-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathengine_downstream.py
144 lines (116 loc) · 5.44 KB
/
engine_downstream.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Original work Copyright (c) Meta Platforms, Inc. and affiliates. <https://github.com/facebookresearch/mae>
# Modified work Copyright 2024 ST-MEM paper authors. <https://github.com/bakqui/ST-MEM>
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# DeiT: https://github.com/facebookresearch/deit
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
# --------------------------------------------------------
import math
import sys
from typing import Dict, Iterable, Optional, Tuple
import torch
import torchmetrics
import util.misc as misc
import util.lr_sched as lr_sched
def train_one_epoch(model: torch.nn.Module,
criterion: torch.nn.Module,
data_loader: Iterable,
optimizer: torch.optim.Optimizer,
device: torch.device,
epoch: int,
loss_scaler,
log_writer=None,
config: Optional[dict] = None,
use_amp: bool = True,
) -> Dict[str, float]:
model.train()
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 20
accum_iter = config['accum_iter']
max_norm = config['max_norm']
optimizer.zero_grad()
if log_writer is not None:
print(f'log_dir: {log_writer.log_dir}')
for data_iter_step, (samples, targets) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
# we use a per iteration (instead of per epoch) lr scheduler
if data_iter_step % accum_iter == 0:
lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, config)
samples = samples.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
with torch.cuda.amp.autocast(enabled=use_amp):
outputs = model(samples)
loss = criterion(outputs, targets)
loss_value = loss.item()
if not math.isfinite(loss_value):
print(f"Loss is {loss_value}, stopping training")
sys.exit(1)
loss /= accum_iter
loss_scaler(loss,
optimizer,
clip_grad=max_norm,
parameters=model.parameters(),
update_grad=(data_iter_step + 1) % accum_iter == 0)
if (data_iter_step + 1) % accum_iter == 0:
optimizer.zero_grad()
torch.cuda.synchronize()
metric_logger.update(loss=loss_value)
lr = optimizer.param_groups[0]['lr']
metric_logger.update(lr=lr)
loss_value_reduce = misc.all_reduce_mean(loss_value)
if log_writer is not None and (data_iter_step + 1) % accum_iter == 0:
epoch_1000x = int((epoch + data_iter_step / len(data_loader)) * 1000)
log_writer.add_scalar('loss', loss_value_reduce, epoch_1000x)
log_writer.add_scalar('lr', lr, epoch_1000x)
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(model: torch.nn.Module,
criterion: torch.nn.Module,
data_loader: Iterable,
device: torch.device,
metric_fn: torchmetrics.Metric,
output_act: torch.nn.Module,
target_dtype: torch.dtype = torch.long,
use_amp: bool = True,
) -> Tuple[Dict[str, float], Dict[str, float]]:
model.eval()
metric_logger = misc.MetricLogger(delimiter=" ")
header = 'Test:'
for samples, targets in metric_logger.log_every(data_loader, 10, header):
samples = samples.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
with torch.cuda.amp.autocast(enabled=use_amp):
if samples.ndim == 4: # batch_size, n_drops, n_channels, n_frames
logits_list = []
for i in range(samples.size(1)):
logits = model(samples[:, i])
logits_list.append(logits)
logits_list = torch.stack(logits_list, dim=1)
outputs_list = output_act(logits_list)
logits = logits_list.mean(dim=1)
outputs = outputs_list.mean(dim=1)
else:
logits = model(samples)
outputs = output_act(logits)
loss = criterion(logits, targets)
outputs = misc.concat_all_gather(outputs)
targets = misc.concat_all_gather(targets).to(dtype=target_dtype)
metric_fn.update(outputs, targets)
metric_logger.meters['loss'].update(loss.item(), n=samples.size(0))
metric_logger.synchronize_between_processes()
valid_stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
metrics = metric_fn.compute()
if isinstance(metrics, dict): # MetricCollection
metrics = {k: v.item() for k, v in metrics.items()}
else:
metrics = {metric_fn.__class__.__name__: metrics.item()}
metric_str = " ".join([f"{k}: {v:.3f}" for k, v in metrics.items()])
metric_str = f"{metric_str} loss: {metric_logger.loss.global_avg:.3f}"
print(f"* {metric_str}")
metric_fn.reset()
return valid_stats, metrics