunction isElement(node) {\n var OwnElement = getWindow(node).Element;\n return node instanceof OwnElement || node instanceof Element;\n}\n\nfunction isHTMLElement(node) {\n var OwnElement = getWindow(node).HTMLElement;\n return node instanceof OwnElement || node instanceof HTMLElement;\n}\n\nfunction isShadowRoot(node) {\n // IE 11 has no ShadowRoot\n if (typeof ShadowRoot === 'undefined') {\n return false;\n }\n\n var OwnElement = getWindow(node).ShadowRoot;\n return node instanceof OwnElement || node instanceof ShadowRoot;\n}\n\nexport { isElement, isHTMLElement, isShadowRoot };","import getNodeName from \"../dom-utils/getNodeName.js\";\nimport { isHTMLElement } from \"../dom-utils/instanceOf.js\"; // This modifier takes the styles prepared by the `computeStyles` modifier\n// and applies them to the HTMLElements such as popper and arrow\n\nfunction applyStyles(_ref) {\n var state = _ref.state;\n Object.keys(state.elements).forEach(function (name) {\n var style = state.styles[name] || {};\n var attributes = state.attributes[name] || {};\n var element = state.elements[name]; // arrow is optional + virtual elements\n\n if (!isHTMLElement(element) || !getNodeName(element)) {\n return;\n } // Flow doesn't support to extend this property, but it's the most\n // effective way to apply styles to an HTMLElement\n // $FlowFixMe[cannot-write]\n\n\n Object.assign(element.style, style);\n Object.keys(attributes).forEach(function (name) {\n var value = attributes[name];\n\n if (value === false) {\n element.removeAttribute(name);\n } else {\n element.setAttribute(name, value === true ? '' : value);\n }\n });\n });\n}\n\nfunction effect(_ref2) {\n var state = _ref2.state;\n var initialStyles = {\n popper: {\n position: state.options.strategy,\n left: '0',\n top: '0',\n margin: '0'\n },\n arrow: {\n position: 'absolute'\n },\n reference: {}\n };\n Object.assign(state.elements.popper.style, initialStyles.popper);\n state.styles = initialStyles;\n\n if (state.elements.arrow) {\n Object.assign(state.elements.arrow.style, initialStyles.arrow);\n }\n\n return function () {\n Object.keys(state.elements).forEach(function (name) {\n var element = state.elements[name];\n var attributes = state.attributes[name] || {};\n var styleProperties = Object.keys(state.styles.hasOwnProperty(name) ? state.styles[name] : initialStyles[name]); // Set all values to an empty string to unset them\n\n var style = styleProperties.reduce(function (style, property) {\n style[property] = '';\n return style;\n }, {}); // arrow is optional + virtual elements\n\n if (!isHTMLElement(element) || !getNodeName(element)) {\n return;\n }\n\n Object.assign(element.style, style);\n Object.keys(attributes).forEach(function (attribute) {\n element.removeAttribute(attribute);\n });\n });\n };\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'applyStyles',\n enabled: true,\n phase: 'write',\n fn: applyStyles,\n effect: effect,\n requires: ['computeStyles']\n};","import { auto } from \"../enums.js\";\nexport default function getBasePlacement(placement) {\n return placement.split('-')[0];\n}","export var max = Math.max;\nexport var min = Math.min;\nexport var round = Math.round;","export default function getUAString() {\n var uaData = navigator.userAgentData;\n\n if (uaData != null && uaData.brands && Array.isArray(uaData.brands)) {\n return uaData.brands.map(function (item) {\n return item.brand + \"/\" + item.version;\n }).join(' ');\n }\n\n return navigator.userAgent;\n}","import getUAString from \"../utils/userAgent.js\";\nexport default function isLayoutViewport() {\n return !/^((?!chrome|android).)*safari/i.test(getUAString());\n}","import { isElement, isHTMLElement } from \"./instanceOf.js\";\nimport { round } from \"../utils/math.js\";\nimport getWindow from \"./getWindow.js\";\nimport isLayoutViewport from \"./isLayoutViewport.js\";\nexport default function getBoundingClientRect(element, includeScale, isFixedStrategy) {\n if (includeScale === void 0) {\n includeScale = false;\n }\n\n if (isFixedStrategy === void 0) {\n isFixedStrategy = false;\n }\n\n var clientRect = element.getBoundingClientRect();\n var scaleX = 1;\n var scaleY = 1;\n\n if (includeScale && isHTMLElement(element)) {\n scaleX = element.offsetWidth > 0 ? round(clientRect.width) / element.offsetWidth || 1 : 1;\n scaleY = element.offsetHeight > 0 ? round(clientRect.height) / element.offsetHeight || 1 : 1;\n }\n\n var _ref = isElement(element) ? getWindow(element) : window,\n visualViewport = _ref.visualViewport;\n\n var addVisualOffsets = !isLayoutViewport() && isFixedStrategy;\n var x = (clientRect.left + (addVisualOffsets && visualViewport ? visualViewport.offsetLeft : 0)) / scaleX;\n var y = (clientRect.top + (addVisualOffsets && visualViewport ? visualViewport.offsetTop : 0)) / scaleY;\n var width = clientRect.width / scaleX;\n var height = clientRect.height / scaleY;\n return {\n width: width,\n height: height,\n top: y,\n right: x + width,\n bottom: y + height,\n left: x,\n x: x,\n y: y\n };\n}","import getBoundingClientRect from \"./getBoundingClientRect.js\"; // Returns the layout rect of an element relative to its offsetParent. Layout\n// means it doesn't take into account transforms.\n\nexport default function getLayoutRect(element) {\n var clientRect = getBoundingClientRect(element); // Use the clientRect sizes if it's not been transformed.\n // Fixes https://github.com/popperjs/popper-core/issues/1223\n\n var width = element.offsetWidth;\n var height = element.offsetHeight;\n\n if (Math.abs(clientRect.width - width) <= 1) {\n width = clientRect.width;\n }\n\n if (Math.abs(clientRect.height - height) <= 1) {\n height = clientRect.height;\n }\n\n return {\n x: element.offsetLeft,\n y: element.offsetTop,\n width: width,\n height: height\n };\n}","import { isShadowRoot } from \"./instanceOf.js\";\nexport default function contains(parent, child) {\n var rootNode = child.getRootNode && child.getRootNode(); // First, attempt with faster native method\n\n if (parent.contains(child)) {\n return true;\n } // then fallback to custom implementation with Shadow DOM support\n else if (rootNode && isShadowRoot(rootNode)) {\n var next = child;\n\n do {\n if (next && parent.isSameNode(next)) {\n return true;\n } // $FlowFixMe[prop-missing]: need a better way to handle this...\n\n\n next = next.parentNode || next.host;\n } while (next);\n } // Give up, the result is false\n\n\n return false;\n}","import getWindow from \"./getWindow.js\";\nexport default function getComputedStyle(element) {\n return getWindow(element).getComputedStyle(element);\n}","import getNodeName from \"./getNodeName.js\";\nexport default function isTableElement(element) {\n return ['table', 'td', 'th'].indexOf(getNodeName(element)) >= 0;\n}","import { isElement } from \"./instanceOf.js\";\nexport default function getDocumentElement(element) {\n // $FlowFixMe[incompatible-return]: assume body is always available\n return ((isElement(element) ? element.ownerDocument : // $FlowFixMe[prop-missing]\n element.document) || window.document).documentElement;\n}","import getNodeName from \"./getNodeName.js\";\nimport getDocumentElement from \"./getDocumentElement.js\";\nimport { isShadowRoot } from \"./instanceOf.js\";\nexport default function getParentNode(element) {\n if (getNodeName(element) === 'html') {\n return element;\n }\n\n return (// this is a quicker (but less type safe) way to save quite some bytes from the bundle\n // $FlowFixMe[incompatible-return]\n // $FlowFixMe[prop-missing]\n element.assignedSlot || // step into the shadow DOM of the parent of a slotted node\n element.parentNode || ( // DOM Element detected\n isShadowRoot(element) ? element.host : null) || // ShadowRoot detected\n // $FlowFixMe[incompatible-call]: HTMLElement is a Node\n getDocumentElement(element) // fallback\n\n );\n}","import getWindow from \"./getWindow.js\";\nimport getNodeName from \"./getNodeName.js\";\nimport getComputedStyle from \"./getComputedStyle.js\";\nimport { isHTMLElement, isShadowRoot } from \"./instanceOf.js\";\nimport isTableElement from \"./isTableElement.js\";\nimport getParentNode from \"./getParentNode.js\";\nimport getUAString from \"../utils/userAgent.js\";\n\nfunction getTrueOffsetParent(element) {\n if (!isHTMLElement(element) || // https://github.com/popperjs/popper-core/issues/837\n getComputedStyle(element).position === 'fixed') {\n return null;\n }\n\n return element.offsetParent;\n} // `.offsetParent` reports `null` for fixed elements, while absolute elements\n// return the containing block\n\n\nfunction getContainingBlock(element) {\n var isFirefox = /firefox/i.test(getUAString());\n var isIE = /Trident/i.test(getUAString());\n\n if (isIE && isHTMLElement(element)) {\n // In IE 9, 10 and 11 fixed elements containing block is always established by the viewport\n var elementCss = getComputedStyle(element);\n\n if (elementCss.position === 'fixed') {\n return null;\n }\n }\n\n var currentNode = getParentNode(element);\n\n if (isShadowRoot(currentNode)) {\n currentNode = currentNode.host;\n }\n\n while (isHTMLElement(currentNode) && ['html', 'body'].indexOf(getNodeName(currentNode)) < 0) {\n var css = getComputedStyle(currentNode); // This is non-exhaustive but covers the most common CSS properties that\n // create a containing block.\n // https://developer.mozilla.org/en-US/docs/Web/CSS/Containing_block#identifying_the_containing_block\n\n if (css.transform !== 'none' || css.perspective !== 'none' || css.contain === 'paint' || ['transform', 'perspective'].indexOf(css.willChange) !== -1 || isFirefox && css.willChange === 'filter' || isFirefox && css.filter && css.filter !== 'none') {\n return currentNode;\n } else {\n currentNode = currentNode.parentNode;\n }\n }\n\n return null;\n} // Gets the closest ancestor positioned element. Handles some edge cases,\n// such as table ancestors and cross browser bugs.\n\n\nexport default function getOffsetParent(element) {\n var window = getWindow(element);\n var offsetParent = getTrueOffsetParent(element);\n\n while (offsetParent && isTableElement(offsetParent) && getComputedStyle(offsetParent).position === 'static') {\n offsetParent = getTrueOffsetParent(offsetParent);\n }\n\n if (offsetParent && (getNodeName(offsetParent) === 'html' || getNodeName(offsetParent) === 'body' && getComputedStyle(offsetParent).position === 'static')) {\n return window;\n }\n\n return offsetParent || getContainingBlock(element) || window;\n}","export default function getMainAxisFromPlacement(placement) {\n return ['top', 'bottom'].indexOf(placement) >= 0 ? 'x' : 'y';\n}","import { max as mathMax, min as mathMin } from \"./math.js\";\nexport function within(min, value, max) {\n return mathMax(min, mathMin(value, max));\n}\nexport function withinMaxClamp(min, value, max) {\n var v = within(min, value, max);\n return v > max ? max : v;\n}","import getFreshSideObject from \"./getFreshSideObject.js\";\nexport default function mergePaddingObject(paddingObject) {\n return Object.assign({}, getFreshSideObject(), paddingObject);\n}","export default function getFreshSideObject() {\n return {\n top: 0,\n right: 0,\n bottom: 0,\n left: 0\n };\n}","export default function expandToHashMap(value, keys) {\n return keys.reduce(function (hashMap, key) {\n hashMap[key] = value;\n return hashMap;\n }, {});\n}","import getBasePlacement from \"../utils/getBasePlacement.js\";\nimport getLayoutRect from \"../dom-utils/getLayoutRect.js\";\nimport contains from \"../dom-utils/contains.js\";\nimport getOffsetParent from \"../dom-utils/getOffsetParent.js\";\nimport getMainAxisFromPlacement from \"../utils/getMainAxisFromPlacement.js\";\nimport { within } from \"../utils/within.js\";\nimport mergePaddingObject from \"../utils/mergePaddingObject.js\";\nimport expandToHashMap from \"../utils/expandToHashMap.js\";\nimport { left, right, basePlacements, top, bottom } from \"../enums.js\"; // eslint-disable-next-line import/no-unused-modules\n\nvar toPaddingObject = function toPaddingObject(padding, state) {\n padding = typeof padding === 'function' ? padding(Object.assign({}, state.rects, {\n placement: state.placement\n })) : padding;\n return mergePaddingObject(typeof padding !== 'number' ? padding : expandToHashMap(padding, basePlacements));\n};\n\nfunction arrow(_ref) {\n var _state$modifiersData$;\n\n var state = _ref.state,\n name = _ref.name,\n options = _ref.options;\n var arrowElement = state.elements.arrow;\n var popperOffsets = state.modifiersData.popperOffsets;\n var basePlacement = getBasePlacement(state.placement);\n var axis = getMainAxisFromPlacement(basePlacement);\n var isVertical = [left, right].indexOf(basePlacement) >= 0;\n var len = isVertical ? 'height' : 'width';\n\n if (!arrowElement || !popperOffsets) {\n return;\n }\n\n var paddingObject = toPaddingObject(options.padding, state);\n var arrowRect = getLayoutRect(arrowElement);\n var minProp = axis === 'y' ? top : left;\n var maxProp = axis === 'y' ? bottom : right;\n var endDiff = state.rects.reference[len] + state.rects.reference[axis] - popperOffsets[axis] - state.rects.popper[len];\n var startDiff = popperOffsets[axis] - state.rects.reference[axis];\n var arrowOffsetParent = getOffsetParent(arrowElement);\n var clientSize = arrowOffsetParent ? axis === 'y' ? arrowOffsetParent.clientHeight || 0 : arrowOffsetParent.clientWidth || 0 : 0;\n var centerToReference = endDiff / 2 - startDiff / 2; // Make sure the arrow doesn't overflow the popper if the center point is\n // outside of the popper bounds\n\n var min = paddingObject[minProp];\n var max = clientSize - arrowRect[len] - paddingObject[maxProp];\n var center = clientSize / 2 - arrowRect[len] / 2 + centerToReference;\n var offset = within(min, center, max); // Prevents breaking syntax highlighting...\n\n var axisProp = axis;\n state.modifiersData[name] = (_state$modifiersData$ = {}, _state$modifiersData$[axisProp] = offset, _state$modifiersData$.centerOffset = offset - center, _state$modifiersData$);\n}\n\nfunction effect(_ref2) {\n var state = _ref2.state,\n options = _ref2.options;\n var _options$element = options.element,\n arrowElement = _options$element === void 0 ? '[data-popper-arrow]' : _options$element;\n\n if (arrowElement == null) {\n return;\n } // CSS selector\n\n\n if (typeof arrowElement === 'string') {\n arrowElement = state.elements.popper.querySelector(arrowElement);\n\n if (!arrowElement) {\n return;\n }\n }\n\n if (!contains(state.elements.popper, arrowElement)) {\n return;\n }\n\n state.elements.arrow = arrowElement;\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'arrow',\n enabled: true,\n phase: 'main',\n fn: arrow,\n effect: effect,\n requires: ['popperOffsets'],\n requiresIfExists: ['preventOverflow']\n};","export default function getVariation(placement) {\n return placement.split('-')[1];\n}","import { top, left, right, bottom, end } from \"../enums.js\";\nimport getOffsetParent from \"../dom-utils/getOffsetParent.js\";\nimport getWindow from \"../dom-utils/getWindow.js\";\nimport getDocumentElement from \"../dom-utils/getDocumentElement.js\";\nimport getComputedStyle from \"../dom-utils/getComputedStyle.js\";\nimport getBasePlacement from \"../utils/getBasePlacement.js\";\nimport getVariation from \"../utils/getVariation.js\";\nimport { round } from \"../utils/math.js\"; // eslint-disable-next-line import/no-unused-modules\n\nvar unsetSides = {\n top: 'auto',\n right: 'auto',\n bottom: 'auto',\n left: 'auto'\n}; // Round the offsets to the nearest suitable subpixel based on the DPR.\n// Zooming can change the DPR, but it seems to report a value that will\n// cleanly divide the values into the appropriate subpixels.\n\nfunction roundOffsetsByDPR(_ref, win) {\n var x = _ref.x,\n y = _ref.y;\n var dpr = win.devicePixelRatio || 1;\n return {\n x: round(x * dpr) / dpr || 0,\n y: round(y * dpr) / dpr || 0\n };\n}\n\nexport function mapToStyles(_ref2) {\n var _Object$assign2;\n\n var popper = _ref2.popper,\n popperRect = _ref2.popperRect,\n placement = _ref2.placement,\n variation = _ref2.variation,\n offsets = _ref2.offsets,\n position = _ref2.position,\n gpuAcceleration = _ref2.gpuAcceleration,\n adaptive = _ref2.adaptive,\n roundOffsets = _ref2.roundOffsets,\n isFixed = _ref2.isFixed;\n var _offsets$x = offsets.x,\n x = _offsets$x === void 0 ? 0 : _offsets$x,\n _offsets$y = offsets.y,\n y = _offsets$y === void 0 ? 0 : _offsets$y;\n\n var _ref3 = typeof roundOffsets === 'function' ? roundOffsets({\n x: x,\n y: y\n }) : {\n x: x,\n y: y\n };\n\n x = _ref3.x;\n y = _ref3.y;\n var hasX = offsets.hasOwnProperty('x');\n var hasY = offsets.hasOwnProperty('y');\n var sideX = left;\n var sideY = top;\n var win = window;\n\n if (adaptive) {\n var offsetParent = getOffsetParent(popper);\n var heightProp = 'clientHeight';\n var widthProp = 'clientWidth';\n\n if (offsetParent === getWindow(popper)) {\n offsetParent = getDocumentElement(popper);\n\n if (getComputedStyle(offsetParent).position !== 'static' && position === 'absolute') {\n heightProp = 'scrollHeight';\n widthProp = 'scrollWidth';\n }\n } // $FlowFixMe[incompatible-cast]: force type refinement, we compare offsetParent with window above, but Flow doesn't detect it\n\n\n offsetParent = offsetParent;\n\n if (placement === top || (placement === left || placement === right) && variation === end) {\n sideY = bottom;\n var offsetY = isFixed && offsetParent === win && win.visualViewport ? win.visualViewport.height : // $FlowFixMe[prop-missing]\n offsetParent[heightProp];\n y -= offsetY - popperRect.height;\n y *= gpuAcceleration ? 1 : -1;\n }\n\n if (placement === left || (placement === top || placement === bottom) && variation === end) {\n sideX = right;\n var offsetX = isFixed && offsetParent === win && win.visualViewport ? win.visualViewport.width : // $FlowFixMe[prop-missing]\n offsetParent[widthProp];\n x -= offsetX - popperRect.width;\n x *= gpuAcceleration ? 1 : -1;\n }\n }\n\n var commonStyles = Object.assign({\n position: position\n }, adaptive && unsetSides);\n\n var _ref4 = roundOffsets === true ? roundOffsetsByDPR({\n x: x,\n y: y\n }, getWindow(popper)) : {\n x: x,\n y: y\n };\n\n x = _ref4.x;\n y = _ref4.y;\n\n if (gpuAcceleration) {\n var _Object$assign;\n\n return Object.assign({}, commonStyles, (_Object$assign = {}, _Object$assign[sideY] = hasY ? '0' : '', _Object$assign[sideX] = hasX ? '0' : '', _Object$assign.transform = (win.devicePixelRatio || 1) <= 1 ? \"translate(\" + x + \"px, \" + y + \"px)\" : \"translate3d(\" + x + \"px, \" + y + \"px, 0)\", _Object$assign));\n }\n\n return Object.assign({}, commonStyles, (_Object$assign2 = {}, _Object$assign2[sideY] = hasY ? y + \"px\" : '', _Object$assign2[sideX] = hasX ? x + \"px\" : '', _Object$assign2.transform = '', _Object$assign2));\n}\n\nfunction computeStyles(_ref5) {\n var state = _ref5.state,\n options = _ref5.options;\n var _options$gpuAccelerat = options.gpuAcceleration,\n gpuAcceleration = _options$gpuAccelerat === void 0 ? true : _options$gpuAccelerat,\n _options$adaptive = options.adaptive,\n adaptive = _options$adaptive === void 0 ? true : _options$adaptive,\n _options$roundOffsets = options.roundOffsets,\n roundOffsets = _options$roundOffsets === void 0 ? true : _options$roundOffsets;\n var commonStyles = {\n placement: getBasePlacement(state.placement),\n variation: getVariation(state.placement),\n popper: state.elements.popper,\n popperRect: state.rects.popper,\n gpuAcceleration: gpuAcceleration,\n isFixed: state.options.strategy === 'fixed'\n };\n\n if (state.modifiersData.popperOffsets != null) {\n state.styles.popper = Object.assign({}, state.styles.popper, mapToStyles(Object.assign({}, commonStyles, {\n offsets: state.modifiersData.popperOffsets,\n position: state.options.strategy,\n adaptive: adaptive,\n roundOffsets: roundOffsets\n })));\n }\n\n if (state.modifiersData.arrow != null) {\n state.styles.arrow = Object.assign({}, state.styles.arrow, mapToStyles(Object.assign({}, commonStyles, {\n offsets: state.modifiersData.arrow,\n position: 'absolute',\n adaptive: false,\n roundOffsets: roundOffsets\n })));\n }\n\n state.attributes.popper = Object.assign({}, state.attributes.popper, {\n 'data-popper-placement': state.placement\n });\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'computeStyles',\n enabled: true,\n phase: 'beforeWrite',\n fn: computeStyles,\n data: {}\n};","import getWindow from \"../dom-utils/getWindow.js\"; // eslint-disable-next-line import/no-unused-modules\n\nvar passive = {\n passive: true\n};\n\nfunction effect(_ref) {\n var state = _ref.state,\n instance = _ref.instance,\n options = _ref.options;\n var _options$scroll = options.scroll,\n scroll = _options$scroll === void 0 ? true : _options$scroll,\n _options$resize = options.resize,\n resize = _options$resize === void 0 ? true : _options$resize;\n var window = getWindow(state.elements.popper);\n var scrollParents = [].concat(state.scrollParents.reference, state.scrollParents.popper);\n\n if (scroll) {\n scrollParents.forEach(function (scrollParent) {\n scrollParent.addEventListener('scroll', instance.update, passive);\n });\n }\n\n if (resize) {\n window.addEventListener('resize', instance.update, passive);\n }\n\n return function () {\n if (scroll) {\n scrollParents.forEach(function (scrollParent) {\n scrollParent.removeEventListener('scroll', instance.update, passive);\n });\n }\n\n if (resize) {\n window.removeEventListener('resize', instance.update, passive);\n }\n };\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'eventListeners',\n enabled: true,\n phase: 'write',\n fn: function fn() {},\n effect: effect,\n data: {}\n};","var hash = {\n left: 'right',\n right: 'left',\n bottom: 'top',\n top: 'bottom'\n};\nexport default function getOppositePlacement(placement) {\n return placement.replace(/left|right|bottom|top/g, function (matched) {\n return hash[matched];\n });\n}","var hash = {\n start: 'end',\n end: 'start'\n};\nexport default function getOppositeVariationPlacement(placement) {\n return placement.replace(/start|end/g, function (matched) {\n return hash[matched];\n });\n}","import getWindow from \"./getWindow.js\";\nexport default function getWindowScroll(node) {\n var win = getWindow(node);\n var scrollLeft = win.pageXOffset;\n var scrollTop = win.pageYOffset;\n return {\n scrollLeft: scrollLeft,\n scrollTop: scrollTop\n };\n}","import getBoundingClientRect from \"./getBoundingClientRect.js\";\nimport getDocumentElement from \"./getDocumentElement.js\";\nimport getWindowScroll from \"./getWindowScroll.js\";\nexport default function getWindowScrollBarX(element) {\n // If has a CSS width greater than the viewport, then this will be\n // incorrect for RTL.\n // Popper 1 is broken in this case and never had a bug report so let's assume\n // it's not an issue. I don't think anyone ever specifies width on \n // anyway.\n // Browsers where the left scrollbar doesn't cause an issue report `0` for\n // this (e.g. Edge 2019, IE11, Safari)\n return getBoundingClientRect(getDocumentElement(element)).left + getWindowScroll(element).scrollLeft;\n}","import getComputedStyle from \"./getComputedStyle.js\";\nexport default function isScrollParent(element) {\n // Firefox wants us to check `-x` and `-y` variations as well\n var _getComputedStyle = getComputedStyle(element),\n overflow = _getComputedStyle.overflow,\n overflowX = _getComputedStyle.overflowX,\n overflowY = _getComputedStyle.overflowY;\n\n return /auto|scroll|overlay|hidden/.test(overflow + overflowY + overflowX);\n}","import getParentNode from \"./getParentNode.js\";\nimport isScrollParent from \"./isScrollParent.js\";\nimport getNodeName from \"./getNodeName.js\";\nimport { isHTMLElement } from \"./instanceOf.js\";\nexport default function getScrollParent(node) {\n if (['html', 'body', '#document'].indexOf(getNodeName(node)) >= 0) {\n // $FlowFixMe[incompatible-return]: assume body is always available\n return node.ownerDocument.body;\n }\n\n if (isHTMLElement(node) && isScrollParent(node)) {\n return node;\n }\n\n return getScrollParent(getParentNode(node));\n}","import getScrollParent from \"./getScrollParent.js\";\nimport getParentNode from \"./getParentNode.js\";\nimport getWindow from \"./getWindow.js\";\nimport isScrollParent from \"./isScrollParent.js\";\n/*\ngiven a DOM element, return the list of all scroll parents, up the list of ancesors\nuntil we get to the top window object. This list is what we attach scroll listeners\nto, because if any of these parent elements scroll, we'll need to re-calculate the\nreference element's position.\n*/\n\nexport default function listScrollParents(element, list) {\n var _element$ownerDocumen;\n\n if (list === void 0) {\n list = [];\n }\n\n var scrollParent = getScrollParent(element);\n var isBody = scrollParent === ((_element$ownerDocumen = element.ownerDocument) == null ? void 0 : _element$ownerDocumen.body);\n var win = getWindow(scrollParent);\n var target = isBody ? [win].concat(win.visualViewport || [], isScrollParent(scrollParent) ? scrollParent : []) : scrollParent;\n var updatedList = list.concat(target);\n return isBody ? updatedList : // $FlowFixMe[incompatible-call]: isBody tells us target will be an HTMLElement here\n updatedList.concat(listScrollParents(getParentNode(target)));\n}","export default function rectToClientRect(rect) {\n return Object.assign({}, rect, {\n left: rect.x,\n top: rect.y,\n right: rect.x + rect.width,\n bottom: rect.y + rect.height\n });\n}","import { viewport } from \"../enums.js\";\nimport getViewportRect from \"./getViewportRect.js\";\nimport getDocumentRect from \"./getDocumentRect.js\";\nimport listScrollParents from \"./listScrollParents.js\";\nimport getOffsetParent from \"./getOffsetParent.js\";\nimport getDocumentElement from \"./getDocumentElement.js\";\nimport getComputedStyle from \"./getComputedStyle.js\";\nimport { isElement, isHTMLElement } from \"./instanceOf.js\";\nimport getBoundingClientRect from \"./getBoundingClientRect.js\";\nimport getParentNode from \"./getParentNode.js\";\nimport contains from \"./contains.js\";\nimport getNodeName from \"./getNodeName.js\";\nimport rectToClientRect from \"../utils/rectToClientRect.js\";\nimport { max, min } from \"../utils/math.js\";\n\nfunction getInnerBoundingClientRect(element, strategy) {\n var rect = getBoundingClientRect(element, false, strategy === 'fixed');\n rect.top = rect.top + element.clientTop;\n rect.left = rect.left + element.clientLeft;\n rect.bottom = rect.top + element.clientHeight;\n rect.right = rect.left + element.clientWidth;\n rect.width = element.clientWidth;\n rect.height = element.clientHeight;\n rect.x = rect.left;\n rect.y = rect.top;\n return rect;\n}\n\nfunction getClientRectFromMixedType(element, clippingParent, strategy) {\n return clippingParent === viewport ? rectToClientRect(getViewportRect(element, strategy)) : isElement(clippingParent) ? getInnerBoundingClientRect(clippingParent, strategy) : rectToClientRect(getDocumentRect(getDocumentElement(element)));\n} // A \"clipping parent\" is an overflowable container with the characteristic of\n// clipping (or hiding) overflowing elements with a position different from\n// `initial`\n\n\nfunction getClippingParents(element) {\n var clippingParents = listScrollParents(getParentNode(element));\n var canEscapeClipping = ['absolute', 'fixed'].indexOf(getComputedStyle(element).position) >= 0;\n var clipperElement = canEscapeClipping && isHTMLElement(element) ? getOffsetParent(element) : element;\n\n if (!isElement(clipperElement)) {\n return [];\n } // $FlowFixMe[incompatible-return]: https://github.com/facebook/flow/issues/1414\n\n\n return clippingParents.filter(function (clippingParent) {\n return isElement(clippingParent) && contains(clippingParent, clipperElement) && getNodeName(clippingParent) !== 'body';\n });\n} // Gets the maximum area that the element is visible in due to any number of\n// clipping parents\n\n\nexport default function getClippingRect(element, boundary, rootBoundary, strategy) {\n var mainClippingParents = boundary === 'clippingParents' ? getClippingParents(element) : [].concat(boundary);\n var clippingParents = [].concat(mainClippingParents, [rootBoundary]);\n var firstClippingParent = clippingParents[0];\n var clippingRect = clippingParents.reduce(function (accRect, clippingParent) {\n var rect = getClientRectFromMixedType(element, clippingParent, strategy);\n accRect.top = max(rect.top, accRect.top);\n accRect.right = min(rect.right, accRect.right);\n accRect.bottom = min(rect.bottom, accRect.bottom);\n accRect.left = max(rect.left, accRect.left);\n return accRect;\n }, getClientRectFromMixedType(element, firstClippingParent, strategy));\n clippingRect.width = clippingRect.right - clippingRect.left;\n clippingRect.height = clippingRect.bottom - clippingRect.top;\n clippingRect.x = clippingRect.left;\n clippingRect.y = clippingRect.top;\n return clippingRect;\n}","import getWindow from \"./getWindow.js\";\nimport getDocumentElement from \"./getDocumentElement.js\";\nimport getWindowScrollBarX from \"./getWindowScrollBarX.js\";\nimport isLayoutViewport from \"./isLayoutViewport.js\";\nexport default function getViewportRect(element, strategy) {\n var win = getWindow(element);\n var html = getDocumentElement(element);\n var visualViewport = win.visualViewport;\n var width = html.clientWidth;\n var height = html.clientHeight;\n var x = 0;\n var y = 0;\n\n if (visualViewport) {\n width = visualViewport.width;\n height = visualViewport.height;\n var layoutViewport = isLayoutViewport();\n\n if (layoutViewport || !layoutViewport && strategy === 'fixed') {\n x = visualViewport.offsetLeft;\n y = visualViewport.offsetTop;\n }\n }\n\n return {\n width: width,\n height: height,\n x: x + getWindowScrollBarX(element),\n y: y\n };\n}","import getDocumentElement from \"./getDocumentElement.js\";\nimport getComputedStyle from \"./getComputedStyle.js\";\nimport getWindowScrollBarX from \"./getWindowScrollBarX.js\";\nimport getWindowScroll from \"./getWindowScroll.js\";\nimport { max } from \"../utils/math.js\"; // Gets the entire size of the scrollable document area, even extending outside\n// of the `` and `` rect bounds if horizontally scrollable\n\nexport default function getDocumentRect(element) {\n var _element$ownerDocumen;\n\n var html = getDocumentElement(element);\n var winScroll = getWindowScroll(element);\n var body = (_element$ownerDocumen = element.ownerDocument) == null ? void 0 : _element$ownerDocumen.body;\n var width = max(html.scrollWidth, html.clientWidth, body ? body.scrollWidth : 0, body ? body.clientWidth : 0);\n var height = max(html.scrollHeight, html.clientHeight, body ? body.scrollHeight : 0, body ? body.clientHeight : 0);\n var x = -winScroll.scrollLeft + getWindowScrollBarX(element);\n var y = -winScroll.scrollTop;\n\n if (getComputedStyle(body || html).direction === 'rtl') {\n x += max(html.clientWidth, body ? body.clientWidth : 0) - width;\n }\n\n return {\n width: width,\n height: height,\n x: x,\n y: y\n };\n}","import getBasePlacement from \"./getBasePlacement.js\";\nimport getVariation from \"./getVariation.js\";\nimport getMainAxisFromPlacement from \"./getMainAxisFromPlacement.js\";\nimport { top, right, bottom, left, start, end } from \"../enums.js\";\nexport default function computeOffsets(_ref) {\n var reference = _ref.reference,\n element = _ref.element,\n placement = _ref.placement;\n var basePlacement = placement ? getBasePlacement(placement) : null;\n var variation = placement ? getVariation(placement) : null;\n var commonX = reference.x + reference.width / 2 - element.width / 2;\n var commonY = reference.y + reference.height / 2 - element.height / 2;\n var offsets;\n\n switch (basePlacement) {\n case top:\n offsets = {\n x: commonX,\n y: reference.y - element.height\n };\n break;\n\n case bottom:\n offsets = {\n x: commonX,\n y: reference.y + reference.height\n };\n break;\n\n case right:\n offsets = {\n x: reference.x + reference.width,\n y: commonY\n };\n break;\n\n case left:\n offsets = {\n x: reference.x - element.width,\n y: commonY\n };\n break;\n\n default:\n offsets = {\n x: reference.x,\n y: reference.y\n };\n }\n\n var mainAxis = basePlacement ? getMainAxisFromPlacement(basePlacement) : null;\n\n if (mainAxis != null) {\n var len = mainAxis === 'y' ? 'height' : 'width';\n\n switch (variation) {\n case start:\n offsets[mainAxis] = offsets[mainAxis] - (reference[len] / 2 - element[len] / 2);\n break;\n\n case end:\n offsets[mainAxis] = offsets[mainAxis] + (reference[len] / 2 - element[len] / 2);\n break;\n\n default:\n }\n }\n\n return offsets;\n}","import getClippingRect from \"../dom-utils/getClippingRect.js\";\nimport getDocumentElement from \"../dom-utils/getDocumentElement.js\";\nimport getBoundingClientRect from \"../dom-utils/getBoundingClientRect.js\";\nimport computeOffsets from \"./computeOffsets.js\";\nimport rectToClientRect from \"./rectToClientRect.js\";\nimport { clippingParents, reference, popper, bottom, top, right, basePlacements, viewport } from \"../enums.js\";\nimport { isElement } from \"../dom-utils/instanceOf.js\";\nimport mergePaddingObject from \"./mergePaddingObject.js\";\nimport expandToHashMap from \"./expandToHashMap.js\"; // eslint-disable-next-line import/no-unused-modules\n\nexport default function detectOverflow(state, options) {\n if (options === void 0) {\n options = {};\n }\n\n var _options = options,\n _options$placement = _options.placement,\n placement = _options$placement === void 0 ? state.placement : _options$placement,\n _options$strategy = _options.strategy,\n strategy = _options$strategy === void 0 ? state.strategy : _options$strategy,\n _options$boundary = _options.boundary,\n boundary = _options$boundary === void 0 ? clippingParents : _options$boundary,\n _options$rootBoundary = _options.rootBoundary,\n rootBoundary = _options$rootBoundary === void 0 ? viewport : _options$rootBoundary,\n _options$elementConte = _options.elementContext,\n elementContext = _options$elementConte === void 0 ? popper : _options$elementConte,\n _options$altBoundary = _options.altBoundary,\n altBoundary = _options$altBoundary === void 0 ? false : _options$altBoundary,\n _options$padding = _options.padding,\n padding = _options$padding === void 0 ? 0 : _options$padding;\n var paddingObject = mergePaddingObject(typeof padding !== 'number' ? padding : expandToHashMap(padding, basePlacements));\n var altContext = elementContext === popper ? reference : popper;\n var popperRect = state.rects.popper;\n var element = state.elements[altBoundary ? altContext : elementContext];\n var clippingClientRect = getClippingRect(isElement(element) ? element : element.contextElement || getDocumentElement(state.elements.popper), boundary, rootBoundary, strategy);\n var referenceClientRect = getBoundingClientRect(state.elements.reference);\n var popperOffsets = computeOffsets({\n reference: referenceClientRect,\n element: popperRect,\n strategy: 'absolute',\n placement: placement\n });\n var popperClientRect = rectToClientRect(Object.assign({}, popperRect, popperOffsets));\n var elementClientRect = elementContext === popper ? popperClientRect : referenceClientRect; // positive = overflowing the clipping rect\n // 0 or negative = within the clipping rect\n\n var overflowOffsets = {\n top: clippingClientRect.top - elementClientRect.top + paddingObject.top,\n bottom: elementClientRect.bottom - clippingClientRect.bottom + paddingObject.bottom,\n left: clippingClientRect.left - elementClientRect.left + paddingObject.left,\n right: elementClientRect.right - clippingClientRect.right + paddingObject.right\n };\n var offsetData = state.modifiersData.offset; // Offsets can be applied only to the popper element\n\n if (elementContext === popper && offsetData) {\n var offset = offsetData[placement];\n Object.keys(overflowOffsets).forEach(function (key) {\n var multiply = [right, bottom].indexOf(key) >= 0 ? 1 : -1;\n var axis = [top, bottom].indexOf(key) >= 0 ? 'y' : 'x';\n overflowOffsets[key] += offset[axis] * multiply;\n });\n }\n\n return overflowOffsets;\n}","import getOppositePlacement from \"../utils/getOppositePlacement.js\";\nimport getBasePlacement from \"../utils/getBasePlacement.js\";\nimport getOppositeVariationPlacement from \"../utils/getOppositeVariationPlacement.js\";\nimport detectOverflow from \"../utils/detectOverflow.js\";\nimport computeAutoPlacement from \"../utils/computeAutoPlacement.js\";\nimport { bottom, top, start, right, left, auto } from \"../enums.js\";\nimport getVariation from \"../utils/getVariation.js\"; // eslint-disable-next-line import/no-unused-modules\n\nfunction getExpandedFallbackPlacements(placement) {\n if (getBasePlacement(placement) === auto) {\n return [];\n }\n\n var oppositePlacement = getOppositePlacement(placement);\n return [getOppositeVariationPlacement(placement), oppositePlacement, getOppositeVariationPlacement(oppositePlacement)];\n}\n\nfunction flip(_ref) {\n var state = _ref.state,\n options = _ref.options,\n name = _ref.name;\n\n if (state.modifiersData[name]._skip) {\n return;\n }\n\n var _options$mainAxis = options.mainAxis,\n checkMainAxis = _options$mainAxis === void 0 ? true : _options$mainAxis,\n _options$altAxis = options.altAxis,\n checkAltAxis = _options$altAxis === void 0 ? true : _options$altAxis,\n specifiedFallbackPlacements = options.fallbackPlacements,\n padding = options.padding,\n boundary = options.boundary,\n rootBoundary = options.rootBoundary,\n altBoundary = options.altBoundary,\n _options$flipVariatio = options.flipVariations,\n flipVariations = _options$flipVariatio === void 0 ? true : _options$flipVariatio,\n allowedAutoPlacements = options.allowedAutoPlacements;\n var preferredPlacement = state.options.placement;\n var basePlacement = getBasePlacement(preferredPlacement);\n var isBasePlacement = basePlacement === preferredPlacement;\n var fallbackPlacements = specifiedFallbackPlacements || (isBasePlacement || !flipVariations ? [getOppositePlacement(preferredPlacement)] : getExpandedFallbackPlacements(preferredPlacement));\n var placements = [preferredPlacement].concat(fallbackPlacements).reduce(function (acc, placement) {\n return acc.concat(getBasePlacement(placement) === auto ? computeAutoPlacement(state, {\n placement: placement,\n boundary: boundary,\n rootBoundary: rootBoundary,\n padding: padding,\n flipVariations: flipVariations,\n allowedAutoPlacements: allowedAutoPlacements\n }) : placement);\n }, []);\n var referenceRect = state.rects.reference;\n var popperRect = state.rects.popper;\n var checksMap = new Map();\n var makeFallbackChecks = true;\n var firstFittingPlacement = placements[0];\n\n for (var i = 0; i < placements.length; i++) {\n var placement = placements[i];\n\n var _basePlacement = getBasePlacement(placement);\n\n var isStartVariation = getVariation(placement) === start;\n var isVertical = [top, bottom].indexOf(_basePlacement) >= 0;\n var len = isVertical ? 'width' : 'height';\n var overflow = detectOverflow(state, {\n placement: placement,\n boundary: boundary,\n rootBoundary: rootBoundary,\n altBoundary: altBoundary,\n padding: padding\n });\n var mainVariationSide = isVertical ? isStartVariation ? right : left : isStartVariation ? bottom : top;\n\n if (referenceRect[len] > popperRect[len]) {\n mainVariationSide = getOppositePlacement(mainVariationSide);\n }\n\n var altVariationSide = getOppositePlacement(mainVariationSide);\n var checks = [];\n\n if (checkMainAxis) {\n checks.push(overflow[_basePlacement] <= 0);\n }\n\n if (checkAltAxis) {\n checks.push(overflow[mainVariationSide] <= 0, overflow[altVariationSide] <= 0);\n }\n\n if (checks.every(function (check) {\n return check;\n })) {\n firstFittingPlacement = placement;\n makeFallbackChecks = false;\n break;\n }\n\n checksMap.set(placement, checks);\n }\n\n if (makeFallbackChecks) {\n // `2` may be desired in some cases – research later\n var numberOfChecks = flipVariations ? 3 : 1;\n\n var _loop = function _loop(_i) {\n var fittingPlacement = placements.find(function (placement) {\n var checks = checksMap.get(placement);\n\n if (checks) {\n return checks.slice(0, _i).every(function (check) {\n return check;\n });\n }\n });\n\n if (fittingPlacement) {\n firstFittingPlacement = fittingPlacement;\n return \"break\";\n }\n };\n\n for (var _i = numberOfChecks; _i > 0; _i--) {\n var _ret = _loop(_i);\n\n if (_ret === \"break\") break;\n }\n }\n\n if (state.placement !== firstFittingPlacement) {\n state.modifiersData[name]._skip = true;\n state.placement = firstFittingPlacement;\n state.reset = true;\n }\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'flip',\n enabled: true,\n phase: 'main',\n fn: flip,\n requiresIfExists: ['offset'],\n data: {\n _skip: false\n }\n};","import getVariation from \"./getVariation.js\";\nimport { variationPlacements, basePlacements, placements as allPlacements } from \"../enums.js\";\nimport detectOverflow from \"./detectOverflow.js\";\nimport getBasePlacement from \"./getBasePlacement.js\";\nexport default function computeAutoPlacement(state, options) {\n if (options === void 0) {\n options = {};\n }\n\n var _options = options,\n placement = _options.placement,\n boundary = _options.boundary,\n rootBoundary = _options.rootBoundary,\n padding = _options.padding,\n flipVariations = _options.flipVariations,\n _options$allowedAutoP = _options.allowedAutoPlacements,\n allowedAutoPlacements = _options$allowedAutoP === void 0 ? allPlacements : _options$allowedAutoP;\n var variation = getVariation(placement);\n var placements = variation ? flipVariations ? variationPlacements : variationPlacements.filter(function (placement) {\n return getVariation(placement) === variation;\n }) : basePlacements;\n var allowedPlacements = placements.filter(function (placement) {\n return allowedAutoPlacements.indexOf(placement) >= 0;\n });\n\n if (allowedPlacements.length === 0) {\n allowedPlacements = placements;\n } // $FlowFixMe[incompatible-type]: Flow seems to have problems with two array unions...\n\n\n var overflows = allowedPlacements.reduce(function (acc, placement) {\n acc[placement] = detectOverflow(state, {\n placement: placement,\n boundary: boundary,\n rootBoundary: rootBoundary,\n padding: padding\n })[getBasePlacement(placement)];\n return acc;\n }, {});\n return Object.keys(overflows).sort(function (a, b) {\n return overflows[a] - overflows[b];\n });\n}","import { top, bottom, left, right } from \"../enums.js\";\nimport detectOverflow from \"../utils/detectOverflow.js\";\n\nfunction getSideOffsets(overflow, rect, preventedOffsets) {\n if (preventedOffsets === void 0) {\n preventedOffsets = {\n x: 0,\n y: 0\n };\n }\n\n return {\n top: overflow.top - rect.height - preventedOffsets.y,\n right: overflow.right - rect.width + preventedOffsets.x,\n bottom: overflow.bottom - rect.height + preventedOffsets.y,\n left: overflow.left - rect.width - preventedOffsets.x\n };\n}\n\nfunction isAnySideFullyClipped(overflow) {\n return [top, right, bottom, left].some(function (side) {\n return overflow[side] >= 0;\n });\n}\n\nfunction hide(_ref) {\n var state = _ref.state,\n name = _ref.name;\n var referenceRect = state.rects.reference;\n var popperRect = state.rects.popper;\n var preventedOffsets = state.modifiersData.preventOverflow;\n var referenceOverflow = detectOverflow(state, {\n elementContext: 'reference'\n });\n var popperAltOverflow = detectOverflow(state, {\n altBoundary: true\n });\n var referenceClippingOffsets = getSideOffsets(referenceOverflow, referenceRect);\n var popperEscapeOffsets = getSideOffsets(popperAltOverflow, popperRect, preventedOffsets);\n var isReferenceHidden = isAnySideFullyClipped(referenceClippingOffsets);\n var hasPopperEscaped = isAnySideFullyClipped(popperEscapeOffsets);\n state.modifiersData[name] = {\n referenceClippingOffsets: referenceClippingOffsets,\n popperEscapeOffsets: popperEscapeOffsets,\n isReferenceHidden: isReferenceHidden,\n hasPopperEscaped: hasPopperEscaped\n };\n state.attributes.popper = Object.assign({}, state.attributes.popper, {\n 'data-popper-reference-hidden': isReferenceHidden,\n 'data-popper-escaped': hasPopperEscaped\n });\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'hide',\n enabled: true,\n phase: 'main',\n requiresIfExists: ['preventOverflow'],\n fn: hide\n};","import getBasePlacement from \"../utils/getBasePlacement.js\";\nimport { top, left, right, placements } from \"../enums.js\"; // eslint-disable-next-line import/no-unused-modules\n\nexport function distanceAndSkiddingToXY(placement, rects, offset) {\n var basePlacement = getBasePlacement(placement);\n var invertDistance = [left, top].indexOf(basePlacement) >= 0 ? -1 : 1;\n\n var _ref = typeof offset === 'function' ? offset(Object.assign({}, rects, {\n placement: placement\n })) : offset,\n skidding = _ref[0],\n distance = _ref[1];\n\n skidding = skidding || 0;\n distance = (distance || 0) * invertDistance;\n return [left, right].indexOf(basePlacement) >= 0 ? {\n x: distance,\n y: skidding\n } : {\n x: skidding,\n y: distance\n };\n}\n\nfunction offset(_ref2) {\n var state = _ref2.state,\n options = _ref2.options,\n name = _ref2.name;\n var _options$offset = options.offset,\n offset = _options$offset === void 0 ? [0, 0] : _options$offset;\n var data = placements.reduce(function (acc, placement) {\n acc[placement] = distanceAndSkiddingToXY(placement, state.rects, offset);\n return acc;\n }, {});\n var _data$state$placement = data[state.placement],\n x = _data$state$placement.x,\n y = _data$state$placement.y;\n\n if (state.modifiersData.popperOffsets != null) {\n state.modifiersData.popperOffsets.x += x;\n state.modifiersData.popperOffsets.y += y;\n }\n\n state.modifiersData[name] = data;\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'offset',\n enabled: true,\n phase: 'main',\n requires: ['popperOffsets'],\n fn: offset\n};","import computeOffsets from \"../utils/computeOffsets.js\";\n\nfunction popperOffsets(_ref) {\n var state = _ref.state,\n name = _ref.name;\n // Offsets are the actual position the popper needs to have to be\n // properly positioned near its reference element\n // This is the most basic placement, and will be adjusted by\n // the modifiers in the next step\n state.modifiersData[name] = computeOffsets({\n reference: state.rects.reference,\n element: state.rects.popper,\n strategy: 'absolute',\n placement: state.placement\n });\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'popperOffsets',\n enabled: true,\n phase: 'read',\n fn: popperOffsets,\n data: {}\n};","import { top, left, right, bottom, start } from \"../enums.js\";\nimport getBasePlacement from \"../utils/getBasePlacement.js\";\nimport getMainAxisFromPlacement from \"../utils/getMainAxisFromPlacement.js\";\nimport getAltAxis from \"../utils/getAltAxis.js\";\nimport { within, withinMaxClamp } from \"../utils/within.js\";\nimport getLayoutRect from \"../dom-utils/getLayoutRect.js\";\nimport getOffsetParent from \"../dom-utils/getOffsetParent.js\";\nimport detectOverflow from \"../utils/detectOverflow.js\";\nimport getVariation from \"../utils/getVariation.js\";\nimport getFreshSideObject from \"../utils/getFreshSideObject.js\";\nimport { min as mathMin, max as mathMax } from \"../utils/math.js\";\n\nfunction preventOverflow(_ref) {\n var state = _ref.state,\n options = _ref.options,\n name = _ref.name;\n var _options$mainAxis = options.mainAxis,\n checkMainAxis = _options$mainAxis === void 0 ? true : _options$mainAxis,\n _options$altAxis = options.altAxis,\n checkAltAxis = _options$altAxis === void 0 ? false : _options$altAxis,\n boundary = options.boundary,\n rootBoundary = options.rootBoundary,\n altBoundary = options.altBoundary,\n padding = options.padding,\n _options$tether = options.tether,\n tether = _options$tether === void 0 ? true : _options$tether,\n _options$tetherOffset = options.tetherOffset,\n tetherOffset = _options$tetherOffset === void 0 ? 0 : _options$tetherOffset;\n var overflow = detectOverflow(state, {\n boundary: boundary,\n rootBoundary: rootBoundary,\n padding: padding,\n altBoundary: altBoundary\n });\n var basePlacement = getBasePlacement(state.placement);\n var variation = getVariation(state.placement);\n var isBasePlacement = !variation;\n var mainAxis = getMainAxisFromPlacement(basePlacement);\n var altAxis = getAltAxis(mainAxis);\n var popperOffsets = state.modifiersData.popperOffsets;\n var referenceRect = state.rects.reference;\n var popperRect = state.rects.popper;\n var tetherOffsetValue = typeof tetherOffset === 'function' ? tetherOffset(Object.assign({}, state.rects, {\n placement: state.placement\n })) : tetherOffset;\n var normalizedTetherOffsetValue = typeof tetherOffsetValue === 'number' ? {\n mainAxis: tetherOffsetValue,\n altAxis: tetherOffsetValue\n } : Object.assign({\n mainAxis: 0,\n altAxis: 0\n }, tetherOffsetValue);\n var offsetModifierState = state.modifiersData.offset ? state.modifiersData.offset[state.placement] : null;\n var data = {\n x: 0,\n y: 0\n };\n\n if (!popperOffsets) {\n return;\n }\n\n if (checkMainAxis) {\n var _offsetModifierState$;\n\n var mainSide = mainAxis === 'y' ? top : left;\n var altSide = mainAxis === 'y' ? bottom : right;\n var len = mainAxis === 'y' ? 'height' : 'width';\n var offset = popperOffsets[mainAxis];\n var min = offset + overflow[mainSide];\n var max = offset - overflow[altSide];\n var additive = tether ? -popperRect[len] / 2 : 0;\n var minLen = variation === start ? referenceRect[len] : popperRect[len];\n var maxLen = variation === start ? -popperRect[len] : -referenceRect[len]; // We need to include the arrow in the calculation so the arrow doesn't go\n // outside the reference bounds\n\n var arrowElement = state.elements.arrow;\n var arrowRect = tether && arrowElement ? getLayoutRect(arrowElement) : {\n width: 0,\n height: 0\n };\n var arrowPaddingObject = state.modifiersData['arrow#persistent'] ? state.modifiersData['arrow#persistent'].padding : getFreshSideObject();\n var arrowPaddingMin = arrowPaddingObject[mainSide];\n var arrowPaddingMax = arrowPaddingObject[altSide]; // If the reference length is smaller than the arrow length, we don't want\n // to include its full size in the calculation. If the reference is small\n // and near the edge of a boundary, the popper can overflow even if the\n // reference is not overflowing as well (e.g. virtual elements with no\n // width or height)\n\n var arrowLen = within(0, referenceRect[len], arrowRect[len]);\n var minOffset = isBasePlacement ? referenceRect[len] / 2 - additive - arrowLen - arrowPaddingMin - normalizedTetherOffsetValue.mainAxis : minLen - arrowLen - arrowPaddingMin - normalizedTetherOffsetValue.mainAxis;\n var maxOffset = isBasePlacement ? -referenceRect[len] / 2 + additive + arrowLen + arrowPaddingMax + normalizedTetherOffsetValue.mainAxis : maxLen + arrowLen + arrowPaddingMax + normalizedTetherOffsetValue.mainAxis;\n var arrowOffsetParent = state.elements.arrow && getOffsetParent(state.elements.arrow);\n var clientOffset = arrowOffsetParent ? mainAxis === 'y' ? arrowOffsetParent.clientTop || 0 : arrowOffsetParent.clientLeft || 0 : 0;\n var offsetModifierValue = (_offsetModifierState$ = offsetModifierState == null ? void 0 : offsetModifierState[mainAxis]) != null ? _offsetModifierState$ : 0;\n var tetherMin = offset + minOffset - offsetModifierValue - clientOffset;\n var tetherMax = offset + maxOffset - offsetModifierValue;\n var preventedOffset = within(tether ? mathMin(min, tetherMin) : min, offset, tether ? mathMax(max, tetherMax) : max);\n popperOffsets[mainAxis] = preventedOffset;\n data[mainAxis] = preventedOffset - offset;\n }\n\n if (checkAltAxis) {\n var _offsetModifierState$2;\n\n var _mainSide = mainAxis === 'x' ? top : left;\n\n var _altSide = mainAxis === 'x' ? bottom : right;\n\n var _offset = popperOffsets[altAxis];\n\n var _len = altAxis === 'y' ? 'height' : 'width';\n\n var _min = _offset + overflow[_mainSide];\n\n var _max = _offset - overflow[_altSide];\n\n var isOriginSide = [top, left].indexOf(basePlacement) !== -1;\n\n var _offsetModifierValue = (_offsetModifierState$2 = offsetModifierState == null ? void 0 : offsetModifierState[altAxis]) != null ? _offsetModifierState$2 : 0;\n\n var _tetherMin = isOriginSide ? _min : _offset - referenceRect[_len] - popperRect[_len] - _offsetModifierValue + normalizedTetherOffsetValue.altAxis;\n\n var _tetherMax = isOriginSide ? _offset + referenceRect[_len] + popperRect[_len] - _offsetModifierValue - normalizedTetherOffsetValue.altAxis : _max;\n\n var _preventedOffset = tether && isOriginSide ? withinMaxClamp(_tetherMin, _offset, _tetherMax) : within(tether ? _tetherMin : _min, _offset, tether ? _tetherMax : _max);\n\n popperOffsets[altAxis] = _preventedOffset;\n data[altAxis] = _preventedOffset - _offset;\n }\n\n state.modifiersData[name] = data;\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'preventOverflow',\n enabled: true,\n phase: 'main',\n fn: preventOverflow,\n requiresIfExists: ['offset']\n};","export default function getAltAxis(axis) {\n return axis === 'x' ? 'y' : 'x';\n}","import getBoundingClientRect from \"./getBoundingClientRect.js\";\nimport getNodeScroll from \"./getNodeScroll.js\";\nimport getNodeName from \"./getNodeName.js\";\nimport { isHTMLElement } from \"./instanceOf.js\";\nimport getWindowScrollBarX from \"./getWindowScrollBarX.js\";\nimport getDocumentElement from \"./getDocumentElement.js\";\nimport isScrollParent from \"./isScrollParent.js\";\nimport { round } from \"../utils/math.js\";\n\nfunction isElementScaled(element) {\n var rect = element.getBoundingClientRect();\n var scaleX = round(rect.width) / element.offsetWidth || 1;\n var scaleY = round(rect.height) / element.offsetHeight || 1;\n return scaleX !== 1 || scaleY !== 1;\n} // Returns the composite rect of an element relative to its offsetParent.\n// Composite means it takes into account transforms as well as layout.\n\n\nexport default function getCompositeRect(elementOrVirtualElement, offsetParent, isFixed) {\n if (isFixed === void 0) {\n isFixed = false;\n }\n\n var isOffsetParentAnElement = isHTMLElement(offsetParent);\n var offsetParentIsScaled = isHTMLElement(offsetParent) && isElementScaled(offsetParent);\n var documentElement = getDocumentElement(offsetParent);\n var rect = getBoundingClientRect(elementOrVirtualElement, offsetParentIsScaled, isFixed);\n var scroll = {\n scrollLeft: 0,\n scrollTop: 0\n };\n var offsets = {\n x: 0,\n y: 0\n };\n\n if (isOffsetParentAnElement || !isOffsetParentAnElement && !isFixed) {\n if (getNodeName(offsetParent) !== 'body' || // https://github.com/popperjs/popper-core/issues/1078\n isScrollParent(documentElement)) {\n scroll = getNodeScroll(offsetParent);\n }\n\n if (isHTMLElement(offsetParent)) {\n offsets = getBoundingClientRect(offsetParent, true);\n offsets.x += offsetParent.clientLeft;\n offsets.y += offsetParent.clientTop;\n } else if (documentElement) {\n offsets.x = getWindowScrollBarX(documentElement);\n }\n }\n\n return {\n x: rect.left + scroll.scrollLeft - offsets.x,\n y: rect.top + scroll.scrollTop - offsets.y,\n width: rect.width,\n height: rect.height\n };\n}","import getWindowScroll from \"./getWindowScroll.js\";\nimport getWindow from \"./getWindow.js\";\nimport { isHTMLElement } from \"./instanceOf.js\";\nimport getHTMLElementScroll from \"./getHTMLElementScroll.js\";\nexport default function getNodeScroll(node) {\n if (node === getWindow(node) || !isHTMLElement(node)) {\n return getWindowScroll(node);\n } else {\n return getHTMLElementScroll(node);\n }\n}","export default function getHTMLElementScroll(element) {\n return {\n scrollLeft: element.scrollLeft,\n scrollTop: element.scrollTop\n };\n}","import { modifierPhases } from \"../enums.js\"; // source: https://stackoverflow.com/questions/49875255\n\nfunction order(modifiers) {\n var map = new Map();\n var visited = new Set();\n var result = [];\n modifiers.forEach(function (modifier) {\n map.set(modifier.name, modifier);\n }); // On visiting object, check for its dependencies and visit them recursively\n\n function sort(modifier) {\n visited.add(modifier.name);\n var requires = [].concat(modifier.requires || [], modifier.requiresIfExists || []);\n requires.forEach(function (dep) {\n if (!visited.has(dep)) {\n var depModifier = map.get(dep);\n\n if (depModifier) {\n sort(depModifier);\n }\n }\n });\n result.push(modifier);\n }\n\n modifiers.forEach(function (modifier) {\n if (!visited.has(modifier.name)) {\n // check for visited object\n sort(modifier);\n }\n });\n return result;\n}\n\nexport default function orderModifiers(modifiers) {\n // order based on dependencies\n var orderedModifiers = order(modifiers); // order based on phase\n\n return modifierPhases.reduce(function (acc, phase) {\n return acc.concat(orderedModifiers.filter(function (modifier) {\n return modifier.phase === phase;\n }));\n }, []);\n}","import getCompositeRect from \"./dom-utils/getCompositeRect.js\";\nimport getLayoutRect from \"./dom-utils/getLayoutRect.js\";\nimport listScrollParents from \"./dom-utils/listScrollParents.js\";\nimport getOffsetParent from \"./dom-utils/getOffsetParent.js\";\nimport orderModifiers from \"./utils/orderModifiers.js\";\nimport debounce from \"./utils/debounce.js\";\nimport mergeByName from \"./utils/mergeByName.js\";\nimport detectOverflow from \"./utils/detectOverflow.js\";\nimport { isElement } from \"./dom-utils/instanceOf.js\";\nvar DEFAULT_OPTIONS = {\n placement: 'bottom',\n modifiers: [],\n strategy: 'absolute'\n};\n\nfunction areValidElements() {\n for (var _len = arguments.length, args = new Array(_len), _key = 0; _key < _len; _key++) {\n args[_key] = arguments[_key];\n }\n\n return !args.some(function (element) {\n return !(element && typeof element.getBoundingClientRect === 'function');\n });\n}\n\nexport function popperGenerator(generatorOptions) {\n if (generatorOptions === void 0) {\n generatorOptions = {};\n }\n\n var _generatorOptions = generatorOptions,\n _generatorOptions$def = _generatorOptions.defaultModifiers,\n defaultModifiers = _generatorOptions$def === void 0 ? [] : _generatorOptions$def,\n _generatorOptions$def2 = _generatorOptions.defaultOptions,\n defaultOptions = _generatorOptions$def2 === void 0 ? DEFAULT_OPTIONS : _generatorOptions$def2;\n return function createPopper(reference, popper, options) {\n if (options === void 0) {\n options = defaultOptions;\n }\n\n var state = {\n placement: 'bottom',\n orderedModifiers: [],\n options: Object.assign({}, DEFAULT_OPTIONS, defaultOptions),\n modifiersData: {},\n elements: {\n reference: reference,\n popper: popper\n },\n attributes: {},\n styles: {}\n };\n var effectCleanupFns = [];\n var isDestroyed = false;\n var instance = {\n state: state,\n setOptions: function setOptions(setOptionsAction) {\n var options = typeof setOptionsAction === 'function' ? setOptionsAction(state.options) : setOptionsAction;\n cleanupModifierEffects();\n state.options = Object.assign({}, defaultOptions, state.options, options);\n state.scrollParents = {\n reference: isElement(reference) ? listScrollParents(reference) : reference.contextElement ? listScrollParents(reference.contextElement) : [],\n popper: listScrollParents(popper)\n }; // Orders the modifiers based on their dependencies and `phase`\n // properties\n\n var orderedModifiers = orderModifiers(mergeByName([].concat(defaultModifiers, state.options.modifiers))); // Strip out disabled modifiers\n\n state.orderedModifiers = orderedModifiers.filter(function (m) {\n return m.enabled;\n });\n runModifierEffects();\n return instance.update();\n },\n // Sync update – it will always be executed, even if not necessary. This\n // is useful for low frequency updates where sync behavior simplifies the\n // logic.\n // For high frequency updates (e.g. `resize` and `scroll` events), always\n // prefer the async Popper#update method\n forceUpdate: function forceUpdate() {\n if (isDestroyed) {\n return;\n }\n\n var _state$elements = state.elements,\n reference = _state$elements.reference,\n popper = _state$elements.popper; // Don't proceed if `reference` or `popper` are not valid elements\n // anymore\n\n if (!areValidElements(reference, popper)) {\n return;\n } // Store the reference and popper rects to be read by modifiers\n\n\n state.rects = {\n reference: getCompositeRect(reference, getOffsetParent(popper), state.options.strategy === 'fixed'),\n popper: getLayoutRect(popper)\n }; // Modifiers have the ability to reset the current update cycle. The\n // most common use case for this is the `flip` modifier changing the\n // placement, which then needs to re-run all the modifiers, because the\n // logic was previously ran for the previous placement and is therefore\n // stale/incorrect\n\n state.reset = false;\n state.placement = state.options.placement; // On each update cycle, the `modifiersData` property for each modifier\n // is filled with the initial data specified by the modifier. This means\n // it doesn't persist and is fresh on each update.\n // To ensure persistent data, use `${name}#persistent`\n\n state.orderedModifiers.forEach(function (modifier) {\n return state.modifiersData[modifier.name] = Object.assign({}, modifier.data);\n });\n\n for (var index = 0; index < state.orderedModifiers.length; index++) {\n if (state.reset === true) {\n state.reset = false;\n index = -1;\n continue;\n }\n\n var _state$orderedModifie = state.orderedModifiers[index],\n fn = _state$orderedModifie.fn,\n _state$orderedModifie2 = _state$orderedModifie.options,\n _options = _state$orderedModifie2 === void 0 ? {} : _state$orderedModifie2,\n name = _state$orderedModifie.name;\n\n if (typeof fn === 'function') {\n state = fn({\n state: state,\n options: _options,\n name: name,\n instance: instance\n }) || state;\n }\n }\n },\n // Async and optimistically optimized update – it will not be executed if\n // not necessary (debounced to run at most once-per-tick)\n update: debounce(function () {\n return new Promise(function (resolve) {\n instance.forceUpdate();\n resolve(state);\n });\n }),\n destroy: function destroy() {\n cleanupModifierEffects();\n isDestroyed = true;\n }\n };\n\n if (!areValidElements(reference, popper)) {\n return instance;\n }\n\n instance.setOptions(options).then(function (state) {\n if (!isDestroyed && options.onFirstUpdate) {\n options.onFirstUpdate(state);\n }\n }); // Modifiers have the ability to execute arbitrary code before the first\n // update cycle runs. They will be executed in the same order as the update\n // cycle. This is useful when a modifier adds some persistent data that\n // other modifiers need to use, but the modifier is run after the dependent\n // one.\n\n function runModifierEffects() {\n state.orderedModifiers.forEach(function (_ref) {\n var name = _ref.name,\n _ref$options = _ref.options,\n options = _ref$options === void 0 ? {} : _ref$options,\n effect = _ref.effect;\n\n if (typeof effect === 'function') {\n var cleanupFn = effect({\n state: state,\n name: name,\n instance: instance,\n options: options\n });\n\n var noopFn = function noopFn() {};\n\n effectCleanupFns.push(cleanupFn || noopFn);\n }\n });\n }\n\n function cleanupModifierEffects() {\n effectCleanupFns.forEach(function (fn) {\n return fn();\n });\n effectCleanupFns = [];\n }\n\n return instance;\n };\n}\nexport var createPopper = /*#__PURE__*/popperGenerator(); // eslint-disable-next-line import/no-unused-modules\n\nexport { detectOverflow };","export default function debounce(fn) {\n var pending;\n return function () {\n if (!pending) {\n pending = new Promise(function (resolve) {\n Promise.resolve().then(function () {\n pending = undefined;\n resolve(fn());\n });\n });\n }\n\n return pending;\n };\n}","export default function mergeByName(modifiers) {\n var merged = modifiers.reduce(function (merged, current) {\n var existing = merged[current.name];\n merged[current.name] = existing ? Object.assign({}, existing, current, {\n options: Object.assign({}, existing.options, current.options),\n data: Object.assign({}, existing.data, current.data)\n }) : current;\n return merged;\n }, {}); // IE11 does not support Object.values\n\n return Object.keys(merged).map(function (key) {\n return merged[key];\n });\n}","import { popperGenerator, detectOverflow } from \"./createPopper.js\";\nimport eventListeners from \"./modifiers/eventListeners.js\";\nimport popperOffsets from \"./modifiers/popperOffsets.js\";\nimport computeStyles from \"./modifiers/computeStyles.js\";\nimport applyStyles from \"./modifiers/applyStyles.js\";\nimport offset from \"./modifiers/offset.js\";\nimport flip from \"./modifiers/flip.js\";\nimport preventOverflow from \"./modifiers/preventOverflow.js\";\nimport arrow from \"./modifiers/arrow.js\";\nimport hide from \"./modifiers/hide.js\";\nvar defaultModifiers = [eventListeners, popperOffsets, computeStyles, applyStyles, offset, flip, preventOverflow, arrow, hide];\nvar createPopper = /*#__PURE__*/popperGenerator({\n defaultModifiers: defaultModifiers\n}); // eslint-disable-next-line import/no-unused-modules\n\nexport { createPopper, popperGenerator, defaultModifiers, detectOverflow }; // eslint-disable-next-line import/no-unused-modules\n\nexport { createPopper as createPopperLite } from \"./popper-lite.js\"; // eslint-disable-next-line import/no-unused-modules\n\nexport * from \"./modifiers/index.js\";","import { popperGenerator, detectOverflow } from \"./createPopper.js\";\nimport eventListeners from \"./modifiers/eventListeners.js\";\nimport popperOffsets from \"./modifiers/popperOffsets.js\";\nimport computeStyles from \"./modifiers/computeStyles.js\";\nimport applyStyles from \"./modifiers/applyStyles.js\";\nvar defaultModifiers = [eventListeners, popperOffsets, computeStyles, applyStyles];\nvar createPopper = /*#__PURE__*/popperGenerator({\n defaultModifiers: defaultModifiers\n}); // eslint-disable-next-line import/no-unused-modules\n\nexport { createPopper, popperGenerator, defaultModifiers, detectOverflow };","/*!\n * Bootstrap v5.3.2 (https://getbootstrap.com/)\n * Copyright 2011-2023 The Bootstrap Authors (https://github.com/twbs/bootstrap/graphs/contributors)\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n */\nimport * as Popper from '@popperjs/core';\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap dom/data.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n/**\n * Constants\n */\n\nconst elementMap = new Map();\nconst Data = {\n set(element, key, instance) {\n if (!elementMap.has(element)) {\n elementMap.set(element, new Map());\n }\n const instanceMap = elementMap.get(element);\n\n // make it clear we only want one instance per element\n // can be removed later when multiple key/instances are fine to be used\n if (!instanceMap.has(key) && instanceMap.size !== 0) {\n // eslint-disable-next-line no-console\n console.error(`Bootstrap doesn't allow more than one instance per element. Bound instance: ${Array.from(instanceMap.keys())[0]}.`);\n return;\n }\n instanceMap.set(key, instance);\n },\n get(element, key) {\n if (elementMap.has(element)) {\n return elementMap.get(element).get(key) || null;\n }\n return null;\n },\n remove(element, key) {\n if (!elementMap.has(element)) {\n return;\n }\n const instanceMap = elementMap.get(element);\n instanceMap.delete(key);\n\n // free up element references if there are no instances left for an element\n if (instanceMap.size === 0) {\n elementMap.delete(element);\n }\n }\n};\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/index.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nconst MAX_UID = 1000000;\nconst MILLISECONDS_MULTIPLIER = 1000;\nconst TRANSITION_END = 'transitionend';\n\n/**\n * Properly escape IDs selectors to handle weird IDs\n * @param {string} selector\n * @returns {string}\n */\nconst parseSelector = selector => {\n if (selector && window.CSS && window.CSS.escape) {\n // document.querySelector needs escaping to handle IDs (html5+) containing for instance /\n selector = selector.replace(/#([^\\s\"#']+)/g, (match, id) => `#${CSS.escape(id)}`);\n }\n return selector;\n};\n\n// Shout-out Angus Croll (https://goo.gl/pxwQGp)\nconst toType = object => {\n if (object === null || object === undefined) {\n return `${object}`;\n }\n return Object.prototype.toString.call(object).match(/\\s([a-z]+)/i)[1].toLowerCase();\n};\n\n/**\n * Public Util API\n */\n\nconst getUID = prefix => {\n do {\n prefix += Math.floor(Math.random() * MAX_UID);\n } while (document.getElementById(prefix));\n return prefix;\n};\nconst getTransitionDurationFromElement = element => {\n if (!element) {\n return 0;\n }\n\n // Get transition-duration of the element\n let {\n transitionDuration,\n transitionDelay\n } = window.getComputedStyle(element);\n const floatTransitionDuration = Number.parseFloat(transitionDuration);\n const floatTransitionDelay = Number.parseFloat(transitionDelay);\n\n // Return 0 if element or transition duration is not found\n if (!floatTransitionDuration && !floatTransitionDelay) {\n return 0;\n }\n\n // If multiple durations are defined, take the first\n transitionDuration = transitionDuration.split(',')[0];\n transitionDelay = transitionDelay.split(',')[0];\n return (Number.parseFloat(transitionDuration) + Number.parseFloat(transitionDelay)) * MILLISECONDS_MULTIPLIER;\n};\nconst triggerTransitionEnd = element => {\n element.dispatchEvent(new Event(TRANSITION_END));\n};\nconst isElement = object => {\n if (!object || typeof object !== 'object') {\n return false;\n }\n if (typeof object.jquery !== 'undefined') {\n object = object[0];\n }\n return typeof object.nodeType !== 'undefined';\n};\nconst getElement = object => {\n // it's a jQuery object or a node element\n if (isElement(object)) {\n return object.jquery ? object[0] : object;\n }\n if (typeof object === 'string' && object.length > 0) {\n return document.querySelector(parseSelector(object));\n }\n return null;\n};\nconst isVisible = element => {\n if (!isElement(element) || element.getClientRects().length === 0) {\n return false;\n }\n const elementIsVisible = getComputedStyle(element).getPropertyValue('visibility') === 'visible';\n // Handle `details` element as its content may falsie appear visible when it is closed\n const closedDetails = element.closest('details:not([open])');\n if (!closedDetails) {\n return elementIsVisible;\n }\n if (closedDetails !== element) {\n const summary = element.closest('summary');\n if (summary && summary.parentNode !== closedDetails) {\n return false;\n }\n if (summary === null) {\n return false;\n }\n }\n return elementIsVisible;\n};\nconst isDisabled = element => {\n if (!element || element.nodeType !== Node.ELEMENT_NODE) {\n return true;\n }\n if (element.classList.contains('disabled')) {\n return true;\n }\n if (typeof element.disabled !== 'undefined') {\n return element.disabled;\n }\n return element.hasAttribute('disabled') && element.getAttribute('disabled') !== 'false';\n};\nconst findShadowRoot = element => {\n if (!document.documentElement.attachShadow) {\n return null;\n }\n\n // Can find the shadow root otherwise it'll return the document\n if (typeof element.getRootNode === 'function') {\n const root = element.getRootNode();\n return root instanceof ShadowRoot ? root : null;\n }\n if (element instanceof ShadowRoot) {\n return element;\n }\n\n // when we don't find a shadow root\n if (!element.parentNode) {\n return null;\n }\n return findShadowRoot(element.parentNode);\n};\nconst noop = () => {};\n\n/**\n * Trick to restart an element's animation\n *\n * @param {HTMLElement} element\n * @return void\n *\n * @see https://www.charistheo.io/blog/2021/02/restart-a-css-animation-with-javascript/#restarting-a-css-animation\n */\nconst reflow = element => {\n element.offsetHeight; // eslint-disable-line no-unused-expressions\n};\n\nconst getjQuery = () => {\n if (window.jQuery && !document.body.hasAttribute('data-bs-no-jquery')) {\n return window.jQuery;\n }\n return null;\n};\nconst DOMContentLoadedCallbacks = [];\nconst onDOMContentLoaded = callback => {\n if (document.readyState === 'loading') {\n // add listener on the first call when the document is in loading state\n if (!DOMContentLoadedCallbacks.length) {\n document.addEventListener('DOMContentLoaded', () => {\n for (const callback of DOMContentLoadedCallbacks) {\n callback();\n }\n });\n }\n DOMContentLoadedCallbacks.push(callback);\n } else {\n callback();\n }\n};\nconst isRTL = () => document.documentElement.dir === 'rtl';\nconst defineJQueryPlugin = plugin => {\n onDOMContentLoaded(() => {\n const $ = getjQuery();\n /* istanbul ignore if */\n if ($) {\n const name = plugin.NAME;\n const JQUERY_NO_CONFLICT = $.fn[name];\n $.fn[name] = plugin.jQueryInterface;\n $.fn[name].Constructor = plugin;\n $.fn[name].noConflict = () => {\n $.fn[name] = JQUERY_NO_CONFLICT;\n return plugin.jQueryInterface;\n };\n }\n });\n};\nconst execute = (possibleCallback, args = [], defaultValue = possibleCallback) => {\n return typeof possibleCallback === 'function' ? possibleCallback(...args) : defaultValue;\n};\nconst executeAfterTransition = (callback, transitionElement, waitForTransition = true) => {\n if (!waitForTransition) {\n execute(callback);\n return;\n }\n const durationPadding = 5;\n const emulatedDuration = getTransitionDurationFromElement(transitionElement) + durationPadding;\n let called = false;\n const handler = ({\n target\n }) => {\n if (target !== transitionElement) {\n return;\n }\n called = true;\n transitionElement.removeEventListener(TRANSITION_END, handler);\n execute(callback);\n };\n transitionElement.addEventListener(TRANSITION_END, handler);\n setTimeout(() => {\n if (!called) {\n triggerTransitionEnd(transitionElement);\n }\n }, emulatedDuration);\n};\n\n/**\n * Return the previous/next element of a list.\n *\n * @param {array} list The list of elements\n * @param activeElement The active element\n * @param shouldGetNext Choose to get next or previous element\n * @param isCycleAllowed\n * @return {Element|elem} The proper element\n */\nconst getNextActiveElement = (list, activeElement, shouldGetNext, isCycleAllowed) => {\n const listLength = list.length;\n let index = list.indexOf(activeElement);\n\n // if the element does not exist in the list return an element\n // depending on the direction and if cycle is allowed\n if (index === -1) {\n return !shouldGetNext && isCycleAllowed ? list[listLength - 1] : list[0];\n }\n index += shouldGetNext ? 1 : -1;\n if (isCycleAllowed) {\n index = (index + listLength) % listLength;\n }\n return list[Math.max(0, Math.min(index, listLength - 1))];\n};\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap dom/event-handler.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst namespaceRegex = /[^.]*(?=\\..*)\\.|.*/;\nconst stripNameRegex = /\\..*/;\nconst stripUidRegex = /::\\d+$/;\nconst eventRegistry = {}; // Events storage\nlet uidEvent = 1;\nconst customEvents = {\n mouseenter: 'mouseover',\n mouseleave: 'mouseout'\n};\nconst nativeEvents = new Set(['click', 'dblclick', 'mouseup', 'mousedown', 'contextmenu', 'mousewheel', 'DOMMouseScroll', 'mouseover', 'mouseout', 'mousemove', 'selectstart', 'selectend', 'keydown', 'keypress', 'keyup', 'orientationchange', 'touchstart', 'touchmove', 'touchend', 'touchcancel', 'pointerdown', 'pointermove', 'pointerup', 'pointerleave', 'pointercancel', 'gesturestart', 'gesturechange', 'gestureend', 'focus', 'blur', 'change', 'reset', 'select', 'submit', 'focusin', 'focusout', 'load', 'unload', 'beforeunload', 'resize', 'move', 'DOMContentLoaded', 'readystatechange', 'error', 'abort', 'scroll']);\n\n/**\n * Private methods\n */\n\nfunction makeEventUid(element, uid) {\n return uid && `${uid}::${uidEvent++}` || element.uidEvent || uidEvent++;\n}\nfunction getElementEvents(element) {\n const uid = makeEventUid(element);\n element.uidEvent = uid;\n eventRegistry[uid] = eventRegistry[uid] || {};\n return eventRegistry[uid];\n}\nfunction bootstrapHandler(element, fn) {\n return function handler(event) {\n hydrateObj(event, {\n delegateTarget: element\n });\n if (handler.oneOff) {\n EventHandler.off(element, event.type, fn);\n }\n return fn.apply(element, [event]);\n };\n}\nfunction bootstrapDelegationHandler(element, selector, fn) {\n return function handler(event) {\n const domElements = element.querySelectorAll(selector);\n for (let {\n target\n } = event; target && target !== this; target = target.parentNode) {\n for (const domElement of domElements) {\n if (domElement !== target) {\n continue;\n }\n hydrateObj(event, {\n delegateTarget: target\n });\n if (handler.oneOff) {\n EventHandler.off(element, event.type, selector, fn);\n }\n return fn.apply(target, [event]);\n }\n }\n };\n}\nfunction findHandler(events, callable, delegationSelector = null) {\n return Object.values(events).find(event => event.callable === callable && event.delegationSelector === delegationSelector);\n}\nfunction normalizeParameters(originalTypeEvent, handler, delegationFunction) {\n const isDelegated = typeof handler === 'string';\n // TODO: tooltip passes `false` instead of selector, so we need to check\n const callable = isDelegated ? delegationFunction : handler || delegationFunction;\n let typeEvent = getTypeEvent(originalTypeEvent);\n if (!nativeEvents.has(typeEvent)) {\n typeEvent = originalTypeEvent;\n }\n return [isDelegated, callable, typeEvent];\n}\nfunction addHandler(element, originalTypeEvent, handler, delegationFunction, oneOff) {\n if (typeof originalTypeEvent !== 'string' || !element) {\n return;\n }\n let [isDelegated, callable, typeEvent] = normalizeParameters(originalTypeEvent, handler, delegationFunction);\n\n // in case of mouseenter or mouseleave wrap the handler within a function that checks for its DOM position\n // this prevents the handler from being dispatched the same way as mouseover or mouseout does\n if (originalTypeEvent in customEvents) {\n const wrapFunction = fn => {\n return function (event) {\n if (!event.relatedTarget || event.relatedTarget !== event.delegateTarget && !event.delegateTarget.contains(event.relatedTarget)) {\n return fn.call(this, event);\n }\n };\n };\n callable = wrapFunction(callable);\n }\n const events = getElementEvents(element);\n const handlers = events[typeEvent] || (events[typeEvent] = {});\n const previousFunction = findHandler(handlers, callable, isDelegated ? handler : null);\n if (previousFunction) {\n previousFunction.oneOff = previousFunction.oneOff && oneOff;\n return;\n }\n const uid = makeEventUid(callable, originalTypeEvent.replace(namespaceRegex, ''));\n const fn = isDelegated ? bootstrapDelegationHandler(element, handler, callable) : bootstrapHandler(element, callable);\n fn.delegationSelector = isDelegated ? handler : null;\n fn.callable = callable;\n fn.oneOff = oneOff;\n fn.uidEvent = uid;\n handlers[uid] = fn;\n element.addEventListener(typeEvent, fn, isDelegated);\n}\nfunction removeHandler(element, events, typeEvent, handler, delegationSelector) {\n const fn = findHandler(events[typeEvent], handler, delegationSelector);\n if (!fn) {\n return;\n }\n element.removeEventListener(typeEvent, fn, Boolean(delegationSelector));\n delete events[typeEvent][fn.uidEvent];\n}\nfunction removeNamespacedHandlers(element, events, typeEvent, namespace) {\n const storeElementEvent = events[typeEvent] || {};\n for (const [handlerKey, event] of Object.entries(storeElementEvent)) {\n if (handlerKey.includes(namespace)) {\n removeHandler(element, events, typeEvent, event.callable, event.delegationSelector);\n }\n }\n}\nfunction getTypeEvent(event) {\n // allow to get the native events from namespaced events ('click.bs.button' --> 'click')\n event = event.replace(stripNameRegex, '');\n return customEvents[event] || event;\n}\nconst EventHandler = {\n on(element, event, handler, delegationFunction) {\n addHandler(element, event, handler, delegationFunction, false);\n },\n one(element, event, handler, delegationFunction) {\n addHandler(element, event, handler, delegationFunction, true);\n },\n off(element, originalTypeEvent, handler, delegationFunction) {\n if (typeof originalTypeEvent !== 'string' || !element) {\n return;\n }\n const [isDelegated, callable, typeEvent] = normalizeParameters(originalTypeEvent, handler, delegationFunction);\n const inNamespace = typeEvent !== originalTypeEvent;\n const events = getElementEvents(element);\n const storeElementEvent = events[typeEvent] || {};\n const isNamespace = originalTypeEvent.startsWith('.');\n if (typeof callable !== 'undefined') {\n // Simplest case: handler is passed, remove that listener ONLY.\n if (!Object.keys(storeElementEvent).length) {\n return;\n }\n removeHandler(element, events, typeEvent, callable, isDelegated ? handler : null);\n return;\n }\n if (isNamespace) {\n for (const elementEvent of Object.keys(events)) {\n removeNamespacedHandlers(element, events, elementEvent, originalTypeEvent.slice(1));\n }\n }\n for (const [keyHandlers, event] of Object.entries(storeElementEvent)) {\n const handlerKey = keyHandlers.replace(stripUidRegex, '');\n if (!inNamespace || originalTypeEvent.includes(handlerKey)) {\n removeHandler(element, events, typeEvent, event.callable, event.delegationSelector);\n }\n }\n },\n trigger(element, event, args) {\n if (typeof event !== 'string' || !element) {\n return null;\n }\n const $ = getjQuery();\n const typeEvent = getTypeEvent(event);\n const inNamespace = event !== typeEvent;\n let jQueryEvent = null;\n let bubbles = true;\n let nativeDispatch = true;\n let defaultPrevented = false;\n if (inNamespace && $) {\n jQueryEvent = $.Event(event, args);\n $(element).trigger(jQueryEvent);\n bubbles = !jQueryEvent.isPropagationStopped();\n nativeDispatch = !jQueryEvent.isImmediatePropagationStopped();\n defaultPrevented = jQueryEvent.isDefaultPrevented();\n }\n const evt = hydrateObj(new Event(event, {\n bubbles,\n cancelable: true\n }), args);\n if (defaultPrevented) {\n evt.preventDefault();\n }\n if (nativeDispatch) {\n element.dispatchEvent(evt);\n }\n if (evt.defaultPrevented && jQueryEvent) {\n jQueryEvent.preventDefault();\n }\n return evt;\n }\n};\nfunction hydrateObj(obj, meta = {}) {\n for (const [key, value] of Object.entries(meta)) {\n try {\n obj[key] = value;\n } catch (_unused) {\n Object.defineProperty(obj, key, {\n configurable: true,\n get() {\n return value;\n }\n });\n }\n }\n return obj;\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap dom/manipulator.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nfunction normalizeData(value) {\n if (value === 'true') {\n return true;\n }\n if (value === 'false') {\n return false;\n }\n if (value === Number(value).toString()) {\n return Number(value);\n }\n if (value === '' || value === 'null') {\n return null;\n }\n if (typeof value !== 'string') {\n return value;\n }\n try {\n return JSON.parse(decodeURIComponent(value));\n } catch (_unused) {\n return value;\n }\n}\nfunction normalizeDataKey(key) {\n return key.replace(/[A-Z]/g, chr => `-${chr.toLowerCase()}`);\n}\nconst Manipulator = {\n setDataAttribute(element, key, value) {\n element.setAttribute(`data-bs-${normalizeDataKey(key)}`, value);\n },\n removeDataAttribute(element, key) {\n element.removeAttribute(`data-bs-${normalizeDataKey(key)}`);\n },\n getDataAttributes(element) {\n if (!element) {\n return {};\n }\n const attributes = {};\n const bsKeys = Object.keys(element.dataset).filter(key => key.startsWith('bs') && !key.startsWith('bsConfig'));\n for (const key of bsKeys) {\n let pureKey = key.replace(/^bs/, '');\n pureKey = pureKey.charAt(0).toLowerCase() + pureKey.slice(1, pureKey.length);\n attributes[pureKey] = normalizeData(element.dataset[key]);\n }\n return attributes;\n },\n getDataAttribute(element, key) {\n return normalizeData(element.getAttribute(`data-bs-${normalizeDataKey(key)}`));\n }\n};\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/config.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Class definition\n */\n\nclass Config {\n // Getters\n static get Default() {\n return {};\n }\n static get DefaultType() {\n return {};\n }\n static get NAME() {\n throw new Error('You have to implement the static method \"NAME\", for each component!');\n }\n _getConfig(config) {\n config = this._mergeConfigObj(config);\n config = this._configAfterMerge(config);\n this._typeCheckConfig(config);\n return config;\n }\n _configAfterMerge(config) {\n return config;\n }\n _mergeConfigObj(config, element) {\n const jsonConfig = isElement(element) ? Manipulator.getDataAttribute(element, 'config') : {}; // try to parse\n\n return {\n ...this.constructor.Default,\n ...(typeof jsonConfig === 'object' ? jsonConfig : {}),\n ...(isElement(element) ? Manipulator.getDataAttributes(element) : {}),\n ...(typeof config === 'object' ? config : {})\n };\n }\n _typeCheckConfig(config, configTypes = this.constructor.DefaultType) {\n for (const [property, expectedTypes] of Object.entries(configTypes)) {\n const value = config[property];\n const valueType = isElement(value) ? 'element' : toType(value);\n if (!new RegExp(expectedTypes).test(valueType)) {\n throw new TypeError(`${this.constructor.NAME.toUpperCase()}: Option \"${property}\" provided type \"${valueType}\" but expected type \"${expectedTypes}\".`);\n }\n }\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap base-component.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst VERSION = '5.3.2';\n\n/**\n * Class definition\n */\n\nclass BaseComponent extends Config {\n constructor(element, config) {\n super();\n element = getElement(element);\n if (!element) {\n return;\n }\n this._element = element;\n this._config = this._getConfig(config);\n Data.set(this._element, this.constructor.DATA_KEY, this);\n }\n\n // Public\n dispose() {\n Data.remove(this._element, this.constructor.DATA_KEY);\n EventHandler.off(this._element, this.constructor.EVENT_KEY);\n for (const propertyName of Object.getOwnPropertyNames(this)) {\n this[propertyName] = null;\n }\n }\n _queueCallback(callback, element, isAnimated = true) {\n executeAfterTransition(callback, element, isAnimated);\n }\n _getConfig(config) {\n config = this._mergeConfigObj(config, this._element);\n config = this._configAfterMerge(config);\n this._typeCheckConfig(config);\n return config;\n }\n\n // Static\n static getInstance(element) {\n return Data.get(getElement(element), this.DATA_KEY);\n }\n static getOrCreateInstance(element, config = {}) {\n return this.getInstance(element) || new this(element, typeof config === 'object' ? config : null);\n }\n static get VERSION() {\n return VERSION;\n }\n static get DATA_KEY() {\n return `bs.${this.NAME}`;\n }\n static get EVENT_KEY() {\n return `.${this.DATA_KEY}`;\n }\n static eventName(name) {\n return `${name}${this.EVENT_KEY}`;\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap dom/selector-engine.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nconst getSelector = element => {\n let selector = element.getAttribute('data-bs-target');\n if (!selector || selector === '#') {\n let hrefAttribute = element.getAttribute('href');\n\n // The only valid content that could double as a selector are IDs or classes,\n // so everything starting with `#` or `.`. If a \"real\" URL is used as the selector,\n // `document.querySelector` will rightfully complain it is invalid.\n // See https://github.com/twbs/bootstrap/issues/32273\n if (!hrefAttribute || !hrefAttribute.includes('#') && !hrefAttribute.startsWith('.')) {\n return null;\n }\n\n // Just in case some CMS puts out a full URL with the anchor appended\n if (hrefAttribute.includes('#') && !hrefAttribute.startsWith('#')) {\n hrefAttribute = `#${hrefAttribute.split('#')[1]}`;\n }\n selector = hrefAttribute && hrefAttribute !== '#' ? parseSelector(hrefAttribute.trim()) : null;\n }\n return selector;\n};\nconst SelectorEngine = {\n find(selector, element = document.documentElement) {\n return [].concat(...Element.prototype.querySelectorAll.call(element, selector));\n },\n findOne(selector, element = document.documentElement) {\n return Element.prototype.querySelector.call(element, selector);\n },\n children(element, selector) {\n return [].concat(...element.children).filter(child => child.matches(selector));\n },\n parents(element, selector) {\n const parents = [];\n let ancestor = element.parentNode.closest(selector);\n while (ancestor) {\n parents.push(ancestor);\n ancestor = ancestor.parentNode.closest(selector);\n }\n return parents;\n },\n prev(element, selector) {\n let previous = element.previousElementSibling;\n while (previous) {\n if (previous.matches(selector)) {\n return [previous];\n }\n previous = previous.previousElementSibling;\n }\n return [];\n },\n // TODO: this is now unused; remove later along with prev()\n next(element, selector) {\n let next = element.nextElementSibling;\n while (next) {\n if (next.matches(selector)) {\n return [next];\n }\n next = next.nextElementSibling;\n }\n return [];\n },\n focusableChildren(element) {\n const focusables = ['a', 'button', 'input', 'textarea', 'select', 'details', '[tabindex]', '[contenteditable=\"true\"]'].map(selector => `${selector}:not([tabindex^=\"-\"])`).join(',');\n return this.find(focusables, element).filter(el => !isDisabled(el) && isVisible(el));\n },\n getSelectorFromElement(element) {\n const selector = getSelector(element);\n if (selector) {\n return SelectorEngine.findOne(selector) ? selector : null;\n }\n return null;\n },\n getElementFromSelector(element) {\n const selector = getSelector(element);\n return selector ? SelectorEngine.findOne(selector) : null;\n },\n getMultipleElementsFromSelector(element) {\n const selector = getSelector(element);\n return selector ? SelectorEngine.find(selector) : [];\n }\n};\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/component-functions.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nconst enableDismissTrigger = (component, method = 'hide') => {\n const clickEvent = `click.dismiss${component.EVENT_KEY}`;\n const name = component.NAME;\n EventHandler.on(document, clickEvent, `[data-bs-dismiss=\"${name}\"]`, function (event) {\n if (['A', 'AREA'].includes(this.tagName)) {\n event.preventDefault();\n }\n if (isDisabled(this)) {\n return;\n }\n const target = SelectorEngine.getElementFromSelector(this) || this.closest(`.${name}`);\n const instance = component.getOrCreateInstance(target);\n\n // Method argument is left, for Alert and only, as it doesn't implement the 'hide' method\n instance[method]();\n });\n};\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap alert.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$f = 'alert';\nconst DATA_KEY$a = 'bs.alert';\nconst EVENT_KEY$b = `.${DATA_KEY$a}`;\nconst EVENT_CLOSE = `close${EVENT_KEY$b}`;\nconst EVENT_CLOSED = `closed${EVENT_KEY$b}`;\nconst CLASS_NAME_FADE$5 = 'fade';\nconst CLASS_NAME_SHOW$8 = 'show';\n\n/**\n * Class definition\n */\n\nclass Alert extends BaseComponent {\n // Getters\n static get NAME() {\n return NAME$f;\n }\n\n // Public\n close() {\n const closeEvent = EventHandler.trigger(this._element, EVENT_CLOSE);\n if (closeEvent.defaultPrevented) {\n return;\n }\n this._element.classList.remove(CLASS_NAME_SHOW$8);\n const isAnimated = this._element.classList.contains(CLASS_NAME_FADE$5);\n this._queueCallback(() => this._destroyElement(), this._element, isAnimated);\n }\n\n // Private\n _destroyElement() {\n this._element.remove();\n EventHandler.trigger(this._element, EVENT_CLOSED);\n this.dispose();\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Alert.getOrCreateInstance(this);\n if (typeof config !== 'string') {\n return;\n }\n if (data[config] === undefined || config.startsWith('_') || config === 'constructor') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config](this);\n });\n }\n}\n\n/**\n * Data API implementation\n */\n\nenableDismissTrigger(Alert, 'close');\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Alert);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap button.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$e = 'button';\nconst DATA_KEY$9 = 'bs.button';\nconst EVENT_KEY$a = `.${DATA_KEY$9}`;\nconst DATA_API_KEY$6 = '.data-api';\nconst CLASS_NAME_ACTIVE$3 = 'active';\nconst SELECTOR_DATA_TOGGLE$5 = '[data-bs-toggle=\"button\"]';\nconst EVENT_CLICK_DATA_API$6 = `click${EVENT_KEY$a}${DATA_API_KEY$6}`;\n\n/**\n * Class definition\n */\n\nclass Button extends BaseComponent {\n // Getters\n static get NAME() {\n return NAME$e;\n }\n\n // Public\n toggle() {\n // Toggle class and sync the `aria-pressed` attribute with the return value of the `.toggle()` method\n this._element.setAttribute('aria-pressed', this._element.classList.toggle(CLASS_NAME_ACTIVE$3));\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Button.getOrCreateInstance(this);\n if (config === 'toggle') {\n data[config]();\n }\n });\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_CLICK_DATA_API$6, SELECTOR_DATA_TOGGLE$5, event => {\n event.preventDefault();\n const button = event.target.closest(SELECTOR_DATA_TOGGLE$5);\n const data = Button.getOrCreateInstance(button);\n data.toggle();\n});\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Button);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/swipe.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$d = 'swipe';\nconst EVENT_KEY$9 = '.bs.swipe';\nconst EVENT_TOUCHSTART = `touchstart${EVENT_KEY$9}`;\nconst EVENT_TOUCHMOVE = `touchmove${EVENT_KEY$9}`;\nconst EVENT_TOUCHEND = `touchend${EVENT_KEY$9}`;\nconst EVENT_POINTERDOWN = `pointerdown${EVENT_KEY$9}`;\nconst EVENT_POINTERUP = `pointerup${EVENT_KEY$9}`;\nconst POINTER_TYPE_TOUCH = 'touch';\nconst POINTER_TYPE_PEN = 'pen';\nconst CLASS_NAME_POINTER_EVENT = 'pointer-event';\nconst SWIPE_THRESHOLD = 40;\nconst Default$c = {\n endCallback: null,\n leftCallback: null,\n rightCallback: null\n};\nconst DefaultType$c = {\n endCallback: '(function|null)',\n leftCallback: '(function|null)',\n rightCallback: '(function|null)'\n};\n\n/**\n * Class definition\n */\n\nclass Swipe extends Config {\n constructor(element, config) {\n super();\n this._element = element;\n if (!element || !Swipe.isSupported()) {\n return;\n }\n this._config = this._getConfig(config);\n this._deltaX = 0;\n this._supportPointerEvents = Boolean(window.PointerEvent);\n this._initEvents();\n }\n\n // Getters\n static get Default() {\n return Default$c;\n }\n static get DefaultType() {\n return DefaultType$c;\n }\n static get NAME() {\n return NAME$d;\n }\n\n // Public\n dispose() {\n EventHandler.off(this._element, EVENT_KEY$9);\n }\n\n // Private\n _start(event) {\n if (!this._supportPointerEvents) {\n this._deltaX = event.touches[0].clientX;\n return;\n }\n if (this._eventIsPointerPenTouch(event)) {\n this._deltaX = event.clientX;\n }\n }\n _end(event) {\n if (this._eventIsPointerPenTouch(event)) {\n this._deltaX = event.clientX - this._deltaX;\n }\n this._handleSwipe();\n execute(this._config.endCallback);\n }\n _move(event) {\n this._deltaX = event.touches && event.touches.length > 1 ? 0 : event.touches[0].clientX - this._deltaX;\n }\n _handleSwipe() {\n const absDeltaX = Math.abs(this._deltaX);\n if (absDeltaX <= SWIPE_THRESHOLD) {\n return;\n }\n const direction = absDeltaX / this._deltaX;\n this._deltaX = 0;\n if (!direction) {\n return;\n }\n execute(direction > 0 ? this._config.rightCallback : this._config.leftCallback);\n }\n _initEvents() {\n if (this._supportPointerEvents) {\n EventHandler.on(this._element, EVENT_POINTERDOWN, event => this._start(event));\n EventHandler.on(this._element, EVENT_POINTERUP, event => this._end(event));\n this._element.classList.add(CLASS_NAME_POINTER_EVENT);\n } else {\n EventHandler.on(this._element, EVENT_TOUCHSTART, event => this._start(event));\n EventHandler.on(this._element, EVENT_TOUCHMOVE, event => this._move(event));\n EventHandler.on(this._element, EVENT_TOUCHEND, event => this._end(event));\n }\n }\n _eventIsPointerPenTouch(event) {\n return this._supportPointerEvents && (event.pointerType === POINTER_TYPE_PEN || event.pointerType === POINTER_TYPE_TOUCH);\n }\n\n // Static\n static isSupported() {\n return 'ontouchstart' in document.documentElement || navigator.maxTouchPoints > 0;\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap carousel.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$c = 'carousel';\nconst DATA_KEY$8 = 'bs.carousel';\nconst EVENT_KEY$8 = `.${DATA_KEY$8}`;\nconst DATA_API_KEY$5 = '.data-api';\nconst ARROW_LEFT_KEY$1 = 'ArrowLeft';\nconst ARROW_RIGHT_KEY$1 = 'ArrowRight';\nconst TOUCHEVENT_COMPAT_WAIT = 500; // Time for mouse compat events to fire after touch\n\nconst ORDER_NEXT = 'next';\nconst ORDER_PREV = 'prev';\nconst DIRECTION_LEFT = 'left';\nconst DIRECTION_RIGHT = 'right';\nconst EVENT_SLIDE = `slide${EVENT_KEY$8}`;\nconst EVENT_SLID = `slid${EVENT_KEY$8}`;\nconst EVENT_KEYDOWN$1 = `keydown${EVENT_KEY$8}`;\nconst EVENT_MOUSEENTER$1 = `mouseenter${EVENT_KEY$8}`;\nconst EVENT_MOUSELEAVE$1 = `mouseleave${EVENT_KEY$8}`;\nconst EVENT_DRAG_START = `dragstart${EVENT_KEY$8}`;\nconst EVENT_LOAD_DATA_API$3 = `load${EVENT_KEY$8}${DATA_API_KEY$5}`;\nconst EVENT_CLICK_DATA_API$5 = `click${EVENT_KEY$8}${DATA_API_KEY$5}`;\nconst CLASS_NAME_CAROUSEL = 'carousel';\nconst CLASS_NAME_ACTIVE$2 = 'active';\nconst CLASS_NAME_SLIDE = 'slide';\nconst CLASS_NAME_END = 'carousel-item-end';\nconst CLASS_NAME_START = 'carousel-item-start';\nconst CLASS_NAME_NEXT = 'carousel-item-next';\nconst CLASS_NAME_PREV = 'carousel-item-prev';\nconst SELECTOR_ACTIVE = '.active';\nconst SELECTOR_ITEM = '.carousel-item';\nconst SELECTOR_ACTIVE_ITEM = SELECTOR_ACTIVE + SELECTOR_ITEM;\nconst SELECTOR_ITEM_IMG = '.carousel-item img';\nconst SELECTOR_INDICATORS = '.carousel-indicators';\nconst SELECTOR_DATA_SLIDE = '[data-bs-slide], [data-bs-slide-to]';\nconst SELECTOR_DATA_RIDE = '[data-bs-ride=\"carousel\"]';\nconst KEY_TO_DIRECTION = {\n [ARROW_LEFT_KEY$1]: DIRECTION_RIGHT,\n [ARROW_RIGHT_KEY$1]: DIRECTION_LEFT\n};\nconst Default$b = {\n interval: 5000,\n keyboard: true,\n pause: 'hover',\n ride: false,\n touch: true,\n wrap: true\n};\nconst DefaultType$b = {\n interval: '(number|boolean)',\n // TODO:v6 remove boolean support\n keyboard: 'boolean',\n pause: '(string|boolean)',\n ride: '(boolean|string)',\n touch: 'boolean',\n wrap: 'boolean'\n};\n\n/**\n * Class definition\n */\n\nclass Carousel extends BaseComponent {\n constructor(element, config) {\n super(element, config);\n this._interval = null;\n this._activeElement = null;\n this._isSliding = false;\n this.touchTimeout = null;\n this._swipeHelper = null;\n this._indicatorsElement = SelectorEngine.findOne(SELECTOR_INDICATORS, this._element);\n this._addEventListeners();\n if (this._config.ride === CLASS_NAME_CAROUSEL) {\n this.cycle();\n }\n }\n\n // Getters\n static get Default() {\n return Default$b;\n }\n static get DefaultType() {\n return DefaultType$b;\n }\n static get NAME() {\n return NAME$c;\n }\n\n // Public\n next() {\n this._slide(ORDER_NEXT);\n }\n nextWhenVisible() {\n // FIXME TODO use `document.visibilityState`\n // Don't call next when the page isn't visible\n // or the carousel or its parent isn't visible\n if (!document.hidden && isVisible(this._element)) {\n this.next();\n }\n }\n prev() {\n this._slide(ORDER_PREV);\n }\n pause() {\n if (this._isSliding) {\n triggerTransitionEnd(this._element);\n }\n this._clearInterval();\n }\n cycle() {\n this._clearInterval();\n this._updateInterval();\n this._interval = setInterval(() => this.nextWhenVisible(), this._config.interval);\n }\n _maybeEnableCycle() {\n if (!this._config.ride) {\n return;\n }\n if (this._isSliding) {\n EventHandler.one(this._element, EVENT_SLID, () => this.cycle());\n return;\n }\n this.cycle();\n }\n to(index) {\n const items = this._getItems();\n if (index > items.length - 1 || index < 0) {\n return;\n }\n if (this._isSliding) {\n EventHandler.one(this._element, EVENT_SLID, () => this.to(index));\n return;\n }\n const activeIndex = this._getItemIndex(this._getActive());\n if (activeIndex === index) {\n return;\n }\n const order = index > activeIndex ? ORDER_NEXT : ORDER_PREV;\n this._slide(order, items[index]);\n }\n dispose() {\n if (this._swipeHelper) {\n this._swipeHelper.dispose();\n }\n super.dispose();\n }\n\n // Private\n _configAfterMerge(config) {\n config.defaultInterval = config.interval;\n return config;\n }\n _addEventListeners() {\n if (this._config.keyboard) {\n EventHandler.on(this._element, EVENT_KEYDOWN$1, event => this._keydown(event));\n }\n if (this._config.pause === 'hover') {\n EventHandler.on(this._element, EVENT_MOUSEENTER$1, () => this.pause());\n EventHandler.on(this._element, EVENT_MOUSELEAVE$1, () => this._maybeEnableCycle());\n }\n if (this._config.touch && Swipe.isSupported()) {\n this._addTouchEventListeners();\n }\n }\n _addTouchEventListeners() {\n for (const img of SelectorEngine.find(SELECTOR_ITEM_IMG, this._element)) {\n EventHandler.on(img, EVENT_DRAG_START, event => event.preventDefault());\n }\n const endCallBack = () => {\n if (this._config.pause !== 'hover') {\n return;\n }\n\n // If it's a touch-enabled device, mouseenter/leave are fired as\n // part of the mouse compatibility events on first tap - the carousel\n // would stop cycling until user tapped out of it;\n // here, we listen for touchend, explicitly pause the carousel\n // (as if it's the second time we tap on it, mouseenter compat event\n // is NOT fired) and after a timeout (to allow for mouse compatibility\n // events to fire) we explicitly restart cycling\n\n this.pause();\n if (this.touchTimeout) {\n clearTimeout(this.touchTimeout);\n }\n this.touchTimeout = setTimeout(() => this._maybeEnableCycle(), TOUCHEVENT_COMPAT_WAIT + this._config.interval);\n };\n const swipeConfig = {\n leftCallback: () => this._slide(this._directionToOrder(DIRECTION_LEFT)),\n rightCallback: () => this._slide(this._directionToOrder(DIRECTION_RIGHT)),\n endCallback: endCallBack\n };\n this._swipeHelper = new Swipe(this._element, swipeConfig);\n }\n _keydown(event) {\n if (/input|textarea/i.test(event.target.tagName)) {\n return;\n }\n const direction = KEY_TO_DIRECTION[event.key];\n if (direction) {\n event.preventDefault();\n this._slide(this._directionToOrder(direction));\n }\n }\n _getItemIndex(element) {\n return this._getItems().indexOf(element);\n }\n _setActiveIndicatorElement(index) {\n if (!this._indicatorsElement) {\n return;\n }\n const activeIndicator = SelectorEngine.findOne(SELECTOR_ACTIVE, this._indicatorsElement);\n activeIndicator.classList.remove(CLASS_NAME_ACTIVE$2);\n activeIndicator.removeAttribute('aria-current');\n const newActiveIndicator = SelectorEngine.findOne(`[data-bs-slide-to=\"${index}\"]`, this._indicatorsElement);\n if (newActiveIndicator) {\n newActiveIndicator.classList.add(CLASS_NAME_ACTIVE$2);\n newActiveIndicator.setAttribute('aria-current', 'true');\n }\n }\n _updateInterval() {\n const element = this._activeElement || this._getActive();\n if (!element) {\n return;\n }\n const elementInterval = Number.parseInt(element.getAttribute('data-bs-interval'), 10);\n this._config.interval = elementInterval || this._config.defaultInterval;\n }\n _slide(order, element = null) {\n if (this._isSliding) {\n return;\n }\n const activeElement = this._getActive();\n const isNext = order === ORDER_NEXT;\n const nextElement = element || getNextActiveElement(this._getItems(), activeElement, isNext, this._config.wrap);\n if (nextElement === activeElement) {\n return;\n }\n const nextElementIndex = this._getItemIndex(nextElement);\n const triggerEvent = eventName => {\n return EventHandler.trigger(this._element, eventName, {\n relatedTarget: nextElement,\n direction: this._orderToDirection(order),\n from: this._getItemIndex(activeElement),\n to: nextElementIndex\n });\n };\n const slideEvent = triggerEvent(EVENT_SLIDE);\n if (slideEvent.defaultPrevented) {\n return;\n }\n if (!activeElement || !nextElement) {\n // Some weirdness is happening, so we bail\n // TODO: change tests that use empty divs to avoid this check\n return;\n }\n const isCycling = Boolean(this._interval);\n this.pause();\n this._isSliding = true;\n this._setActiveIndicatorElement(nextElementIndex);\n this._activeElement = nextElement;\n const directionalClassName = isNext ? CLASS_NAME_START : CLASS_NAME_END;\n const orderClassName = isNext ? CLASS_NAME_NEXT : CLASS_NAME_PREV;\n nextElement.classList.add(orderClassName);\n reflow(nextElement);\n activeElement.classList.add(directionalClassName);\n nextElement.classList.add(directionalClassName);\n const completeCallBack = () => {\n nextElement.classList.remove(directionalClassName, orderClassName);\n nextElement.classList.add(CLASS_NAME_ACTIVE$2);\n activeElement.classList.remove(CLASS_NAME_ACTIVE$2, orderClassName, directionalClassName);\n this._isSliding = false;\n triggerEvent(EVENT_SLID);\n };\n this._queueCallback(completeCallBack, activeElement, this._isAnimated());\n if (isCycling) {\n this.cycle();\n }\n }\n _isAnimated() {\n return this._element.classList.contains(CLASS_NAME_SLIDE);\n }\n _getActive() {\n return SelectorEngine.findOne(SELECTOR_ACTIVE_ITEM, this._element);\n }\n _getItems() {\n return SelectorEngine.find(SELECTOR_ITEM, this._element);\n }\n _clearInterval() {\n if (this._interval) {\n clearInterval(this._interval);\n this._interval = null;\n }\n }\n _directionToOrder(direction) {\n if (isRTL()) {\n return direction === DIRECTION_LEFT ? ORDER_PREV : ORDER_NEXT;\n }\n return direction === DIRECTION_LEFT ? ORDER_NEXT : ORDER_PREV;\n }\n _orderToDirection(order) {\n if (isRTL()) {\n return order === ORDER_PREV ? DIRECTION_LEFT : DIRECTION_RIGHT;\n }\n return order === ORDER_PREV ? DIRECTION_RIGHT : DIRECTION_LEFT;\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Carousel.getOrCreateInstance(this, config);\n if (typeof config === 'number') {\n data.to(config);\n return;\n }\n if (typeof config === 'string') {\n if (data[config] === undefined || config.startsWith('_') || config === 'constructor') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config]();\n }\n });\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_CLICK_DATA_API$5, SELECTOR_DATA_SLIDE, function (event) {\n const target = SelectorEngine.getElementFromSelector(this);\n if (!target || !target.classList.contains(CLASS_NAME_CAROUSEL)) {\n return;\n }\n event.preventDefault();\n const carousel = Carousel.getOrCreateInstance(target);\n const slideIndex = this.getAttribute('data-bs-slide-to');\n if (slideIndex) {\n carousel.to(slideIndex);\n carousel._maybeEnableCycle();\n return;\n }\n if (Manipulator.getDataAttribute(this, 'slide') === 'next') {\n carousel.next();\n carousel._maybeEnableCycle();\n return;\n }\n carousel.prev();\n carousel._maybeEnableCycle();\n});\nEventHandler.on(window, EVENT_LOAD_DATA_API$3, () => {\n const carousels = SelectorEngine.find(SELECTOR_DATA_RIDE);\n for (const carousel of carousels) {\n Carousel.getOrCreateInstance(carousel);\n }\n});\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Carousel);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap collapse.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$b = 'collapse';\nconst DATA_KEY$7 = 'bs.collapse';\nconst EVENT_KEY$7 = `.${DATA_KEY$7}`;\nconst DATA_API_KEY$4 = '.data-api';\nconst EVENT_SHOW$6 = `show${EVENT_KEY$7}`;\nconst EVENT_SHOWN$6 = `shown${EVENT_KEY$7}`;\nconst EVENT_HIDE$6 = `hide${EVENT_KEY$7}`;\nconst EVENT_HIDDEN$6 = `hidden${EVENT_KEY$7}`;\nconst EVENT_CLICK_DATA_API$4 = `click${EVENT_KEY$7}${DATA_API_KEY$4}`;\nconst CLASS_NAME_SHOW$7 = 'show';\nconst CLASS_NAME_COLLAPSE = 'collapse';\nconst CLASS_NAME_COLLAPSING = 'collapsing';\nconst CLASS_NAME_COLLAPSED = 'collapsed';\nconst CLASS_NAME_DEEPER_CHILDREN = `:scope .${CLASS_NAME_COLLAPSE} .${CLASS_NAME_COLLAPSE}`;\nconst CLASS_NAME_HORIZONTAL = 'collapse-horizontal';\nconst WIDTH = 'width';\nconst HEIGHT = 'height';\nconst SELECTOR_ACTIVES = '.collapse.show, .collapse.collapsing';\nconst SELECTOR_DATA_TOGGLE$4 = '[data-bs-toggle=\"collapse\"]';\nconst Default$a = {\n parent: null,\n toggle: true\n};\nconst DefaultType$a = {\n parent: '(null|element)',\n toggle: 'boolean'\n};\n\n/**\n * Class definition\n */\n\nclass Collapse extends BaseComponent {\n constructor(element, config) {\n super(element, config);\n this._isTransitioning = false;\n this._triggerArray = [];\n const toggleList = SelectorEngine.find(SELECTOR_DATA_TOGGLE$4);\n for (const elem of toggleList) {\n const selector = SelectorEngine.getSelectorFromElement(elem);\n const filterElement = SelectorEngine.find(selector).filter(foundElement => foundElement === this._element);\n if (selector !== null && filterElement.length) {\n this._triggerArray.push(elem);\n }\n }\n this._initializeChildren();\n if (!this._config.parent) {\n this._addAriaAndCollapsedClass(this._triggerArray, this._isShown());\n }\n if (this._config.toggle) {\n this.toggle();\n }\n }\n\n // Getters\n static get Default() {\n return Default$a;\n }\n static get DefaultType() {\n return DefaultType$a;\n }\n static get NAME() {\n return NAME$b;\n }\n\n // Public\n toggle() {\n if (this._isShown()) {\n this.hide();\n } else {\n this.show();\n }\n }\n show() {\n if (this._isTransitioning || this._isShown()) {\n return;\n }\n let activeChildren = [];\n\n // find active children\n if (this._config.parent) {\n activeChildren = this._getFirstLevelChildren(SELECTOR_ACTIVES).filter(element => element !== this._element).map(element => Collapse.getOrCreateInstance(element, {\n toggle: false\n }));\n }\n if (activeChildren.length && activeChildren[0]._isTransitioning) {\n return;\n }\n const startEvent = EventHandler.trigger(this._element, EVENT_SHOW$6);\n if (startEvent.defaultPrevented) {\n return;\n }\n for (const activeInstance of activeChildren) {\n activeInstance.hide();\n }\n const dimension = this._getDimension();\n this._element.classList.remove(CLASS_NAME_COLLAPSE);\n this._element.classList.add(CLASS_NAME_COLLAPSING);\n this._element.style[dimension] = 0;\n this._addAriaAndCollapsedClass(this._triggerArray, true);\n this._isTransitioning = true;\n const complete = () => {\n this._isTransitioning = false;\n this._element.classList.remove(CLASS_NAME_COLLAPSING);\n this._element.classList.add(CLASS_NAME_COLLAPSE, CLASS_NAME_SHOW$7);\n this._element.style[dimension] = '';\n EventHandler.trigger(this._element, EVENT_SHOWN$6);\n };\n const capitalizedDimension = dimension[0].toUpperCase() + dimension.slice(1);\n const scrollSize = `scroll${capitalizedDimension}`;\n this._queueCallback(complete, this._element, true);\n this._element.style[dimension] = `${this._element[scrollSize]}px`;\n }\n hide() {\n if (this._isTransitioning || !this._isShown()) {\n return;\n }\n const startEvent = EventHandler.trigger(this._element, EVENT_HIDE$6);\n if (startEvent.defaultPrevented) {\n return;\n }\n const dimension = this._getDimension();\n this._element.style[dimension] = `${this._element.getBoundingClientRect()[dimension]}px`;\n reflow(this._element);\n this._element.classList.add(CLASS_NAME_COLLAPSING);\n this._element.classList.remove(CLASS_NAME_COLLAPSE, CLASS_NAME_SHOW$7);\n for (const trigger of this._triggerArray) {\n const element = SelectorEngine.getElementFromSelector(trigger);\n if (element && !this._isShown(element)) {\n this._addAriaAndCollapsedClass([trigger], false);\n }\n }\n this._isTransitioning = true;\n const complete = () => {\n this._isTransitioning = false;\n this._element.classList.remove(CLASS_NAME_COLLAPSING);\n this._element.classList.add(CLASS_NAME_COLLAPSE);\n EventHandler.trigger(this._element, EVENT_HIDDEN$6);\n };\n this._element.style[dimension] = '';\n this._queueCallback(complete, this._element, true);\n }\n _isShown(element = this._element) {\n return element.classList.contains(CLASS_NAME_SHOW$7);\n }\n\n // Private\n _configAfterMerge(config) {\n config.toggle = Boolean(config.toggle); // Coerce string values\n config.parent = getElement(config.parent);\n return config;\n }\n _getDimension() {\n return this._element.classList.contains(CLASS_NAME_HORIZONTAL) ? WIDTH : HEIGHT;\n }\n _initializeChildren() {\n if (!this._config.parent) {\n return;\n }\n const children = this._getFirstLevelChildren(SELECTOR_DATA_TOGGLE$4);\n for (const element of children) {\n const selected = SelectorEngine.getElementFromSelector(element);\n if (selected) {\n this._addAriaAndCollapsedClass([element], this._isShown(selected));\n }\n }\n }\n _getFirstLevelChildren(selector) {\n const children = SelectorEngine.find(CLASS_NAME_DEEPER_CHILDREN, this._config.parent);\n // remove children if greater depth\n return SelectorEngine.find(selector, this._config.parent).filter(element => !children.includes(element));\n }\n _addAriaAndCollapsedClass(triggerArray, isOpen) {\n if (!triggerArray.length) {\n return;\n }\n for (const element of triggerArray) {\n element.classList.toggle(CLASS_NAME_COLLAPSED, !isOpen);\n element.setAttribute('aria-expanded', isOpen);\n }\n }\n\n // Static\n static jQueryInterface(config) {\n const _config = {};\n if (typeof config === 'string' && /show|hide/.test(config)) {\n _config.toggle = false;\n }\n return this.each(function () {\n const data = Collapse.getOrCreateInstance(this, _config);\n if (typeof config === 'string') {\n if (typeof data[config] === 'undefined') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config]();\n }\n });\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_CLICK_DATA_API$4, SELECTOR_DATA_TOGGLE$4, function (event) {\n // preventDefault only for elements (which change the URL) not inside the collapsible element\n if (event.target.tagName === 'A' || event.delegateTarget && event.delegateTarget.tagName === 'A') {\n event.preventDefault();\n }\n for (const element of SelectorEngine.getMultipleElementsFromSelector(this)) {\n Collapse.getOrCreateInstance(element, {\n toggle: false\n }).toggle();\n }\n});\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Collapse);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap dropdown.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$a = 'dropdown';\nconst DATA_KEY$6 = 'bs.dropdown';\nconst EVENT_KEY$6 = `.${DATA_KEY$6}`;\nconst DATA_API_KEY$3 = '.data-api';\nconst ESCAPE_KEY$2 = 'Escape';\nconst TAB_KEY$1 = 'Tab';\nconst ARROW_UP_KEY$1 = 'ArrowUp';\nconst ARROW_DOWN_KEY$1 = 'ArrowDown';\nconst RIGHT_MOUSE_BUTTON = 2; // MouseEvent.button value for the secondary button, usually the right button\n\nconst EVENT_HIDE$5 = `hide${EVENT_KEY$6}`;\nconst EVENT_HIDDEN$5 = `hidden${EVENT_KEY$6}`;\nconst EVENT_SHOW$5 = `show${EVENT_KEY$6}`;\nconst EVENT_SHOWN$5 = `shown${EVENT_KEY$6}`;\nconst EVENT_CLICK_DATA_API$3 = `click${EVENT_KEY$6}${DATA_API_KEY$3}`;\nconst EVENT_KEYDOWN_DATA_API = `keydown${EVENT_KEY$6}${DATA_API_KEY$3}`;\nconst EVENT_KEYUP_DATA_API = `keyup${EVENT_KEY$6}${DATA_API_KEY$3}`;\nconst CLASS_NAME_SHOW$6 = 'show';\nconst CLASS_NAME_DROPUP = 'dropup';\nconst CLASS_NAME_DROPEND = 'dropend';\nconst CLASS_NAME_DROPSTART = 'dropstart';\nconst CLASS_NAME_DROPUP_CENTER = 'dropup-center';\nconst CLASS_NAME_DROPDOWN_CENTER = 'dropdown-center';\nconst SELECTOR_DATA_TOGGLE$3 = '[data-bs-toggle=\"dropdown\"]:not(.disabled):not(:disabled)';\nconst SELECTOR_DATA_TOGGLE_SHOWN = `${SELECTOR_DATA_TOGGLE$3}.${CLASS_NAME_SHOW$6}`;\nconst SELECTOR_MENU = '.dropdown-menu';\nconst SELECTOR_NAVBAR = '.navbar';\nconst SELECTOR_NAVBAR_NAV = '.navbar-nav';\nconst SELECTOR_VISIBLE_ITEMS = '.dropdown-menu .dropdown-item:not(.disabled):not(:disabled)';\nconst PLACEMENT_TOP = isRTL() ? 'top-end' : 'top-start';\nconst PLACEMENT_TOPEND = isRTL() ? 'top-start' : 'top-end';\nconst PLACEMENT_BOTTOM = isRTL() ? 'bottom-end' : 'bottom-start';\nconst PLACEMENT_BOTTOMEND = isRTL() ? 'bottom-start' : 'bottom-end';\nconst PLACEMENT_RIGHT = isRTL() ? 'left-start' : 'right-start';\nconst PLACEMENT_LEFT = isRTL() ? 'right-start' : 'left-start';\nconst PLACEMENT_TOPCENTER = 'top';\nconst PLACEMENT_BOTTOMCENTER = 'bottom';\nconst Default$9 = {\n autoClose: true,\n boundary: 'clippingParents',\n display: 'dynamic',\n offset: [0, 2],\n popperConfig: null,\n reference: 'toggle'\n};\nconst DefaultType$9 = {\n autoClose: '(boolean|string)',\n boundary: '(string|element)',\n display: 'string',\n offset: '(array|string|function)',\n popperConfig: '(null|object|function)',\n reference: '(string|element|object)'\n};\n\n/**\n * Class definition\n */\n\nclass Dropdown extends BaseComponent {\n constructor(element, config) {\n super(element, config);\n this._popper = null;\n this._parent = this._element.parentNode; // dropdown wrapper\n // TODO: v6 revert #37011 & change markup https://getbootstrap.com/docs/5.3/forms/input-group/\n this._menu = SelectorEngine.next(this._element, SELECTOR_MENU)[0] || SelectorEngine.prev(this._element, SELECTOR_MENU)[0] || SelectorEngine.findOne(SELECTOR_MENU, this._parent);\n this._inNavbar = this._detectNavbar();\n }\n\n // Getters\n static get Default() {\n return Default$9;\n }\n static get DefaultType() {\n return DefaultType$9;\n }\n static get NAME() {\n return NAME$a;\n }\n\n // Public\n toggle() {\n return this._isShown() ? this.hide() : this.show();\n }\n show() {\n if (isDisabled(this._element) || this._isShown()) {\n return;\n }\n const relatedTarget = {\n relatedTarget: this._element\n };\n const showEvent = EventHandler.trigger(this._element, EVENT_SHOW$5, relatedTarget);\n if (showEvent.defaultPrevented) {\n return;\n }\n this._createPopper();\n\n // If this is a touch-enabled device we add extra\n // empty mouseover listeners to the body's immediate children;\n // only needed because of broken event delegation on iOS\n // https://www.quirksmode.org/blog/archives/2014/02/mouse_event_bub.html\n if ('ontouchstart' in document.documentElement && !this._parent.closest(SELECTOR_NAVBAR_NAV)) {\n for (const element of [].concat(...document.body.children)) {\n EventHandler.on(element, 'mouseover', noop);\n }\n }\n this._element.focus();\n this._element.setAttribute('aria-expanded', true);\n this._menu.classList.add(CLASS_NAME_SHOW$6);\n this._element.classList.add(CLASS_NAME_SHOW$6);\n EventHandler.trigger(this._element, EVENT_SHOWN$5, relatedTarget);\n }\n hide() {\n if (isDisabled(this._element) || !this._isShown()) {\n return;\n }\n const relatedTarget = {\n relatedTarget: this._element\n };\n this._completeHide(relatedTarget);\n }\n dispose() {\n if (this._popper) {\n this._popper.destroy();\n }\n super.dispose();\n }\n update() {\n this._inNavbar = this._detectNavbar();\n if (this._popper) {\n this._popper.update();\n }\n }\n\n // Private\n _completeHide(relatedTarget) {\n const hideEvent = EventHandler.trigger(this._element, EVENT_HIDE$5, relatedTarget);\n if (hideEvent.defaultPrevented) {\n return;\n }\n\n // If this is a touch-enabled device we remove the extra\n // empty mouseover listeners we added for iOS support\n if ('ontouchstart' in document.documentElement) {\n for (const element of [].concat(...document.body.children)) {\n EventHandler.off(element, 'mouseover', noop);\n }\n }\n if (this._popper) {\n this._popper.destroy();\n }\n this._menu.classList.remove(CLASS_NAME_SHOW$6);\n this._element.classList.remove(CLASS_NAME_SHOW$6);\n this._element.setAttribute('aria-expanded', 'false');\n Manipulator.removeDataAttribute(this._menu, 'popper');\n EventHandler.trigger(this._element, EVENT_HIDDEN$5, relatedTarget);\n }\n _getConfig(config) {\n config = super._getConfig(config);\n if (typeof config.reference === 'object' && !isElement(config.reference) && typeof config.reference.getBoundingClientRect !== 'function') {\n // Popper virtual elements require a getBoundingClientRect method\n throw new TypeError(`${NAME$a.toUpperCase()}: Option \"reference\" provided type \"object\" without a required \"getBoundingClientRect\" method.`);\n }\n return config;\n }\n _createPopper() {\n if (typeof Popper === 'undefined') {\n throw new TypeError('Bootstrap\\'s dropdowns require Popper (https://popper.js.org)');\n }\n let referenceElement = this._element;\n if (this._config.reference === 'parent') {\n referenceElement = this._parent;\n } else if (isElement(this._config.reference)) {\n referenceElement = getElement(this._config.reference);\n } else if (typeof this._config.reference === 'object') {\n referenceElement = this._config.reference;\n }\n const popperConfig = this._getPopperConfig();\n this._popper = Popper.createPopper(referenceElement, this._menu, popperConfig);\n }\n _isShown() {\n return this._menu.classList.contains(CLASS_NAME_SHOW$6);\n }\n _getPlacement() {\n const parentDropdown = this._parent;\n if (parentDropdown.classList.contains(CLASS_NAME_DROPEND)) {\n return PLACEMENT_RIGHT;\n }\n if (parentDropdown.classList.contains(CLASS_NAME_DROPSTART)) {\n return PLACEMENT_LEFT;\n }\n if (parentDropdown.classList.contains(CLASS_NAME_DROPUP_CENTER)) {\n return PLACEMENT_TOPCENTER;\n }\n if (parentDropdown.classList.contains(CLASS_NAME_DROPDOWN_CENTER)) {\n return PLACEMENT_BOTTOMCENTER;\n }\n\n // We need to trim the value because custom properties can also include spaces\n const isEnd = getComputedStyle(this._menu).getPropertyValue('--bs-position').trim() === 'end';\n if (parentDropdown.classList.contains(CLASS_NAME_DROPUP)) {\n return isEnd ? PLACEMENT_TOPEND : PLACEMENT_TOP;\n }\n return isEnd ? PLACEMENT_BOTTOMEND : PLACEMENT_BOTTOM;\n }\n _detectNavbar() {\n return this._element.closest(SELECTOR_NAVBAR) !== null;\n }\n _getOffset() {\n const {\n offset\n } = this._config;\n if (typeof offset === 'string') {\n return offset.split(',').map(value => Number.parseInt(value, 10));\n }\n if (typeof offset === 'function') {\n return popperData => offset(popperData, this._element);\n }\n return offset;\n }\n _getPopperConfig() {\n const defaultBsPopperConfig = {\n placement: this._getPlacement(),\n modifiers: [{\n name: 'preventOverflow',\n options: {\n boundary: this._config.boundary\n }\n }, {\n name: 'offset',\n options: {\n offset: this._getOffset()\n }\n }]\n };\n\n // Disable Popper if we have a static display or Dropdown is in Navbar\n if (this._inNavbar || this._config.display === 'static') {\n Manipulator.setDataAttribute(this._menu, 'popper', 'static'); // TODO: v6 remove\n defaultBsPopperConfig.modifiers = [{\n name: 'applyStyles',\n enabled: false\n }];\n }\n return {\n ...defaultBsPopperConfig,\n ...execute(this._config.popperConfig, [defaultBsPopperConfig])\n };\n }\n _selectMenuItem({\n key,\n target\n }) {\n const items = SelectorEngine.find(SELECTOR_VISIBLE_ITEMS, this._menu).filter(element => isVisible(element));\n if (!items.length) {\n return;\n }\n\n // if target isn't included in items (e.g. when expanding the dropdown)\n // allow cycling to get the last item in case key equals ARROW_UP_KEY\n getNextActiveElement(items, target, key === ARROW_DOWN_KEY$1, !items.includes(target)).focus();\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Dropdown.getOrCreateInstance(this, config);\n if (typeof config !== 'string') {\n return;\n }\n if (typeof data[config] === 'undefined') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config]();\n });\n }\n static clearMenus(event) {\n if (event.button === RIGHT_MOUSE_BUTTON || event.type === 'keyup' && event.key !== TAB_KEY$1) {\n return;\n }\n const openToggles = SelectorEngine.find(SELECTOR_DATA_TOGGLE_SHOWN);\n for (const toggle of openToggles) {\n const context = Dropdown.getInstance(toggle);\n if (!context || context._config.autoClose === false) {\n continue;\n }\n const composedPath = event.composedPath();\n const isMenuTarget = composedPath.includes(context._menu);\n if (composedPath.includes(context._element) || context._config.autoClose === 'inside' && !isMenuTarget || context._config.autoClose === 'outside' && isMenuTarget) {\n continue;\n }\n\n // Tab navigation through the dropdown menu or events from contained inputs shouldn't close the menu\n if (context._menu.contains(event.target) && (event.type === 'keyup' && event.key === TAB_KEY$1 || /input|select|option|textarea|form/i.test(event.target.tagName))) {\n continue;\n }\n const relatedTarget = {\n relatedTarget: context._element\n };\n if (event.type === 'click') {\n relatedTarget.clickEvent = event;\n }\n context._completeHide(relatedTarget);\n }\n }\n static dataApiKeydownHandler(event) {\n // If not an UP | DOWN | ESCAPE key => not a dropdown command\n // If input/textarea && if key is other than ESCAPE => not a dropdown command\n\n const isInput = /input|textarea/i.test(event.target.tagName);\n const isEscapeEvent = event.key === ESCAPE_KEY$2;\n const isUpOrDownEvent = [ARROW_UP_KEY$1, ARROW_DOWN_KEY$1].includes(event.key);\n if (!isUpOrDownEvent && !isEscapeEvent) {\n return;\n }\n if (isInput && !isEscapeEvent) {\n return;\n }\n event.preventDefault();\n\n // TODO: v6 revert #37011 & change markup https://getbootstrap.com/docs/5.3/forms/input-group/\n const getToggleButton = this.matches(SELECTOR_DATA_TOGGLE$3) ? this : SelectorEngine.prev(this, SELECTOR_DATA_TOGGLE$3)[0] || SelectorEngine.next(this, SELECTOR_DATA_TOGGLE$3)[0] || SelectorEngine.findOne(SELECTOR_DATA_TOGGLE$3, event.delegateTarget.parentNode);\n const instance = Dropdown.getOrCreateInstance(getToggleButton);\n if (isUpOrDownEvent) {\n event.stopPropagation();\n instance.show();\n instance._selectMenuItem(event);\n return;\n }\n if (instance._isShown()) {\n // else is escape and we check if it is shown\n event.stopPropagation();\n instance.hide();\n getToggleButton.focus();\n }\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_KEYDOWN_DATA_API, SELECTOR_DATA_TOGGLE$3, Dropdown.dataApiKeydownHandler);\nEventHandler.on(document, EVENT_KEYDOWN_DATA_API, SELECTOR_MENU, Dropdown.dataApiKeydownHandler);\nEventHandler.on(document, EVENT_CLICK_DATA_API$3, Dropdown.clearMenus);\nEventHandler.on(document, EVENT_KEYUP_DATA_API, Dropdown.clearMenus);\nEventHandler.on(document, EVENT_CLICK_DATA_API$3, SELECTOR_DATA_TOGGLE$3, function (event) {\n event.preventDefault();\n Dropdown.getOrCreateInstance(this).toggle();\n});\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Dropdown);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/backdrop.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$9 = 'backdrop';\nconst CLASS_NAME_FADE$4 = 'fade';\nconst CLASS_NAME_SHOW$5 = 'show';\nconst EVENT_MOUSEDOWN = `mousedown.bs.${NAME$9}`;\nconst Default$8 = {\n className: 'modal-backdrop',\n clickCallback: null,\n isAnimated: false,\n isVisible: true,\n // if false, we use the backdrop helper without adding any element to the dom\n rootElement: 'body' // give the choice to place backdrop under different elements\n};\n\nconst DefaultType$8 = {\n className: 'string',\n clickCallback: '(function|null)',\n isAnimated: 'boolean',\n isVisible: 'boolean',\n rootElement: '(element|string)'\n};\n\n/**\n * Class definition\n */\n\nclass Backdrop extends Config {\n constructor(config) {\n super();\n this._config = this._getConfig(config);\n this._isAppended = false;\n this._element = null;\n }\n\n // Getters\n static get Default() {\n return Default$8;\n }\n static get DefaultType() {\n return DefaultType$8;\n }\n static get NAME() {\n return NAME$9;\n }\n\n // Public\n show(callback) {\n if (!this._config.isVisible) {\n execute(callback);\n return;\n }\n this._append();\n const element = this._getElement();\n if (this._config.isAnimated) {\n reflow(element);\n }\n element.classList.add(CLASS_NAME_SHOW$5);\n this._emulateAnimation(() => {\n execute(callback);\n });\n }\n hide(callback) {\n if (!this._config.isVisible) {\n execute(callback);\n return;\n }\n this._getElement().classList.remove(CLASS_NAME_SHOW$5);\n this._emulateAnimation(() => {\n this.dispose();\n execute(callback);\n });\n }\n dispose() {\n if (!this._isAppended) {\n return;\n }\n EventHandler.off(this._element, EVENT_MOUSEDOWN);\n this._element.remove();\n this._isAppended = false;\n }\n\n // Private\n _getElement() {\n if (!this._element) {\n const backdrop = document.createElement('div');\n backdrop.className = this._config.className;\n if (this._config.isAnimated) {\n backdrop.classList.add(CLASS_NAME_FADE$4);\n }\n this._element = backdrop;\n }\n return this._element;\n }\n _configAfterMerge(config) {\n // use getElement() with the default \"body\" to get a fresh Element on each instantiation\n config.rootElement = getElement(config.rootElement);\n return config;\n }\n _append() {\n if (this._isAppended) {\n return;\n }\n const element = this._getElement();\n this._config.rootElement.append(element);\n EventHandler.on(element, EVENT_MOUSEDOWN, () => {\n execute(this._config.clickCallback);\n });\n this._isAppended = true;\n }\n _emulateAnimation(callback) {\n executeAfterTransition(callback, this._getElement(), this._config.isAnimated);\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/focustrap.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$8 = 'focustrap';\nconst DATA_KEY$5 = 'bs.focustrap';\nconst EVENT_KEY$5 = `.${DATA_KEY$5}`;\nconst EVENT_FOCUSIN$2 = `focusin${EVENT_KEY$5}`;\nconst EVENT_KEYDOWN_TAB = `keydown.tab${EVENT_KEY$5}`;\nconst TAB_KEY = 'Tab';\nconst TAB_NAV_FORWARD = 'forward';\nconst TAB_NAV_BACKWARD = 'backward';\nconst Default$7 = {\n autofocus: true,\n trapElement: null // The element to trap focus inside of\n};\n\nconst DefaultType$7 = {\n autofocus: 'boolean',\n trapElement: 'element'\n};\n\n/**\n * Class definition\n */\n\nclass FocusTrap extends Config {\n constructor(config) {\n super();\n this._config = this._getConfig(config);\n this._isActive = false;\n this._lastTabNavDirection = null;\n }\n\n // Getters\n static get Default() {\n return Default$7;\n }\n static get DefaultType() {\n return DefaultType$7;\n }\n static get NAME() {\n return NAME$8;\n }\n\n // Public\n activate() {\n if (this._isActive) {\n return;\n }\n if (this._config.autofocus) {\n this._config.trapElement.focus();\n }\n EventHandler.off(document, EVENT_KEY$5); // guard against infinite focus loop\n EventHandler.on(document, EVENT_FOCUSIN$2, event => this._handleFocusin(event));\n EventHandler.on(document, EVENT_KEYDOWN_TAB, event => this._handleKeydown(event));\n this._isActive = true;\n }\n deactivate() {\n if (!this._isActive) {\n return;\n }\n this._isActive = false;\n EventHandler.off(document, EVENT_KEY$5);\n }\n\n // Private\n _handleFocusin(event) {\n const {\n trapElement\n } = this._config;\n if (event.target === document || event.target === trapElement || trapElement.contains(event.target)) {\n return;\n }\n const elements = SelectorEngine.focusableChildren(trapElement);\n if (elements.length === 0) {\n trapElement.focus();\n } else if (this._lastTabNavDirection === TAB_NAV_BACKWARD) {\n elements[elements.length - 1].focus();\n } else {\n elements[0].focus();\n }\n }\n _handleKeydown(event) {\n if (event.key !== TAB_KEY) {\n return;\n }\n this._lastTabNavDirection = event.shiftKey ? TAB_NAV_BACKWARD : TAB_NAV_FORWARD;\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/scrollBar.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst SELECTOR_FIXED_CONTENT = '.fixed-top, .fixed-bottom, .is-fixed, .sticky-top';\nconst SELECTOR_STICKY_CONTENT = '.sticky-top';\nconst PROPERTY_PADDING = 'padding-right';\nconst PROPERTY_MARGIN = 'margin-right';\n\n/**\n * Class definition\n */\n\nclass ScrollBarHelper {\n constructor() {\n this._element = document.body;\n }\n\n // Public\n getWidth() {\n // https://developer.mozilla.org/en-US/docs/Web/API/Window/innerWidth#usage_notes\n const documentWidth = document.documentElement.clientWidth;\n return Math.abs(window.innerWidth - documentWidth);\n }\n hide() {\n const width = this.getWidth();\n this._disableOverFlow();\n // give padding to element to balance the hidden scrollbar width\n this._setElementAttributes(this._element, PROPERTY_PADDING, calculatedValue => calculatedValue + width);\n // trick: We adjust positive paddingRight and negative marginRight to sticky-top elements to keep showing fullwidth\n this._setElementAttributes(SELECTOR_FIXED_CONTENT, PROPERTY_PADDING, calculatedValue => calculatedValue + width);\n this._setElementAttributes(SELECTOR_STICKY_CONTENT, PROPERTY_MARGIN, calculatedValue => calculatedValue - width);\n }\n reset() {\n this._resetElementAttributes(this._element, 'overflow');\n this._resetElementAttributes(this._element, PROPERTY_PADDING);\n this._resetElementAttributes(SELECTOR_FIXED_CONTENT, PROPERTY_PADDING);\n this._resetElementAttributes(SELECTOR_STICKY_CONTENT, PROPERTY_MARGIN);\n }\n isOverflowing() {\n return this.getWidth() > 0;\n }\n\n // Private\n _disableOverFlow() {\n this._saveInitialAttribute(this._element, 'overflow');\n this._element.style.overflow = 'hidden';\n }\n _setElementAttributes(selector, styleProperty, callback) {\n const scrollbarWidth = this.getWidth();\n const manipulationCallBack = element => {\n if (element !== this._element && window.innerWidth > element.clientWidth + scrollbarWidth) {\n return;\n }\n this._saveInitialAttribute(element, styleProperty);\n const calculatedValue = window.getComputedStyle(element).getPropertyValue(styleProperty);\n element.style.setProperty(styleProperty, `${callback(Number.parseFloat(calculatedValue))}px`);\n };\n this._applyManipulationCallback(selector, manipulationCallBack);\n }\n _saveInitialAttribute(element, styleProperty) {\n const actualValue = element.style.getPropertyValue(styleProperty);\n if (actualValue) {\n Manipulator.setDataAttribute(element, styleProperty, actualValue);\n }\n }\n _resetElementAttributes(selector, styleProperty) {\n const manipulationCallBack = element => {\n const value = Manipulator.getDataAttribute(element, styleProperty);\n // We only want to remove the property if the value is `null`; the value can also be zero\n if (value === null) {\n element.style.removeProperty(styleProperty);\n return;\n }\n Manipulator.removeDataAttribute(element, styleProperty);\n element.style.setProperty(styleProperty, value);\n };\n this._applyManipulationCallback(selector, manipulationCallBack);\n }\n _applyManipulationCallback(selector, callBack) {\n if (isElement(selector)) {\n callBack(selector);\n return;\n }\n for (const sel of SelectorEngine.find(selector, this._element)) {\n callBack(sel);\n }\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap modal.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$7 = 'modal';\nconst DATA_KEY$4 = 'bs.modal';\nconst EVENT_KEY$4 = `.${DATA_KEY$4}`;\nconst DATA_API_KEY$2 = '.data-api';\nconst ESCAPE_KEY$1 = 'Escape';\nconst EVENT_HIDE$4 = `hide${EVENT_KEY$4}`;\nconst EVENT_HIDE_PREVENTED$1 = `hidePrevented${EVENT_KEY$4}`;\nconst EVENT_HIDDEN$4 = `hidden${EVENT_KEY$4}`;\nconst EVENT_SHOW$4 = `show${EVENT_KEY$4}`;\nconst EVENT_SHOWN$4 = `shown${EVENT_KEY$4}`;\nconst EVENT_RESIZE$1 = `resize${EVENT_KEY$4}`;\nconst EVENT_CLICK_DISMISS = `click.dismiss${EVENT_KEY$4}`;\nconst EVENT_MOUSEDOWN_DISMISS = `mousedown.dismiss${EVENT_KEY$4}`;\nconst EVENT_KEYDOWN_DISMISS$1 = `keydown.dismiss${EVENT_KEY$4}`;\nconst EVENT_CLICK_DATA_API$2 = `click${EVENT_KEY$4}${DATA_API_KEY$2}`;\nconst CLASS_NAME_OPEN = 'modal-open';\nconst CLASS_NAME_FADE$3 = 'fade';\nconst CLASS_NAME_SHOW$4 = 'show';\nconst CLASS_NAME_STATIC = 'modal-static';\nconst OPEN_SELECTOR$1 = '.modal.show';\nconst SELECTOR_DIALOG = '.modal-dialog';\nconst SELECTOR_MODAL_BODY = '.modal-body';\nconst SELECTOR_DATA_TOGGLE$2 = '[data-bs-toggle=\"modal\"]';\nconst Default$6 = {\n backdrop: true,\n focus: true,\n keyboard: true\n};\nconst DefaultType$6 = {\n backdrop: '(boolean|string)',\n focus: 'boolean',\n keyboard: 'boolean'\n};\n\n/**\n * Class definition\n */\n\nclass Modal extends BaseComponent {\n constructor(element, config) {\n super(element, config);\n this._dialog = SelectorEngine.findOne(SELECTOR_DIALOG, this._element);\n this._backdrop = this._initializeBackDrop();\n this._focustrap = this._initializeFocusTrap();\n this._isShown = false;\n this._isTransitioning = false;\n this._scrollBar = new ScrollBarHelper();\n this._addEventListeners();\n }\n\n // Getters\n static get Default() {\n return Default$6;\n }\n static get DefaultType() {\n return DefaultType$6;\n }\n static get NAME() {\n return NAME$7;\n }\n\n // Public\n toggle(relatedTarget) {\n return this._isShown ? this.hide() : this.show(relatedTarget);\n }\n show(relatedTarget) {\n if (this._isShown || this._isTransitioning) {\n return;\n }\n const showEvent = EventHandler.trigger(this._element, EVENT_SHOW$4, {\n relatedTarget\n });\n if (showEvent.defaultPrevented) {\n return;\n }\n this._isShown = true;\n this._isTransitioning = true;\n this._scrollBar.hide();\n document.body.classList.add(CLASS_NAME_OPEN);\n this._adjustDialog();\n this._backdrop.show(() => this._showElement(relatedTarget));\n }\n hide() {\n if (!this._isShown || this._isTransitioning) {\n return;\n }\n const hideEvent = EventHandler.trigger(this._element, EVENT_HIDE$4);\n if (hideEvent.defaultPrevented) {\n return;\n }\n this._isShown = false;\n this._isTransitioning = true;\n this._focustrap.deactivate();\n this._element.classList.remove(CLASS_NAME_SHOW$4);\n this._queueCallback(() => this._hideModal(), this._element, this._isAnimated());\n }\n dispose() {\n EventHandler.off(window, EVENT_KEY$4);\n EventHandler.off(this._dialog, EVENT_KEY$4);\n this._backdrop.dispose();\n this._focustrap.deactivate();\n super.dispose();\n }\n handleUpdate() {\n this._adjustDialog();\n }\n\n // Private\n _initializeBackDrop() {\n return new Backdrop({\n isVisible: Boolean(this._config.backdrop),\n // 'static' option will be translated to true, and booleans will keep their value,\n isAnimated: this._isAnimated()\n });\n }\n _initializeFocusTrap() {\n return new FocusTrap({\n trapElement: this._element\n });\n }\n _showElement(relatedTarget) {\n // try to append dynamic modal\n if (!document.body.contains(this._element)) {\n document.body.append(this._element);\n }\n this._element.style.display = 'block';\n this._element.removeAttribute('aria-hidden');\n this._element.setAttribute('aria-modal', true);\n this._element.setAttribute('role', 'dialog');\n this._element.scrollTop = 0;\n const modalBody = SelectorEngine.findOne(SELECTOR_MODAL_BODY, this._dialog);\n if (modalBody) {\n modalBody.scrollTop = 0;\n }\n reflow(this._element);\n this._element.classList.add(CLASS_NAME_SHOW$4);\n const transitionComplete = () => {\n if (this._config.focus) {\n this._focustrap.activate();\n }\n this._isTransitioning = false;\n EventHandler.trigger(this._element, EVENT_SHOWN$4, {\n relatedTarget\n });\n };\n this._queueCallback(transitionComplete, this._dialog, this._isAnimated());\n }\n _addEventListeners() {\n EventHandler.on(this._element, EVENT_KEYDOWN_DISMISS$1, event => {\n if (event.key !== ESCAPE_KEY$1) {\n return;\n }\n if (this._config.keyboard) {\n this.hide();\n return;\n }\n this._triggerBackdropTransition();\n });\n EventHandler.on(window, EVENT_RESIZE$1, () => {\n if (this._isShown && !this._isTransitioning) {\n this._adjustDialog();\n }\n });\n EventHandler.on(this._element, EVENT_MOUSEDOWN_DISMISS, event => {\n // a bad trick to segregate clicks that may start inside dialog but end outside, and avoid listen to scrollbar clicks\n EventHandler.one(this._element, EVENT_CLICK_DISMISS, event2 => {\n if (this._element !== event.target || this._element !== event2.target) {\n return;\n }\n if (this._config.backdrop === 'static') {\n this._triggerBackdropTransition();\n return;\n }\n if (this._config.backdrop) {\n this.hide();\n }\n });\n });\n }\n _hideModal() {\n this._element.style.display = 'none';\n this._element.setAttribute('aria-hidden', true);\n this._element.removeAttribute('aria-modal');\n this._element.removeAttribute('role');\n this._isTransitioning = false;\n this._backdrop.hide(() => {\n document.body.classList.remove(CLASS_NAME_OPEN);\n this._resetAdjustments();\n this._scrollBar.reset();\n EventHandler.trigger(this._element, EVENT_HIDDEN$4);\n });\n }\n _isAnimated() {\n return this._element.classList.contains(CLASS_NAME_FADE$3);\n }\n _triggerBackdropTransition() {\n const hideEvent = EventHandler.trigger(this._element, EVENT_HIDE_PREVENTED$1);\n if (hideEvent.defaultPrevented) {\n return;\n }\n const isModalOverflowing = this._element.scrollHeight > document.documentElement.clientHeight;\n const initialOverflowY = this._element.style.overflowY;\n // return if the following background transition hasn't yet completed\n if (initialOverflowY === 'hidden' || this._element.classList.contains(CLASS_NAME_STATIC)) {\n return;\n }\n if (!isModalOverflowing) {\n this._element.style.overflowY = 'hidden';\n }\n this._element.classList.add(CLASS_NAME_STATIC);\n this._queueCallback(() => {\n this._element.classList.remove(CLASS_NAME_STATIC);\n this._queueCallback(() => {\n this._element.style.overflowY = initialOverflowY;\n }, this._dialog);\n }, this._dialog);\n this._element.focus();\n }\n\n /**\n * The following methods are used to handle overflowing modals\n */\n\n _adjustDialog() {\n const isModalOverflowing = this._element.scrollHeight > document.documentElement.clientHeight;\n const scrollbarWidth = this._scrollBar.getWidth();\n const isBodyOverflowing = scrollbarWidth > 0;\n if (isBodyOverflowing && !isModalOverflowing) {\n const property = isRTL() ? 'paddingLeft' : 'paddingRight';\n this._element.style[property] = `${scrollbarWidth}px`;\n }\n if (!isBodyOverflowing && isModalOverflowing) {\n const property = isRTL() ? 'paddingRight' : 'paddingLeft';\n this._element.style[property] = `${scrollbarWidth}px`;\n }\n }\n _resetAdjustments() {\n this._element.style.paddingLeft = '';\n this._element.style.paddingRight = '';\n }\n\n // Static\n static jQueryInterface(config, relatedTarget) {\n return this.each(function () {\n const data = Modal.getOrCreateInstance(this, config);\n if (typeof config !== 'string') {\n return;\n }\n if (typeof data[config] === 'undefined') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config](relatedTarget);\n });\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_CLICK_DATA_API$2, SELECTOR_DATA_TOGGLE$2, function (event) {\n const target = SelectorEngine.getElementFromSelector(this);\n if (['A', 'AREA'].includes(this.tagName)) {\n event.preventDefault();\n }\n EventHandler.one(target, EVENT_SHOW$4, showEvent => {\n if (showEvent.defaultPrevented) {\n // only register focus restorer if modal will actually get shown\n return;\n }\n EventHandler.one(target, EVENT_HIDDEN$4, () => {\n if (isVisible(this)) {\n this.focus();\n }\n });\n });\n\n // avoid conflict when clicking modal toggler while another one is open\n const alreadyOpen = SelectorEngine.findOne(OPEN_SELECTOR$1);\n if (alreadyOpen) {\n Modal.getInstance(alreadyOpen).hide();\n }\n const data = Modal.getOrCreateInstance(target);\n data.toggle(this);\n});\nenableDismissTrigger(Modal);\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Modal);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap offcanvas.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$6 = 'offcanvas';\nconst DATA_KEY$3 = 'bs.offcanvas';\nconst EVENT_KEY$3 = `.${DATA_KEY$3}`;\nconst DATA_API_KEY$1 = '.data-api';\nconst EVENT_LOAD_DATA_API$2 = `load${EVENT_KEY$3}${DATA_API_KEY$1}`;\nconst ESCAPE_KEY = 'Escape';\nconst CLASS_NAME_SHOW$3 = 'show';\nconst CLASS_NAME_SHOWING$1 = 'showing';\nconst CLASS_NAME_HIDING = 'hiding';\nconst CLASS_NAME_BACKDROP = 'offcanvas-backdrop';\nconst OPEN_SELECTOR = '.offcanvas.show';\nconst EVENT_SHOW$3 = `show${EVENT_KEY$3}`;\nconst EVENT_SHOWN$3 = `shown${EVENT_KEY$3}`;\nconst EVENT_HIDE$3 = `hide${EVENT_KEY$3}`;\nconst EVENT_HIDE_PREVENTED = `hidePrevented${EVENT_KEY$3}`;\nconst EVENT_HIDDEN$3 = `hidden${EVENT_KEY$3}`;\nconst EVENT_RESIZE = `resize${EVENT_KEY$3}`;\nconst EVENT_CLICK_DATA_API$1 = `click${EVENT_KEY$3}${DATA_API_KEY$1}`;\nconst EVENT_KEYDOWN_DISMISS = `keydown.dismiss${EVENT_KEY$3}`;\nconst SELECTOR_DATA_TOGGLE$1 = '[data-bs-toggle=\"offcanvas\"]';\nconst Default$5 = {\n backdrop: true,\n keyboard: true,\n scroll: false\n};\nconst DefaultType$5 = {\n backdrop: '(boolean|string)',\n keyboard: 'boolean',\n scroll: 'boolean'\n};\n\n/**\n * Class definition\n */\n\nclass Offcanvas extends BaseComponent {\n constructor(element, config) {\n super(element, config);\n this._isShown = false;\n this._backdrop = this._initializeBackDrop();\n this._focustrap = this._initializeFocusTrap();\n this._addEventListeners();\n }\n\n // Getters\n static get Default() {\n return Default$5;\n }\n static get DefaultType() {\n return DefaultType$5;\n }\n static get NAME() {\n return NAME$6;\n }\n\n // Public\n toggle(relatedTarget) {\n return this._isShown ? this.hide() : this.show(relatedTarget);\n }\n show(relatedTarget) {\n if (this._isShown) {\n return;\n }\n const showEvent = EventHandler.trigger(this._element, EVENT_SHOW$3, {\n relatedTarget\n });\n if (showEvent.defaultPrevented) {\n return;\n }\n this._isShown = true;\n this._backdrop.show();\n if (!this._config.scroll) {\n new ScrollBarHelper().hide();\n }\n this._element.setAttribute('aria-modal', true);\n this._element.setAttribute('role', 'dialog');\n this._element.classList.add(CLASS_NAME_SHOWING$1);\n const completeCallBack = () => {\n if (!this._config.scroll || this._config.backdrop) {\n this._focustrap.activate();\n }\n this._element.classList.add(CLASS_NAME_SHOW$3);\n this._element.classList.remove(CLASS_NAME_SHOWING$1);\n EventHandler.trigger(this._element, EVENT_SHOWN$3, {\n relatedTarget\n });\n };\n this._queueCallback(completeCallBack, this._element, true);\n }\n hide() {\n if (!this._isShown) {\n return;\n }\n const hideEvent = EventHandler.trigger(this._element, EVENT_HIDE$3);\n if (hideEvent.defaultPrevented) {\n return;\n }\n this._focustrap.deactivate();\n this._element.blur();\n this._isShown = false;\n this._element.classList.add(CLASS_NAME_HIDING);\n this._backdrop.hide();\n const completeCallback = () => {\n this._element.classList.remove(CLASS_NAME_SHOW$3, CLASS_NAME_HIDING);\n this._element.removeAttribute('aria-modal');\n this._element.removeAttribute('role');\n if (!this._config.scroll) {\n new ScrollBarHelper().reset();\n }\n EventHandler.trigger(this._element, EVENT_HIDDEN$3);\n };\n this._queueCallback(completeCallback, this._element, true);\n }\n dispose() {\n this._backdrop.dispose();\n this._focustrap.deactivate();\n super.dispose();\n }\n\n // Private\n _initializeBackDrop() {\n const clickCallback = () => {\n if (this._config.backdrop === 'static') {\n EventHandler.trigger(this._element, EVENT_HIDE_PREVENTED);\n return;\n }\n this.hide();\n };\n\n // 'static' option will be translated to true, and booleans will keep their value\n const isVisible = Boolean(this._config.backdrop);\n return new Backdrop({\n className: CLASS_NAME_BACKDROP,\n isVisible,\n isAnimated: true,\n rootElement: this._element.parentNode,\n clickCallback: isVisible ? clickCallback : null\n });\n }\n _initializeFocusTrap() {\n return new FocusTrap({\n trapElement: this._element\n });\n }\n _addEventListeners() {\n EventHandler.on(this._element, EVENT_KEYDOWN_DISMISS, event => {\n if (event.key !== ESCAPE_KEY) {\n return;\n }\n if (this._config.keyboard) {\n this.hide();\n return;\n }\n EventHandler.trigger(this._element, EVENT_HIDE_PREVENTED);\n });\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Offcanvas.getOrCreateInstance(this, config);\n if (typeof config !== 'string') {\n return;\n }\n if (data[config] === undefined || config.startsWith('_') || config === 'constructor') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config](this);\n });\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_CLICK_DATA_API$1, SELECTOR_DATA_TOGGLE$1, function (event) {\n const target = SelectorEngine.getElementFromSelector(this);\n if (['A', 'AREA'].includes(this.tagName)) {\n event.preventDefault();\n }\n if (isDisabled(this)) {\n return;\n }\n EventHandler.one(target, EVENT_HIDDEN$3, () => {\n // focus on trigger when it is closed\n if (isVisible(this)) {\n this.focus();\n }\n });\n\n // avoid conflict when clicking a toggler of an offcanvas, while another is open\n const alreadyOpen = SelectorEngine.findOne(OPEN_SELECTOR);\n if (alreadyOpen && alreadyOpen !== target) {\n Offcanvas.getInstance(alreadyOpen).hide();\n }\n const data = Offcanvas.getOrCreateInstance(target);\n data.toggle(this);\n});\nEventHandler.on(window, EVENT_LOAD_DATA_API$2, () => {\n for (const selector of SelectorEngine.find(OPEN_SELECTOR)) {\n Offcanvas.getOrCreateInstance(selector).show();\n }\n});\nEventHandler.on(window, EVENT_RESIZE, () => {\n for (const element of SelectorEngine.find('[aria-modal][class*=show][class*=offcanvas-]')) {\n if (getComputedStyle(element).position !== 'fixed') {\n Offcanvas.getOrCreateInstance(element).hide();\n }\n }\n});\nenableDismissTrigger(Offcanvas);\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Offcanvas);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/sanitizer.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n// js-docs-start allow-list\nconst ARIA_ATTRIBUTE_PATTERN = /^aria-[\\w-]*$/i;\nconst DefaultAllowlist = {\n // Global attributes allowed on any supplied element below.\n '*': ['class', 'dir', 'id', 'lang', 'role', ARIA_ATTRIBUTE_PATTERN],\n a: ['target', 'href', 'title', 'rel'],\n area: [],\n b: [],\n br: [],\n col: [],\n code: [],\n div: [],\n em: [],\n hr: [],\n h1: [],\n h2: [],\n h3: [],\n h4: [],\n h5: [],\n h6: [],\n i: [],\n img: ['src', 'srcset', 'alt', 'title', 'width', 'height'],\n li: [],\n ol: [],\n p: [],\n pre: [],\n s: [],\n small: [],\n span: [],\n sub: [],\n sup: [],\n strong: [],\n u: [],\n ul: []\n};\n// js-docs-end allow-list\n\nconst uriAttributes = new Set(['background', 'cite', 'href', 'itemtype', 'longdesc', 'poster', 'src', 'xlink:href']);\n\n/**\n * A pattern that recognizes URLs that are safe wrt. XSS in URL navigation\n * contexts.\n *\n * Shout-out to Angular https://github.com/angular/angular/blob/15.2.8/packages/core/src/sanitization/url_sanitizer.ts#L38\n */\n// eslint-disable-next-line unicorn/better-regex\nconst SAFE_URL_PATTERN = /^(?!javascript:)(?:[a-z0-9+.-]+:|[^&:/?#]*(?:[/?#]|$))/i;\nconst allowedAttribute = (attribute, allowedAttributeList) => {\n const attributeName = attribute.nodeName.toLowerCase();\n if (allowedAttributeList.includes(attributeName)) {\n if (uriAttributes.has(attributeName)) {\n return Boolean(SAFE_URL_PATTERN.test(attribute.nodeValue));\n }\n return true;\n }\n\n // Check if a regular expression validates the attribute.\n return allowedAttributeList.filter(attributeRegex => attributeRegex instanceof RegExp).some(regex => regex.test(attributeName));\n};\nfunction sanitizeHtml(unsafeHtml, allowList, sanitizeFunction) {\n if (!unsafeHtml.length) {\n return unsafeHtml;\n }\n if (sanitizeFunction && typeof sanitizeFunction === 'function') {\n return sanitizeFunction(unsafeHtml);\n }\n const domParser = new window.DOMParser();\n const createdDocument = domParser.parseFromString(unsafeHtml, 'text/html');\n const elements = [].concat(...createdDocument.body.querySelectorAll('*'));\n for (const element of elements) {\n const elementName = element.nodeName.toLowerCase();\n if (!Object.keys(allowList).includes(elementName)) {\n element.remove();\n continue;\n }\n const attributeList = [].concat(...element.attributes);\n const allowedAttributes = [].concat(allowList['*'] || [], allowList[elementName] || []);\n for (const attribute of attributeList) {\n if (!allowedAttribute(attribute, allowedAttributes)) {\n element.removeAttribute(attribute.nodeName);\n }\n }\n }\n return createdDocument.body.innerHTML;\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/template-factory.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$5 = 'TemplateFactory';\nconst Default$4 = {\n allowList: DefaultAllowlist,\n content: {},\n // { selector : text , selector2 : text2 , }\n extraClass: '',\n html: false,\n sanitize: true,\n sanitizeFn: null,\n template: '
'\n};\nconst DefaultType$4 = {\n allowList: 'object',\n content: 'object',\n extraClass: '(string|function)',\n html: 'boolean',\n sanitize: 'boolean',\n sanitizeFn: '(null|function)',\n template: 'string'\n};\nconst DefaultContentType = {\n entry: '(string|element|function|null)',\n selector: '(string|element)'\n};\n\n/**\n * Class definition\n */\n\nclass TemplateFactory extends Config {\n constructor(config) {\n super();\n this._config = this._getConfig(config);\n }\n\n // Getters\n static get Default() {\n return Default$4;\n }\n static get DefaultType() {\n return DefaultType$4;\n }\n static get NAME() {\n return NAME$5;\n }\n\n // Public\n getContent() {\n return Object.values(this._config.content).map(config => this._resolvePossibleFunction(config)).filter(Boolean);\n }\n hasContent() {\n return this.getContent().length > 0;\n }\n changeContent(content) {\n this._checkContent(content);\n this._config.content = {\n ...this._config.content,\n ...content\n };\n return this;\n }\n toHtml() {\n const templateWrapper = document.createElement('div');\n templateWrapper.innerHTML = this._maybeSanitize(this._config.template);\n for (const [selector, text] of Object.entries(this._config.content)) {\n this._setContent(templateWrapper, text, selector);\n }\n const template = templateWrapper.children[0];\n const extraClass = this._resolvePossibleFunction(this._config.extraClass);\n if (extraClass) {\n template.classList.add(...extraClass.split(' '));\n }\n return template;\n }\n\n // Private\n _typeCheckConfig(config) {\n super._typeCheckConfig(config);\n this._checkContent(config.content);\n }\n _checkContent(arg) {\n for (const [selector, content] of Object.entries(arg)) {\n super._typeCheckConfig({\n selector,\n entry: content\n }, DefaultContentType);\n }\n }\n _setContent(template, content, selector) {\n const templateElement = SelectorEngine.findOne(selector, template);\n if (!templateElement) {\n return;\n }\n content = this._resolvePossibleFunction(content);\n if (!content) {\n templateElement.remove();\n return;\n }\n if (isElement(content)) {\n this._putElementInTemplate(getElement(content), templateElement);\n return;\n }\n if (this._config.html) {\n templateElement.innerHTML = this._maybeSanitize(content);\n return;\n }\n templateElement.textContent = content;\n }\n _maybeSanitize(arg) {\n return this._config.sanitize ? sanitizeHtml(arg, this._config.allowList, this._config.sanitizeFn) : arg;\n }\n _resolvePossibleFunction(arg) {\n return execute(arg, [this]);\n }\n _putElementInTemplate(element, templateElement) {\n if (this._config.html) {\n templateElement.innerHTML = '';\n templateElement.append(element);\n return;\n }\n templateElement.textContent = element.textContent;\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap tooltip.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$4 = 'tooltip';\nconst DISALLOWED_ATTRIBUTES = new Set(['sanitize', 'allowList', 'sanitizeFn']);\nconst CLASS_NAME_FADE$2 = 'fade';\nconst CLASS_NAME_MODAL = 'modal';\nconst CLASS_NAME_SHOW$2 = 'show';\nconst SELECTOR_TOOLTIP_INNER = '.tooltip-inner';\nconst SELECTOR_MODAL = `.${CLASS_NAME_MODAL}`;\nconst EVENT_MODAL_HIDE = 'hide.bs.modal';\nconst TRIGGER_HOVER = 'hover';\nconst TRIGGER_FOCUS = 'focus';\nconst TRIGGER_CLICK = 'click';\nconst TRIGGER_MANUAL = 'manual';\nconst EVENT_HIDE$2 = 'hide';\nconst EVENT_HIDDEN$2 = 'hidden';\nconst EVENT_SHOW$2 = 'show';\nconst EVENT_SHOWN$2 = 'shown';\nconst EVENT_INSERTED = 'inserted';\nconst EVENT_CLICK$1 = 'click';\nconst EVENT_FOCUSIN$1 = 'focusin';\nconst EVENT_FOCUSOUT$1 = 'focusout';\nconst EVENT_MOUSEENTER = 'mouseenter';\nconst EVENT_MOUSELEAVE = 'mouseleave';\nconst AttachmentMap = {\n AUTO: 'auto',\n TOP: 'top',\n RIGHT: isRTL() ? 'left' : 'right',\n BOTTOM: 'bottom',\n LEFT: isRTL() ? 'right' : 'left'\n};\nconst Default$3 = {\n allowList: DefaultAllowlist,\n animation: true,\n boundary: 'clippingParents',\n container: false,\n customClass: '',\n delay: 0,\n fallbackPlacements: ['top', 'right', 'bottom', 'left'],\n html: false,\n offset: [0, 6],\n placement: 'top',\n popperConfig: null,\n sanitize: true,\n sanitizeFn: null,\n selector: false,\n template: '
' + '
' + '
' + '
',\n title: '',\n trigger: 'hover focus'\n};\nconst DefaultType$3 = {\n allowList: 'object',\n animation: 'boolean',\n boundary: '(string|element)',\n container: '(string|element|boolean)',\n customClass: '(string|function)',\n delay: '(number|object)',\n fallbackPlacements: 'array',\n html: 'boolean',\n offset: '(array|string|function)',\n placement: '(string|function)',\n popperConfig: '(null|object|function)',\n sanitize: 'boolean',\n sanitizeFn: '(null|function)',\n selector: '(string|boolean)',\n template: 'string',\n title: '(string|element|function)',\n trigger: 'string'\n};\n\n/**\n * Class definition\n */\n\nclass Tooltip extends BaseComponent {\n constructor(element, config) {\n if (typeof Popper === 'undefined') {\n throw new TypeError('Bootstrap\\'s tooltips require Popper (https://popper.js.org)');\n }\n super(element, config);\n\n // Private\n this._isEnabled = true;\n this._timeout = 0;\n this._isHovered = null;\n this._activeTrigger = {};\n this._popper = null;\n this._templateFactory = null;\n this._newContent = null;\n\n // Protected\n this.tip = null;\n this._setListeners();\n if (!this._config.selector) {\n this._fixTitle();\n }\n }\n\n // Getters\n static get Default() {\n return Default$3;\n }\n static get DefaultType() {\n return DefaultType$3;\n }\n static get NAME() {\n return NAME$4;\n }\n\n // Public\n enable() {\n this._isEnabled = true;\n }\n disable() {\n this._isEnabled = false;\n }\n toggleEnabled() {\n this._isEnabled = !this._isEnabled;\n }\n toggle() {\n if (!this._isEnabled) {\n return;\n }\n this._activeTrigger.click = !this._activeTrigger.click;\n if (this._isShown()) {\n this._leave();\n return;\n }\n this._enter();\n }\n dispose() {\n clearTimeout(this._timeout);\n EventHandler.off(this._element.closest(SELECTOR_MODAL), EVENT_MODAL_HIDE, this._hideModalHandler);\n if (this._element.getAttribute('data-bs-original-title')) {\n this._element.setAttribute('title', this._element.getAttribute('data-bs-original-title'));\n }\n this._disposePopper();\n super.dispose();\n }\n show() {\n if (this._element.style.display === 'none') {\n throw new Error('Please use show on visible elements');\n }\n if (!(this._isWithContent() && this._isEnabled)) {\n return;\n }\n const showEvent = EventHandler.trigger(this._element, this.constructor.eventName(EVENT_SHOW$2));\n const shadowRoot = findShadowRoot(this._element);\n const isInTheDom = (shadowRoot || this._element.ownerDocument.documentElement).contains(this._element);\n if (showEvent.defaultPrevented || !isInTheDom) {\n return;\n }\n\n // TODO: v6 remove this or make it optional\n this._disposePopper();\n const tip = this._getTipElement();\n this._element.setAttribute('aria-describedby', tip.getAttribute('id'));\n const {\n container\n } = this._config;\n if (!this._element.ownerDocument.documentElement.contains(this.tip)) {\n container.append(tip);\n EventHandler.trigger(this._element, this.constructor.eventName(EVENT_INSERTED));\n }\n this._popper = this._createPopper(tip);\n tip.classList.add(CLASS_NAME_SHOW$2);\n\n // If this is a touch-enabled device we add extra\n // empty mouseover listeners to the body's immediate children;\n // only needed because of broken event delegation on iOS\n // https://www.quirksmode.org/blog/archives/2014/02/mouse_event_bub.html\n if ('ontouchstart' in document.documentElement) {\n for (const element of [].concat(...document.body.children)) {\n EventHandler.on(element, 'mouseover', noop);\n }\n }\n const complete = () => {\n EventHandler.trigger(this._element, this.constructor.eventName(EVENT_SHOWN$2));\n if (this._isHovered === false) {\n this._leave();\n }\n this._isHovered = false;\n };\n this._queueCallback(complete, this.tip, this._isAnimated());\n }\n hide() {\n if (!this._isShown()) {\n return;\n }\n const hideEvent = EventHandler.trigger(this._element, this.constructor.eventName(EVENT_HIDE$2));\n if (hideEvent.defaultPrevented) {\n return;\n }\n const tip = this._getTipElement();\n tip.classList.remove(CLASS_NAME_SHOW$2);\n\n // If this is a touch-enabled device we remove the extra\n // empty mouseover listeners we added for iOS support\n if ('ontouchstart' in document.documentElement) {\n for (const element of [].concat(...document.body.children)) {\n EventHandler.off(element, 'mouseover', noop);\n }\n }\n this._activeTrigger[TRIGGER_CLICK] = false;\n this._activeTrigger[TRIGGER_FOCUS] = false;\n this._activeTrigger[TRIGGER_HOVER] = false;\n this._isHovered = null; // it is a trick to support manual triggering\n\n const complete = () => {\n if (this._isWithActiveTrigger()) {\n return;\n }\n if (!this._isHovered) {\n this._disposePopper();\n }\n this._element.removeAttribute('aria-describedby');\n EventHandler.trigger(this._element, this.constructor.eventName(EVENT_HIDDEN$2));\n };\n this._queueCallback(complete, this.tip, this._isAnimated());\n }\n update() {\n if (this._popper) {\n this._popper.update();\n }\n }\n\n // Protected\n _isWithContent() {\n return Boolean(this._getTitle());\n }\n _getTipElement() {\n if (!this.tip) {\n this.tip = this._createTipElement(this._newContent || this._getContentForTemplate());\n }\n return this.tip;\n }\n _createTipElement(content) {\n const tip = this._getTemplateFactory(content).toHtml();\n\n // TODO: remove this check in v6\n if (!tip) {\n return null;\n }\n tip.classList.remove(CLASS_NAME_FADE$2, CLASS_NAME_SHOW$2);\n // TODO: v6 the following can be achieved with CSS only\n tip.classList.add(`bs-${this.constructor.NAME}-auto`);\n const tipId = getUID(this.constructor.NAME).toString();\n tip.setAttribute('id', tipId);\n if (this._isAnimated()) {\n tip.classList.add(CLASS_NAME_FADE$2);\n }\n return tip;\n }\n setContent(content) {\n this._newContent = content;\n if (this._isShown()) {\n this._disposePopper();\n this.show();\n }\n }\n _getTemplateFactory(content) {\n if (this._templateFactory) {\n this._templateFactory.changeContent(content);\n } else {\n this._templateFactory = new TemplateFactory({\n ...this._config,\n // the `content` var has to be after `this._config`\n // to override config.content in case of popover\n content,\n extraClass: this._resolvePossibleFunction(this._config.customClass)\n });\n }\n return this._templateFactory;\n }\n _getContentForTemplate() {\n return {\n [SELECTOR_TOOLTIP_INNER]: this._getTitle()\n };\n }\n _getTitle() {\n return this._resolvePossibleFunction(this._config.title) || this._element.getAttribute('data-bs-original-title');\n }\n\n // Private\n _initializeOnDelegatedTarget(event) {\n return this.constructor.getOrCreateInstance(event.delegateTarget, this._getDelegateConfig());\n }\n _isAnimated() {\n return this._config.animation || this.tip && this.tip.classList.contains(CLASS_NAME_FADE$2);\n }\n _isShown() {\n return this.tip && this.tip.classList.contains(CLASS_NAME_SHOW$2);\n }\n _createPopper(tip) {\n const placement = execute(this._config.placement, [this, tip, this._element]);\n const attachment = AttachmentMap[placement.toUpperCase()];\n return Popper.createPopper(this._element, tip, this._getPopperConfig(attachment));\n }\n _getOffset() {\n const {\n offset\n } = this._config;\n if (typeof offset === 'string') {\n return offset.split(',').map(value => Number.parseInt(value, 10));\n }\n if (typeof offset === 'function') {\n return popperData => offset(popperData, this._element);\n }\n return offset;\n }\n _resolvePossibleFunction(arg) {\n return execute(arg, [this._element]);\n }\n _getPopperConfig(attachment) {\n const defaultBsPopperConfig = {\n placement: attachment,\n modifiers: [{\n name: 'flip',\n options: {\n fallbackPlacements: this._config.fallbackPlacements\n }\n }, {\n name: 'offset',\n options: {\n offset: this._getOffset()\n }\n }, {\n name: 'preventOverflow',\n options: {\n boundary: this._config.boundary\n }\n }, {\n name: 'arrow',\n options: {\n element: `.${this.constructor.NAME}-arrow`\n }\n }, {\n name: 'preSetPlacement',\n enabled: true,\n phase: 'beforeMain',\n fn: data => {\n // Pre-set Popper's placement attribute in order to read the arrow sizes properly.\n // Otherwise, Popper mixes up the width and height dimensions since the initial arrow style is for top placement\n this._getTipElement().setAttribute('data-popper-placement', data.state.placement);\n }\n }]\n };\n return {\n ...defaultBsPopperConfig,\n ...execute(this._config.popperConfig, [defaultBsPopperConfig])\n };\n }\n _setListeners() {\n const triggers = this._config.trigger.split(' ');\n for (const trigger of triggers) {\n if (trigger === 'click') {\n EventHandler.on(this._element, this.constructor.eventName(EVENT_CLICK$1), this._config.selector, event => {\n const context = this._initializeOnDelegatedTarget(event);\n context.toggle();\n });\n } else if (trigger !== TRIGGER_MANUAL) {\n const eventIn = trigger === TRIGGER_HOVER ? this.constructor.eventName(EVENT_MOUSEENTER) : this.constructor.eventName(EVENT_FOCUSIN$1);\n const eventOut = trigger === TRIGGER_HOVER ? this.constructor.eventName(EVENT_MOUSELEAVE) : this.constructor.eventName(EVENT_FOCUSOUT$1);\n EventHandler.on(this._element, eventIn, this._config.selector, event => {\n const context = this._initializeOnDelegatedTarget(event);\n context._activeTrigger[event.type === 'focusin' ? TRIGGER_FOCUS : TRIGGER_HOVER] = true;\n context._enter();\n });\n EventHandler.on(this._element, eventOut, this._config.selector, event => {\n const context = this._initializeOnDelegatedTarget(event);\n context._activeTrigger[event.type === 'focusout' ? TRIGGER_FOCUS : TRIGGER_HOVER] = context._element.contains(event.relatedTarget);\n context._leave();\n });\n }\n }\n this._hideModalHandler = () => {\n if (this._element) {\n this.hide();\n }\n };\n EventHandler.on(this._element.closest(SELECTOR_MODAL), EVENT_MODAL_HIDE, this._hideModalHandler);\n }\n _fixTitle() {\n const title = this._element.getAttribute('title');\n if (!title) {\n return;\n }\n if (!this._element.getAttribute('aria-label') && !this._element.textContent.trim()) {\n this._element.setAttribute('aria-label', title);\n }\n this._element.setAttribute('data-bs-original-title', title); // DO NOT USE IT. Is only for backwards compatibility\n this._element.removeAttribute('title');\n }\n _enter() {\n if (this._isShown() || this._isHovered) {\n this._isHovered = true;\n return;\n }\n this._isHovered = true;\n this._setTimeout(() => {\n if (this._isHovered) {\n this.show();\n }\n }, this._config.delay.show);\n }\n _leave() {\n if (this._isWithActiveTrigger()) {\n return;\n }\n this._isHovered = false;\n this._setTimeout(() => {\n if (!this._isHovered) {\n this.hide();\n }\n }, this._config.delay.hide);\n }\n _setTimeout(handler, timeout) {\n clearTimeout(this._timeout);\n this._timeout = setTimeout(handler, timeout);\n }\n _isWithActiveTrigger() {\n return Object.values(this._activeTrigger).includes(true);\n }\n _getConfig(config) {\n const dataAttributes = Manipulator.getDataAttributes(this._element);\n for (const dataAttribute of Object.keys(dataAttributes)) {\n if (DISALLOWED_ATTRIBUTES.has(dataAttribute)) {\n delete dataAttributes[dataAttribute];\n }\n }\n config = {\n ...dataAttributes,\n ...(typeof config === 'object' && config ? config : {})\n };\n config = this._mergeConfigObj(config);\n config = this._configAfterMerge(config);\n this._typeCheckConfig(config);\n return config;\n }\n _configAfterMerge(config) {\n config.container = config.container === false ? document.body : getElement(config.container);\n if (typeof config.delay === 'number') {\n config.delay = {\n show: config.delay,\n hide: config.delay\n };\n }\n if (typeof config.title === 'number') {\n config.title = config.title.toString();\n }\n if (typeof config.content === 'number') {\n config.content = config.content.toString();\n }\n return config;\n }\n _getDelegateConfig() {\n const config = {};\n for (const [key, value] of Object.entries(this._config)) {\n if (this.constructor.Default[key] !== value) {\n config[key] = value;\n }\n }\n config.selector = false;\n config.trigger = 'manual';\n\n // In the future can be replaced with:\n // const keysWithDifferentValues = Object.entries(this._config).filter(entry => this.constructor.Default[entry[0]] !== this._config[entry[0]])\n // `Object.fromEntries(keysWithDifferentValues)`\n return config;\n }\n _disposePopper() {\n if (this._popper) {\n this._popper.destroy();\n this._popper = null;\n }\n if (this.tip) {\n this.tip.remove();\n this.tip = null;\n }\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Tooltip.getOrCreateInstance(this, config);\n if (typeof config !== 'string') {\n return;\n }\n if (typeof data[config] === 'undefined') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config]();\n });\n }\n}\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Tooltip);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap popover.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$3 = 'popover';\nconst SELECTOR_TITLE = '.popover-header';\nconst SELECTOR_CONTENT = '.popover-body';\nconst Default$2 = {\n ...Tooltip.Default,\n content: '',\n offset: [0, 8],\n placement: 'right',\n template: '
' + '
' + '

' + '
' + '
',\n trigger: 'click'\n};\nconst DefaultType$2 = {\n ...Tooltip.DefaultType,\n content: '(null|string|element|function)'\n};\n\n/**\n * Class definition\n */\n\nclass Popover extends Tooltip {\n // Getters\n static get Default() {\n return Default$2;\n }\n static get DefaultType() {\n return DefaultType$2;\n }\n static get NAME() {\n return NAME$3;\n }\n\n // Overrides\n _isWithContent() {\n return this._getTitle() || this._getContent();\n }\n\n // Private\n _getContentForTemplate() {\n return {\n [SELECTOR_TITLE]: this._getTitle(),\n [SELECTOR_CONTENT]: this._getContent()\n };\n }\n _getContent() {\n return this._resolvePossibleFunction(this._config.content);\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Popover.getOrCreateInstance(this, config);\n if (typeof config !== 'string') {\n return;\n }\n if (typeof data[config] === 'undefined') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config]();\n });\n }\n}\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Popover);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap scrollspy.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$2 = 'scrollspy';\nconst DATA_KEY$2 = 'bs.scrollspy';\nconst EVENT_KEY$2 = `.${DATA_KEY$2}`;\nconst DATA_API_KEY = '.data-api';\nconst EVENT_ACTIVATE = `activate${EVENT_KEY$2}`;\nconst EVENT_CLICK = `click${EVENT_KEY$2}`;\nconst EVENT_LOAD_DATA_API$1 = `load${EVENT_KEY$2}${DATA_API_KEY}`;\nconst CLASS_NAME_DROPDOWN_ITEM = 'dropdown-item';\nconst CLASS_NAME_ACTIVE$1 = 'active';\nconst SELECTOR_DATA_SPY = '[data-bs-spy=\"scroll\"]';\nconst SELECTOR_TARGET_LINKS = '[href]';\nconst SELECTOR_NAV_LIST_GROUP = '.nav, .list-group';\nconst SELECTOR_NAV_LINKS = '.nav-link';\nconst SELECTOR_NAV_ITEMS = '.nav-item';\nconst SELECTOR_LIST_ITEMS = '.list-group-item';\nconst SELECTOR_LINK_ITEMS = `${SELECTOR_NAV_LINKS}, ${SELECTOR_NAV_ITEMS} > ${SELECTOR_NAV_LINKS}, ${SELECTOR_LIST_ITEMS}`;\nconst SELECTOR_DROPDOWN = '.dropdown';\nconst SELECTOR_DROPDOWN_TOGGLE$1 = '.dropdown-toggle';\nconst Default$1 = {\n offset: null,\n // TODO: v6 @deprecated, keep it for backwards compatibility reasons\n rootMargin: '0px 0px -25%',\n smoothScroll: false,\n target: null,\n threshold: [0.1, 0.5, 1]\n};\nconst DefaultType$1 = {\n offset: '(number|null)',\n // TODO v6 @deprecated, keep it for backwards compatibility reasons\n rootMargin: 'string',\n smoothScroll: 'boolean',\n target: 'element',\n threshold: 'array'\n};\n\n/**\n * Class definition\n */\n\nclass ScrollSpy extends BaseComponent {\n constructor(element, config) {\n super(element, config);\n\n // this._element is the observablesContainer and config.target the menu links wrapper\n this._targetLinks = new Map();\n this._observableSections = new Map();\n this._rootElement = getComputedStyle(this._element).overflowY === 'visible' ? null : this._element;\n this._activeTarget = null;\n this._observer = null;\n this._previousScrollData = {\n visibleEntryTop: 0,\n parentScrollTop: 0\n };\n this.refresh(); // initialize\n }\n\n // Getters\n static get Default() {\n return Default$1;\n }\n static get DefaultType() {\n return DefaultType$1;\n }\n static get NAME() {\n return NAME$2;\n }\n\n // Public\n refresh() {\n this._initializeTargetsAndObservables();\n this._maybeEnableSmoothScroll();\n if (this._observer) {\n this._observer.disconnect();\n } else {\n this._observer = this._getNewObserver();\n }\n for (const section of this._observableSections.values()) {\n this._observer.observe(section);\n }\n }\n dispose() {\n this._observer.disconnect();\n super.dispose();\n }\n\n // Private\n _configAfterMerge(config) {\n // TODO: on v6 target should be given explicitly & remove the {target: 'ss-target'} case\n config.target = getElement(config.target) || document.body;\n\n // TODO: v6 Only for backwards compatibility reasons. Use rootMargin only\n config.rootMargin = config.offset ? `${config.offset}px 0px -30%` : config.rootMargin;\n if (typeof config.threshold === 'string') {\n config.threshold = config.threshold.split(',').map(value => Number.parseFloat(value));\n }\n return config;\n }\n _maybeEnableSmoothScroll() {\n if (!this._config.smoothScroll) {\n return;\n }\n\n // unregister any previous listeners\n EventHandler.off(this._config.target, EVENT_CLICK);\n EventHandler.on(this._config.target, EVENT_CLICK, SELECTOR_TARGET_LINKS, event => {\n const observableSection = this._observableSections.get(event.target.hash);\n if (observableSection) {\n event.preventDefault();\n const root = this._rootElement || window;\n const height = observableSection.offsetTop - this._element.offsetTop;\n if (root.scrollTo) {\n root.scrollTo({\n top: height,\n behavior: 'smooth'\n });\n return;\n }\n\n // Chrome 60 doesn't support `scrollTo`\n root.scrollTop = height;\n }\n });\n }\n _getNewObserver() {\n const options = {\n root: this._rootElement,\n threshold: this._config.threshold,\n rootMargin: this._config.rootMargin\n };\n return new IntersectionObserver(entries => this._observerCallback(entries), options);\n }\n\n // The logic of selection\n _observerCallback(entries) {\n const targetElement = entry => this._targetLinks.get(`#${entry.target.id}`);\n const activate = entry => {\n this._previousScrollData.visibleEntryTop = entry.target.offsetTop;\n this._process(targetElement(entry));\n };\n const parentScrollTop = (this._rootElement || document.documentElement).scrollTop;\n const userScrollsDown = parentScrollTop >= this._previousScrollData.parentScrollTop;\n this._previousScrollData.parentScrollTop = parentScrollTop;\n for (const entry of entries) {\n if (!entry.isIntersecting) {\n this._activeTarget = null;\n this._clearActiveClass(targetElement(entry));\n continue;\n }\n const entryIsLowerThanPrevious = entry.target.offsetTop >= this._previousScrollData.visibleEntryTop;\n // if we are scrolling down, pick the bigger offsetTop\n if (userScrollsDown && entryIsLowerThanPrevious) {\n activate(entry);\n // if parent isn't scrolled, let's keep the first visible item, breaking the iteration\n if (!parentScrollTop) {\n return;\n }\n continue;\n }\n\n // if we are scrolling up, pick the smallest offsetTop\n if (!userScrollsDown && !entryIsLowerThanPrevious) {\n activate(entry);\n }\n }\n }\n _initializeTargetsAndObservables() {\n this._targetLinks = new Map();\n this._observableSections = new Map();\n const targetLinks = SelectorEngine.find(SELECTOR_TARGET_LINKS, this._config.target);\n for (const anchor of targetLinks) {\n // ensure that the anchor has an id and is not disabled\n if (!anchor.hash || isDisabled(anchor)) {\n continue;\n }\n const observableSection = SelectorEngine.findOne(decodeURI(anchor.hash), this._element);\n\n // ensure that the observableSection exists & is visible\n if (isVisible(observableSection)) {\n this._targetLinks.set(decodeURI(anchor.hash), anchor);\n this._observableSections.set(anchor.hash, observableSection);\n }\n }\n }\n _process(target) {\n if (this._activeTarget === target) {\n return;\n }\n this._clearActiveClass(this._config.target);\n this._activeTarget = target;\n target.classList.add(CLASS_NAME_ACTIVE$1);\n this._activateParents(target);\n EventHandler.trigger(this._element, EVENT_ACTIVATE, {\n relatedTarget: target\n });\n }\n _activateParents(target) {\n // Activate dropdown parents\n if (target.classList.contains(CLASS_NAME_DROPDOWN_ITEM)) {\n SelectorEngine.findOne(SELECTOR_DROPDOWN_TOGGLE$1, target.closest(SELECTOR_DROPDOWN)).classList.add(CLASS_NAME_ACTIVE$1);\n return;\n }\n for (const listGroup of SelectorEngine.parents(target, SELECTOR_NAV_LIST_GROUP)) {\n // Set triggered links parents as active\n // With both