forked from VinAIResearch/MISCA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loader.py
executable file
·400 lines (326 loc) · 15 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import os
import numpy as np
import torch
import logging
import copy
import json
from transformers import AutoTokenizer
from torch.utils.data import Dataset, TensorDataset
from torch.utils.data import DataLoader
from utils import get_intent_labels, get_slot_labels
from utils import get_intent_labels, get_slot_labels, get_clean_labels, get_slots_all
#test
logger = logging.getLogger(__name__)
def convert_examples_to_features(examples, max_seq_len, tokenizer,
pad_token_label_id=-100,
cls_token_segment_id=0,
pad_token_segment_id=0,
sequence_a_segment_id=0,
mask_padding_with_zero=True):
# Setting based on the current model type
cls_token = tokenizer.cls_token
sep_token = tokenizer.sep_token
unk_token = tokenizer.unk_token
pad_token_id = tokenizer.pad_token_id
features = []
for (ex_index, example) in enumerate(examples):
# Tokenize word by word (for NER)
tokens = []
heads = []
# slot_labels_ids = []
for word, slot_label in zip(example.text, example.slot_labels[1:-1]):
word_tokens = tokenizer.tokenize(word)
if not word_tokens:
word_tokens = [unk_token] # For handling the bad-encoded word
heads.append(len(tokens) + 1) # +1 for the cls token
tokens.extend(word_tokens)
# Account for [CLS] and [SEP]
special_tokens_count = 2
if len(tokens) > max_seq_len - special_tokens_count:
tokens = tokens[:(max_seq_len - special_tokens_count)]
# Add [SEP] token
heads += [len(tokens) + 1]
tokens += [sep_token]
token_type_ids = [sequence_a_segment_id] * len(tokens)
# Add [CLS] token
tokens = [cls_token] + tokens
heads = [0] + heads
token_type_ids = [cls_token_segment_id] + token_type_ids
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
# Zero-pad up to the sequence length.
padding_length = max_seq_len - len(input_ids)
input_ids = input_ids + ([pad_token_id] * padding_length)
attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length)
token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length)
assert len(input_ids) == max_seq_len, "Error with input length {} vs {}".format(len(input_ids), max_seq_len)
assert len(attention_mask) == max_seq_len, "Error with attention mask length {} vs {}".format(len(attention_mask), max_seq_len)
assert len(token_type_ids) == max_seq_len, "Error with token type length {} vs {}".format(len(token_type_ids), max_seq_len)
assert len(heads) == len(example.slot_labels)
if ex_index < 5:
logger.info("*** Example ***")
logger.info("guid: %s" % example.guid)
logger.info("tokens: %s" % " ".join([str(x) for x in tokens]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info("attention_mask: %s" % " ".join([str(x) for x in attention_mask]))
logger.info("token_type_ids: %s" % " ".join([str(x) for x in token_type_ids]))
logger.info("heads: %s" % " ".join([str(x) for x in heads]))
features.append(
InputExample(guid=example.guid,
words=input_ids,
chars=example.chars,
heads=heads,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
intent_label=example.intent_label,
slot_labels=example.slot_labels,
text=example.text))
return features
class Vocab(object):
def __init__(self, min_freq=1):
self.min_freq = min_freq
self.word2index = {}
self.index2word = []
self.special_tokens = ['<PAD>', '<UNK>', '<s>', '</s>']
self.count = {}
self.pad_token = '<PAD>'
self.pad_index = 0
self.add(self.pad_token)
self.unk_token = '<UNK>'
self.unk_index = 1
self.add(self.unk_token)
self.start_token = '<s>'
self.start_index = 2
self.add(self.start_token)
self.end_token = '</s>'
self.end_index = 3
self.add(self.end_token)
def add(self, token):
if isinstance(token, (list, tuple)):
for element in token:
self.add(element)
return
assert isinstance(token, str)
if self.min_freq > 1 and token not in self.special_tokens:
if len(token) > 1 and not token[0].isalnum():
token = token[1:]
if len(token) > 1 and not token[-1].isalnum():
token = token[:-1]
if token not in self.count:
self.count[token] = 0
self.count[token] += 1
if token in self.special_tokens or (token not in self.word2index and self.count[token] >= self.min_freq):
self.word2index[token] = len(self.index2word)
self.index2word.append(token)
def get_index(self, token):
if isinstance(token, list):
return [self.get_index(element) for element in token]
assert isinstance(token, str)
return self.word2index.get(token, self.unk_index)
def get_token(self, index):
if isinstance(index, list):
return [self.get_token(element) for element in index]
assert isinstance(index, int)
return self.index2word[index]
def save(self, path):
torch.save(self.index2word, path)
def load(self, path):
self.index2word = torch.load(path)
self.word2index = {word: i for i, word in enumerate(self.index2word)}
def __len__(self):
return len(self.index2word)
def __str__(self):
return f'Vocab object with {len(self.index2word)} instances'
class InputExample(object):
"""
A single training/test example for simple sequence classification.
Args:
guid: Unique id for the example.
words: list. The words of the sequence.
intent_label: (Optional) string. The intent label of the example.
slot_labels: (Optional) list. The slot labels of the example.
"""
def __init__(self, guid, words, chars=None, heads=None, attention_mask=None, token_type_ids=None, intent_label=None, slot_labels=None, text=None):
self.guid = guid
self.words = words
self.chars = chars
self.heads = heads
self.attention_mask = attention_mask
self.token_type_ids = token_type_ids
self.intent_label = intent_label
self.slot_labels = slot_labels
self.text = text
def __repr__(self):
return str(self.to_json_string())
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
class TextLoader(Dataset):
def __init__(self, args, mode):
self.args = args
self.intent_labels = get_intent_labels(args)
self.slot_labels, self.hiers = get_slots_all(args)
self.vocab = Vocab(min_freq=self.args.min_freq)
self.chars = Vocab()
self.examples = self.build(mode)
def load_bert(self, tokenizer):
pad_token_label_id = self.args.ignore_index
self.examples = convert_examples_to_features(self.examples, self.args.max_seq_len, tokenizer,
pad_token_label_id=pad_token_label_id)
@classmethod
def read_file(cls, input_file, quotechar=None):
""" Read data file of given path.
:param file_path: path of data file.
:return: list of sentence, list of slot and list of intent.
"""
texts, slots, intents = [], [], []
text, slot = [], []
with open(input_file, 'r', encoding="utf8") as fr:
for line in fr.readlines():
items = line.strip().split()
if len(items) == 1:
texts.append(text)
slots.append(slot)
if "/" not in items[0]:
intents.append(items)
else:
new = items[0].split("/")
intents.append([new[1]])
# clear buffer lists.
text, slot = [], []
elif len(items) == 2:
text.append(items[0].strip())
slot.append(items[1].strip())
return texts, slots, intents
def _create_examples(self, texts, chars, intents, slots, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for i, (text, char, intent, slot) in enumerate(zip(texts, chars, intents, slots)):
guid = "%s-%s" % (set_type, i)
# 1. input_text
words = self.vocab.get_index(text) # Some are spaced twice
words = [self.vocab.start_index] + words + [self.vocab.end_index]
# char
char = self.chars.get_index(char)
max_char = max([len(x) for x in char])
for j in range(len(char)):
char[j] = char[j] + [0] * (max_char - len(char[j]))
char = [[0] * max_char] + char + [[0] * max_char]
# 2. intent
_intent = intent[0].split('#')
intent_label = [0 for _ in self.intent_labels]
for _int in _intent:
idx = self.intent_labels.index(_int) if _int in self.intent_labels else self.intent_labels.index("UNK")
intent_label[idx] = 1
# 3. slot
slot_labels = []
for s in slot:
slot_labels.append(self.slot_labels.index(s) if s in self.slot_labels else self.slot_labels.index("UNK"))
slot_labels = [self.slot_labels.index('PAD')] + slot_labels + [self.slot_labels.index('PAD')]
assert len(words) == len(slot_labels)
examples.append(InputExample(guid=guid, words=words, chars=char, intent_label=intent_label, slot_labels=slot_labels, text=text))
return examples
def build(self, mode):
data_path = os.path.join(self.args.data_dir, self.args.task, mode + '.txt')
logger.info("LOOKING AT {}".format(data_path))
texts, slots, intents = self.read_file(data_path)
chars = []
max_len = 0
for text in texts:
chars.append([])
for word in text:
chars[-1].append(list(word))
cache = os.path.join(self.args.data_dir, f'vocab_{self.args.task}')
if os.path.exists(cache):
self.vocab.load(cache)
elif mode == 'train':
self.vocab.add(texts)
self.vocab.save(cache)
cache_chars = os.path.join(self.args.data_dir, f'chars_{self.args.task}')
if os.path.exists(cache_chars):
self.chars.load(cache_chars)
elif mode == 'train':
self.chars.add(chars)
self.chars.save(cache_chars)
return self._create_examples(texts=texts,
chars=chars,
intents=intents,
slots=slots,
set_type=mode)
def __getitem__(self, index):
example = self.examples[index]
words = torch.tensor(example.words, dtype=torch.long)
intent = torch.tensor(example.intent_label, dtype=torch.float)
slot = torch.tensor(example.slot_labels, dtype=torch.long)
chars = torch.tensor(example.chars, dtype=torch.long)
if 'bert' in self.args.model_type:
attention_mask = torch.tensor(example.attention_mask, dtype=torch.long)
token_type_ids = torch.tensor(example.token_type_ids, dtype=torch.long)
heads = torch.tensor(example.heads, dtype=torch.long)
return (words, chars, heads, attention_mask, token_type_ids, intent, slot)
else:
return (words, chars, intent, slot)
def __len__(self):
return len(self.examples)
class TextCollate():
def __init__(self, pad_index, num_intents, max_seq_len):
self.pad_index = pad_index
self.num_intents = num_intents
self.max_seq_len = max_seq_len
def __call__(self, batch):
len_list = [len(x[-1]) for x in batch]
len_char = [x[1].size(1) for x in batch]
max_len = max(len_list)
max_char = max(len_char)
seq_lens = []
bert = len(batch[0]) > 4
char_padded = torch.LongTensor(len(batch), max_len, max_char)
slot_padded = torch.LongTensor(len(batch), max_len)
intent = torch.FloatTensor(len(batch), self.num_intents)
char_padded.zero_()
intent.zero_()
slot_padded.zero_()
if not bert:
text_padded = torch.LongTensor(len(batch), max_len)
text_padded.zero_()
else:
input_ids = torch.LongTensor(len(batch), self.max_seq_len)
attention_mask = torch.LongTensor(len(batch), self.max_seq_len)
token_type_ids = torch.LongTensor(len(batch), self.max_seq_len)
heads = torch.LongTensor(len(batch), max_len)
input_ids.zero_()
attention_mask.zero_()
token_type_ids.zero_()
heads.zero_()
# Get sorted index of len_list.
sorted_index = np.argsort(len_list)[::-1]
for i, index in enumerate(sorted_index):
seq_lens.append(len_list[index])
intent[i] = batch[index][-2]
slot = batch[index][-1]
slot_padded[i, :slot.size(0)] = slot
char = batch[index][1]
char_padded[i, :char.size(0), :char.size(1)] = char
if not bert:
text = batch[index][0]
text_padded[i, :text.size(0)] = text
else:
input_ids[i] = batch[index][0]
attention_mask[i] = batch[index][3]
token_type_ids[i] = batch[index][4]
head = batch[index][2]
heads[i, :head.size(0)] = head
if not bert:
return text_padded, char_padded, intent, slot_padded, torch.tensor(seq_lens, dtype=torch.long)
else:
return input_ids, char_padded, heads, attention_mask, token_type_ids, intent, slot_padded, torch.tensor(seq_lens, dtype=torch.long)
if __name__ == '__main__':
train_dataset = TextLoader(args, 'train')
print([x.shape for x in train_dataset[0]])
print([x.shape for x in train_dataset.load_bert()[0]])