-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain_pretrain.py
179 lines (147 loc) · 6.46 KB
/
main_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# Original work Copyright (c) Meta Platforms, Inc. and affiliates. <https://github.com/facebookresearch/mae>
# Modified work Copyright 2024 ST-MEM paper authors. <https://github.com/bakqui/ST-MEM>
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# DeiT: https://github.com/facebookresearch/deit
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
# MAE: https://github.com/facebookresearch/mae
# --------------------------------------------------------
import argparse
import datetime
import json
import os
import time
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import yaml
from torch.utils.tensorboard import SummaryWriter
import models
import util.misc as misc
from engine_pretrain import train_one_epoch
from util.dataset import build_dataset, get_dataloader
from util.misc import NativeScalerWithGradNormCount as NativeScaler
from util.optimizer import get_optimizer_from_config
def parse() -> dict:
parser = argparse.ArgumentParser('ECG self-supervised pre-training')
parser.add_argument('--config_path',
default='./configs/pretrain/st_mem_vit_base_12lead.yaml',
type=str,
metavar='FILE',
help='YAML config file path')
parser.add_argument('--output_dir',
default="",
type=str,
metavar='DIR',
help='path where to save')
parser.add_argument('--exp_name',
default="",
type=str,
help='experiment name')
parser.add_argument('--resume',
default="",
type=str,
metavar='PATH',
help='resume from checkpoint')
parser.add_argument('--start_epoch',
default=0,
type=int,
metavar='N',
help='start epoch')
args = parser.parse_args()
with open(os.path.realpath(args.config_path), 'r') as f:
config = yaml.load(f, Loader=yaml.FullLoader)
for k, v in vars(args).items():
if v:
config[k] = v
return config
def main(config):
misc.init_distributed_mode(config['ddp'])
print(f'job dir: {os.path.dirname(os.path.realpath(__file__))}')
print(yaml.dump(config, default_flow_style=False, sort_keys=False))
device = torch.device(config['device'])
# fix the seed for reproducibility
seed = config['seed'] + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
# ECG dataset
dataset_train = build_dataset(config['dataset'], split='train')
data_loader_train = get_dataloader(dataset_train,
is_distributed=config['ddp']['distributed'],
mode='train',
**config['dataloader'])
if misc.is_main_process() and config['output_dir']:
output_dir = os.path.join(config['output_dir'], config['exp_name'])
os.makedirs(output_dir, exist_ok=True)
log_writer = SummaryWriter(log_dir=output_dir)
else:
output_dir = None
log_writer = None
# define the model
model_name = config['model_name']
if model_name in models.__dict__:
model = models.__dict__[model_name](**config['model'])
else:
raise ValueError(f'Unsupported model name: {model_name}')
model.to(device)
model_without_ddp = model
print(f"Model = {model_without_ddp}")
eff_batch_size = config['dataloader']['batch_size'] * config['train']['accum_iter'] * misc.get_world_size()
if config['train']['lr'] is None:
config['train']['lr'] = config['train']['blr'] * eff_batch_size / 256
print(f"base lr: {config['train']['lr'] * 256 / eff_batch_size}")
print(f"actual lr: {config['train']['lr']}")
print(f"accumulate grad iterations: {config['train']['accum_iter']}")
print(f"effective batch size: {eff_batch_size}")
if config['ddp']['distributed']:
model = torch.nn.parallel.DistributedDataParallel(model,
device_ids=[config['ddp']['gpu']])
model_without_ddp = model.module
optimizer = get_optimizer_from_config(config['train'], model_without_ddp)
print(optimizer)
loss_scaler = NativeScaler()
misc.load_model(config, model_without_ddp, optimizer, loss_scaler)
print(f"Start training for {config['train']['epochs']} epochs")
start_time = time.time()
for epoch in range(config['start_epoch'], config['train']['epochs']):
if config['ddp']['distributed']:
data_loader_train.sampler.set_epoch(epoch)
train_stats = train_one_epoch(model,
data_loader_train,
optimizer,
device,
epoch,
loss_scaler,
log_writer,
config['train'])
if output_dir and (epoch % 20 == 0 or epoch + 1 == config['train']['epochs']):
misc.save_model(config,
os.path.join(output_dir, f'checkpoint-{epoch}.pth'),
epoch,
model_without_ddp,
optimizer,
loss_scaler)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,
}
if output_dir and misc.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(os.path.join(output_dir, 'log.txt'), 'a', encoding="utf-8") as f:
f.write(json.dumps(log_stats) + '\n')
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print(f'Training time {total_time_str}')
# extract encoder
encoder = model_without_ddp.encoder
if output_dir:
misc.save_model(config,
os.path.join(output_dir, 'encoder.pth'),
epoch,
encoder)
if __name__ == "__main__":
config = parse()
main(config)