-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtools.py
637 lines (527 loc) · 22.9 KB
/
tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
import os
import pickle
import time
from math import ceil
import shutil
import graphviz
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import sklearn
import xgboost as xgb
from imblearn.over_sampling import SMOTENC, RandomOverSampler
from imblearn.pipeline import Pipeline
from IPython.display import display
from pandas.api.types import is_numeric_dtype
from scipy.sparse import csr_matrix
from sklearn import metrics
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, fbeta_score, make_scorer, ConfusionMatrixDisplay
from sklearn.model_selection import (GridSearchCV, ParameterGrid,
RandomizedSearchCV, train_test_split)
from sklearn.preprocessing import OneHotEncoder
from sklearn.tree import DecisionTreeClassifier
from xgboost import XGBClassifier
COLUMNS_QUANT = ['contextid',
'campaignctrlast24h',
'dayssincelastvisitdouble',
'ltf_nbglobaldisplay_4w',
'ltf_nbpartnerdisplayssincelastclick',
'ltf_nbpartnerdisplay_90d',
'ltf_nbpartnerclick_90d',
'ltf_nbpartnersales_90d',
'nbdayssincelastclick',
'nbdisplay_1hour',
'nbdisplayglobalapprox_1d_sum_xdevice',
'display_size',
'zonecostineuro']
COLUMNS_CAT = ['display_env',
'target_env',
'campaignscenario',
'campaignvertical',
'is_interstitial',
'device_type',
'hour',
'weekday']
# ---------------------------------------------------------------------------- #
# Création des datasets #
# ---------------------------------------------------------------------------- #
def datasets(df, columns_quant=COLUMNS_QUANT, columns_cat=COLUMNS_CAT, verbose=True, sparse=False, drop='if_binary'):
if verbose:
print(f"Columns_quant : {'default' if columns_quant == COLUMNS_QUANT else columns_quant}")
print(f"Columns_cat : {'default' if columns_cat == COLUMNS_CAT else columns_cat}")
print(f"drop : {drop}")
df = df[COLUMNS_QUANT + COLUMNS_CAT + ['is_display_clicked']]
df = df.dropna()
X_quant = df[columns_quant]
X_quant_scaled = (X_quant - X_quant.mean()) / X_quant.std()
if verbose:
print(f"\nNombre de variables pour X_quant : {len(X_quant.columns)}\n")
display(X_quant.columns)
is_columns_cat_dummy = False # True si columns_cat contient des dummy variables
for elem in columns_cat:
if elem not in COLUMNS_CAT:
is_columns_cat_dummy = True
if not is_columns_cat_dummy:
X_cat = df[columns_cat]
index = X_cat.index
enc = OneHotEncoder(drop=drop, sparse=False)
X_cat = enc.fit_transform(X_cat)
X_cat = pd.DataFrame(X_cat, columns=enc.get_feature_names(columns_cat), index=index)
else:
X_cat = df[COLUMNS_CAT]
index = X_cat.index
enc = OneHotEncoder(drop=drop, sparse=False)
X_cat = enc.fit_transform(X_cat)
X_cat = pd.DataFrame(X_cat, columns=enc.get_feature_names(COLUMNS_CAT), index=index)
X_cat = X_cat[columns_cat]
X_cat_scaled = (X_cat - X_cat.mean()) / X_cat.std()
X_cat_scaled2 = X_cat / X_cat.std()
if verbose:
print(f"\nNombre de variables pour X_cat : {len(X_cat.columns)}\n")
display(X_cat.columns)
X = pd.concat([X_quant, X_cat], axis=1)
X_all_scaled = pd.concat([X_quant_scaled, X_cat_scaled], axis=1)
X_only_quant_scaled = pd.concat([X_quant_scaled, X_cat_scaled2], axis=1)
if verbose:
print(f"\nNombre de variables pour X : {len(X.columns)}")
y = df['is_display_clicked']
if sparse:
dico = {'X_quant': csr_matrix(X_quant),
'X_quant_scaled': csr_matrix(X_quant_scaled),
'X_cat': csr_matrix(X_cat),
'X_cat_scaled': csr_matrix(X_cat_scaled),
'X': csr_matrix(X),
'X_only_quant_scaled': csr_matrix(X_only_quant_scaled),
'X_all_scaled': csr_matrix(X_all_scaled),
'y': y}
else:
dico = {'X_quant': X_quant,
'X_quant_scaled': X_quant_scaled,
'X_cat': X_cat,
'X_cat_scaled': X_cat_scaled,
'X': X,
'X_only_quant_scaled': X_only_quant_scaled,
'X_all_scaled': X_all_scaled,
'y': y}
return dico
TIME_INTERVALS = (
('weeks', 604800), # 60 * 60 * 24 * 7
('days', 86400), # 60 * 60 * 24
('h', 3600), # 60 * 60
('min', 60),
('s', 1))
def display_time(seconds, granularity=5):
result = []
for name, count in TIME_INTERVALS:
value = int(seconds // count)
if name == 's':
value = round(seconds, 3)
if value:
seconds -= value * count
if value == 1:
name = name.rstrip('s')
result.append("{}{}".format(value, name))
return ', '.join(result[:granularity])
# ---------------------------------------------------------------------------- #
# Modélisation #
# ---------------------------------------------------------------------------- #
class Modelisation():
def __init__(self, X, y, model, X_test=None, y_test=None, seuil=None):
"""
Par défaut : division du dataset (X, y) en un training set et un test set, sauf si (X_test, y_test) est fourni.
"""
if X_test is not None or y_test is not None:
assert X_test is not None
assert y_test is not None
if X_test is None:
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.80, random_state=1234)
X_train = pd.DataFrame(data=X_train, columns=X.columns)
X_test = pd.DataFrame(data=X_test, columns=X.columns)
else:
X_train = X
y_train = y
# if scaling:
# columns = X.columns
# scaler = StandardScaler()
# X_train = scaler.fit_transform(X_train)
# X_test = scaler.transform(X_test)
# X_train = pd.DataFrame(data=X_train, columns=columns)
# X_test = pd.DataFrame(data=X_test, columns=columns)
t1 = time.time()
model.fit(X_train, y_train)
self.training_time = time.time() - t1
t1 = time.time()
if seuil is None:
y_pred = model.predict(X_test)
else:
y_pred = (model.predict_proba(X_test)[:,1] >= seuil).astype(bool)
self.prediction_time = time.time() - t1
cm = confusion_matrix(y_test, y_pred)
probs = model.predict_proba(X_test)[:, 1]
TP = cm[1][1]
FN = cm[1][0]
FP = cm[0][1]
TN = cm[0][0]
sc_roc_auc = metrics.roc_auc_score(y_test, model.predict_proba(X_test)[:, 1])
# Recall
Recall = TP / (TP + FN)
# Precision
Precision = TP / (TP + FP)
# Negative predictive value
NPV = TN / (TN + FN)
# F1_Score
F1 = (2 * Precision * Recall) / (Precision + Recall)
# F3_Score
F3 = (10 * Precision * Recall) / (9 * Precision + Recall)
# F5_Score
F5 = (26 * Precision * Recall) / (25 * Precision + Recall)
metrics_score = {'f1': F1, 'f3': F3, 'f5': F5, 'recall': Recall, 'negative predictive value': NPV, 'precision': Precision, 'roc_auc': sc_roc_auc}
self.X_train, self.X_test, self.y_train, self.y_test = X_train, X_test, y_train, y_test
self.model = model
self.probs = probs
self.metrics_score = metrics_score
self.recall = Recall
self.X_columns = X.columns
self.seuil = seuil
def get_data(self):
return self.X_train, self.X_test, self.y_train, self.y_test
def show_conf_matrix(self, pdf=None):
if self.seuil is None:
y_pred = self.model.predict(self.X_test)
else:
y_pred = (self.model.predict_proba(self.X_test)[:,1] >= self.seuil).astype(bool)
cm = confusion_matrix(self.y_test, y_pred, labels=self.model.classes_)
disp = ConfusionMatrixDisplay(confusion_matrix=cm,
display_labels=self.model.classes_)
disp.plot(cmap='Blues')
if pdf:
pdf.export()
plt.show()
def show_metrics_score(self):
for key, value in self.metrics_score.items():
print(f"{key} : {value:.4f}")
print(f"training time : {display_time(self.training_time)}")
print(f"prediction time : {display_time(self.prediction_time)}")
def show_ROC(self, pdf=None):
fpr, tpr, _ = metrics.roc_curve(self.y_test, self.probs)
plt.plot(fpr, tpr, label=f"{self.model}")
plt.plot([0, 1], [0, 1], "r-", label='Modèle aléatoire')
plt.plot([0, 0, 1], [0, 1, 1], 'b-', label='Modèle parfait')
plt.legend()
if pdf:
pdf.export()
plt.title('Courbe ROC')
plt.show()
def show_attributes(self):
if isinstance(self.model, sklearn.tree.DecisionTreeClassifier):
# help(sklearn.tree._tree.Tree)
tree = self.model.tree_
attributes = {'max_depth': tree.max_depth, 'n_leaves': tree.n_leaves, 'node_count': tree.node_count}
for key, value in attributes.items():
print(f"{key} : {value}")
# Spécifiques à DecisionTreeClassifier
def plot_tree(self):
assert(isinstance(self.model, sklearn.tree.DecisionTreeClassifier))
dot_data = sklearn.tree.export_graphviz(self.model,
out_file=None,
feature_names=self.X_columns,
class_names=['False', 'True'],
filled=True, rounded=True,
special_characters=True)
graph = graphviz.Source(dot_data)
display(graph)
# Spécifiques à XGBClassifier
def plot_importance(self, **kwargs):
assert(isinstance(self.model, xgb.XGBClassifier))
xgb.plot_importance(self.model, **kwargs)
def show_graph(self, **kwargs):
assert(isinstance(self.model, xgb.XGBClassifier))
display(xgb.to_graphviz(self.model, **kwargs))
# ---------------------------------------------------------------------------- #
# Randomized/GridSearch #
# ---------------------------------------------------------------------------- #
def f_model_name(model):
if isinstance(model, XGBClassifier):
return 'XGBoost'
elif isinstance(model, LogisticRegression):
return 'LR'
elif isinstance(model, DecisionTreeClassifier):
return 'Tree'
elif isinstance(model, RandomForestClassifier):
return 'Forest'
elif isinstance(model, RandomOverSampler):
return 'RandomOver'
elif isinstance(model, SMOTENC):
return 'SMOTENC'
elif isinstance(model, Pipeline):
steps = model.steps
return f_model_name(steps)
elif isinstance(model, list):
if len(model) == 1:
return f_model_name(model[0][1])
else:
return f_model_name(model[0][1]) + '_' + f_model_name(model[1:])
else:
return str(model)
SCORING = {'recall': 'recall',
'precision': 'precision',
'f1': 'f1',
'f3': make_scorer(fbeta_score, beta=3),
'f5': make_scorer(fbeta_score, beta=5)
}
def SearchCV(model, params, **kwargs):
# Récupération des arguments
columns_quant = kwargs.pop('columns_quant', COLUMNS_QUANT)
columns_cat = kwargs.pop('columns_cat', COLUMNS_CAT)
drop = kwargs.pop('drop', 'if_binary')
data_frac = kwargs.pop('data_frac', 1)
scaling = kwargs.pop('scaling', False)
sparse = kwargs.pop('sparse', False)
scoring = kwargs.pop('scoring', SCORING)
random = kwargs.pop('random', False)
if random:
n_iter = kwargs.pop('n_iter', 10)
random_state = kwargs.pop('random_state', None)
n_jobs = kwargs.pop('n_jobs', -1)
name = kwargs.pop('name', '')
if len(kwargs) > 0:
raise ValueError(f"Arguments non valides : {[*kwargs]}")
model_name = f_model_name(model)
if name:
model_name += f'_{name}'
print('RandomizedSearchCV' if random else 'GridSearchCV')
print(f"Modèle : {model_name}")
print('******************')
print(f"\nNombre total de combinaisons de paramètres : {len(ParameterGrid(params))}")
if random:
print(f"Nombre de combinaisons aléatoires testées : {n_iter}\n")
print(f"Columns_quant : {'default' if columns_quant == COLUMNS_QUANT else columns_quant}")
print(f"Columns_cat : {'default' if columns_cat == COLUMNS_CAT else columns_cat}")
print(f"drop : {drop}")
print(f"Pourcentage des données : {data_frac*100}%")
# Création des datasets
csv = 'data/df_train_prepro.csv'
df = pd.read_csv(csv).sample(frac=data_frac, random_state=random_state)
datasets_df = datasets(df, columns_quant=columns_quant, columns_cat=columns_cat, verbose=False, sparse=sparse, drop=drop)
if scaling:
X = datasets_df['X_only_quant_scaled']
else:
X = datasets_df['X']
y = datasets_df['y']
if random:
search = RandomizedSearchCV(model, params, n_iter=n_iter, scoring=scoring, refit=False, n_jobs=n_jobs, cv=5, random_state=random_state)
else:
search = GridSearchCV(model, params, scoring=scoring, refit=False, n_jobs=n_jobs, cv=5)
t1 = time.time()
search.fit(X, y)
temps = display_time(time.time() - t1)
results = pd.DataFrame(search.cv_results_)
results = results.convert_dtypes()
len_grid = len(ParameterGrid(params))
dico = {'model': str(model),
'model_name': model_name,
'type': 'RandomizedSearchCV' if random else 'GridSearchCV',
'len_grid': len_grid,
'n_iter': n_iter if random else '',
'columns_quant': 'default' if columns_quant == COLUMNS_QUANT else columns_quant,
'columns_cat': 'default' if columns_cat == COLUMNS_CAT else columns_cat,
'drop': drop,
'data_frac': data_frac,
'n_jobs': n_jobs,
'temps': temps,
'params': params,
'scoring': scoring
}
if not random:
del dico['n_iter']
filename = f'{model_name}_CV_'
if random:
filename += f'Randomized{n_iter}_'
else:
filename += 'Grid_'
filename += f'{len_grid}_'
filename += f'{data_frac}'
print(f"\nTemps : {temps}")
print(f"Exportation : {filename}")
pickle.dump((dico, results), open('backups/' + filename + '.pkl', 'wb'))
def restauration_CV(filename, verbose=True):
dico, results = pickle.load(open('backups/' + filename + '.pkl', 'rb'))
if verbose:
for key, value in dico.items():
print(f"{key} : {value}")
# On enlève toutes les colonnes split
results = results.loc[:, ~results.columns.str.startswith('split')]
return dico, results
def graph_2scores_CV(dico, results, score1, score2, s=20, zoom=1, pdf=None):
"""
Zoom sur les x% meilleurs combinaisons selon score1
"""
plt.figure(figsize=(14, 8))
if dico['type'] == 'RandomizedSearchCV':
n = int(zoom * dico['n_iter'])
else:
n = int(zoom * dico['len_grid'])
results_sort = results.sort_values(by=f'mean_test_{score1}', ascending=False)
plt.scatter(results_sort[f'mean_test_{score1}'][:n], results_sort[f'mean_test_{score2}'][:n], marker='o', s=s)
plt.xlabel(score1)
plt.ylabel(score2)
if pdf:
pdf.export()
if dico['type'] == 'RandomizedSearchCV':
plt.title(f"{dico['model_name']} | RandomizedSearchCV : {'(zoom) ' if zoom != 1 else ''}scores de {n} combinaisons de paramètres parmi {dico['len_grid']}, avec {dico['data_frac']*100}% des données")
else:
plt.title(f"{dico['model_name']} | GridSearchCV : {'(zoom) ' if zoom != 1 else ''}scores de {n} combinaisons de paramètres, avec {dico['data_frac']*100}% des données")
plt.show()
def graph_3scores_CV(dico, results, score1, score2, score3, s=20, zoom=1, pdf=None):
"""
Zoom sur les x% meilleurs combinaisons selon score1
"""
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(111, projection='3d')
if dico['type'] == 'RandomizedSearchCV':
n = int(zoom * dico['n_iter'])
else:
n = int(zoom * dico['len_grid'])
results_sort = results.sort_values(by=f'mean_test_{score1}', ascending=False)
ax.scatter(results_sort[f'mean_test_{score1}'][:n], results_sort[f'mean_test_{score2}'][:n], results_sort[f'mean_test_{score3}'][:n], s=s, color='r', linestyle="None", marker='o')
ax.set_xlabel(score1)
ax.set_ylabel(score2)
ax.set_zlabel(score3)
if pdf:
pdf.export()
if dico['type'] == 'RandomizedSearchCV':
plt.title(f"{dico['model_name']} | RandomizedSearchCV : {'(zoom) ' if zoom != 1 else ''}scores de {n} combinaisons de paramètres parmi {dico['len_grid']}, avec {dico['data_frac']*100}% des données")
else:
plt.title(f"{dico['model_name']} | GridSearchCV : {'(zoom) ' if zoom != 1 else ''}scores de {n} combinaisons de paramètres, avec {dico['data_frac']*100}% des données")
plt.show()
def graph_param_CV(dico, results, param=None, ncols=3, xscale={}, height=3, width=5, pdf=None):
"""
xscale = {param1: 'log'}
"""
if param is None:
list_param = dico['params'].keys()
else:
list_param = [param]
if len(list_param) > 1:
ncols = ncols
nrows = ceil(len(list_param) / ncols)
else:
ncols, nrows = 1, 1
fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(width * ncols, height * nrows))
for i, param in enumerate(list_param):
if len(list_param) == 1:
ax = axes
elif len(list_param) <= ncols:
ax = axes[i % ncols]
else:
ax = axes[i // ncols, i % ncols]
if is_numeric_dtype(results[f'param_{param}']):
results[f'param_{param}'].fillna(value=-1, inplace=True)
nb_param = results[f'param_{param}'].nunique()
numeric = True
else:
results[f'param_{param}'] = results[f'param_{param}'].astype(str)
nb_param = results[f'param_{param}'].nunique()
numeric = False
if nb_param <= 15 or not numeric: # xticks régulier
r = list(range(nb_param))
for score in dico['scoring']:
a = results.groupby(f'param_{param}').mean()
if param in ['class_weight', 'model__class_weight']:
a.sort_index(inplace=True, ascending=True, key=key_class_weight)
else:
a.sort_index(inplace=True, ascending=True)
ax.plot(r, list(a[f"mean_test_{score}"]), label=score, marker='o')
ax.set_xticks(r)
ax.set_xticklabels(a.index)
if not numeric:
ax.tick_params(axis='x', labelrotation=45)
else: # Numérique et plus de 15 valeurs
for score in dico['scoring']:
a = results.groupby(f'param_{param}').mean()
a.sort_index(inplace=True, ascending=True)
ax.plot(a.index, list(a[f"mean_test_{score}"]), label=score)
if param in xscale:
ax.set_xscale(xscale[param])
ax.set_xlabel(param)
ax.set_ylabel("score")
ax.legend()
if len(list_param) % ncols != 0:
if len(list_param) > ncols:
for i in range(len(list_param) % ncols, ncols):
axes[-1, i].set_visible(False)
elif len(list_param) > 1:
for i in range(len(list_param) % ncols, ncols):
axes[i].set_visible(False)
fig.tight_layout()
if pdf:
pdf.export()
fig.suptitle(f"{dico['model_name']} : effet des paramètres", fontsize=14, y=1)
fig.tight_layout()
plt.show()
def key_class_weight(string):
if string == 'None':
return -2
if string == 'balanced':
return -1
else:
dico = eval(string)
return dico[1] / dico[0]
key_class_weight = np.vectorize(key_class_weight)
def best_score_CV(dico, results, score, display_table=True):
results_sort = results.sort_values(by=f'mean_test_{score}', ascending=False)
if display_table:
display(results_sort.head(10))
best_params = results_sort.iloc[0].params
print(f"Meilleure combinaison de paramètres pour {score} :")
display(best_params)
return best_params
def graph_2scores_CV_comp(dr_list, score1, score2, s=20, alpha=1, zoom=1, pdf=None):
"""
Comparaison de plusieurs modèles
dr_list : [(dico1, results1), (dico2, results2)]
"""
plt.figure(figsize=(14, 8))
if isinstance(s, float) or isinstance(s, int):
s = [s] * len(dr_list)
for i, elem in enumerate(dr_list):
dico, results = elem
if dico['type'] == 'RandomizedSearchCV':
n = int(zoom * dico['n_iter'])
else:
n = int(zoom * dico['len_grid'])
results_sort = results.sort_values(by=f'mean_test_{score1}', ascending=False)
plt.scatter(results_sort[f'mean_test_{score1}'][:n], results_sort[f'mean_test_{score2}'][:n], marker='o', s=s[i], alpha=alpha, label=dico['model_name'])
plt.xlabel(score1)
plt.ylabel(score2)
legend = plt.legend()
for lh in legend.legendHandles:
lh.set_alpha(1.0)
lh.set_sizes([30])
if pdf:
pdf.export()
plt.show()
class PDF():
def __init__(self, fig_folder):
self.fig_folder = fig_folder
self.fig_count = 0
shutil.rmtree(fig_folder, ignore_errors=True)
os.makedirs(fig_folder)
def export(self):
file = f"{self.fig_folder}{self.fig_count:02d}.pdf"
plt.savefig(file, bbox_inches='tight')
print(f"Export PDF : {file}\n")
self.fig_count += 1
def convert_keys_to_int(d: dict):
new_dict = {}
for k, v in d.items():
try:
new_key = int(k)
except ValueError:
new_key = k
if type(v) == dict:
v = convert_keys_to_int(v)
new_dict[new_key] = v
return new_dict