-
Notifications
You must be signed in to change notification settings - Fork 0
/
citylearn_3dem.py
1044 lines (875 loc) · 62.1 KB
/
citylearn_3dem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import gym
from gym.utils import seeding
import numpy as np
import pandas as pd
import json
from gym import spaces
from energy_models import HeatPump, ElectricHeater, EnergyStorage, Building, BuildingDynamics, cop_T, cop_curve_cooling
from reward_function import reward_function_sa, reward_function_ma
import torch
from pathlib import Path
#load max and min csv to normalize inputs of lstm
path = Path("data/Climate_Zone_"+str(1)) #1 -->climate zone
max_data_file = 'max.csv'
max_data = path / max_data_file
safety_factor = 1.15
with open(max_data) as csv_file:
max_value = pd.read_csv(csv_file)
min_data_file = 'min.csv'
min_data = path / min_data_file
with open(min_data) as csv_file:
min_value = pd.read_csv(csv_file)
# Reference Rule-based controller. Used as a baseline to calculate the costs in CityLearn_3dem
# It requires, at least, the hour of the day as input state
class RBC_Agent:
def __init__(self, actions_spaces):
self.actions_spaces = actions_spaces
self.reset_action_tracker()
def reset_action_tracker(self):
self.action_tracker = []
def select_action(self, states):
hour_day = states[0][2]
# Daytime: release stored energy
a = [[0.0 for _ in range(len(self.actions_spaces[i].sample()))] for i in range(len(self.actions_spaces))]
if hour_day >= 8 and hour_day <= 21:
a = [[-0.08 for _ in range(len(self.actions_spaces[i].sample()))] for i in range(len(self.actions_spaces))]
# Early nightime: store DHW and/or cooling energy
if (hour_day >= 1 and hour_day <= 7) or (hour_day >= 22 and hour_day <= 24):
a = []
for i in range(len(self.actions_spaces)):
if len(self.actions_spaces[i].sample()) == 3:
a.append([0, 0.1, 0.1])
elif len(self.actions_spaces[
i].sample()) == 2: # heat pump action is always considered, therefore if i have number of actions = 2 i have one storage and the heat pump
a.append([0, 0.1])
else:
a.append([0.1])
self.action_tracker.append(a)
return np.array(a)
def auto_size(buildings):
for building in buildings.values():
# Autosize guarantees that the DHW device is large enough to always satisfy the maximum DHW demand
if building.dhw_heating_device.nominal_power == 'autosize':
# If the DHW device is a HeatPump
if isinstance(building.dhw_heating_device, HeatPump):
# We assume that the heat pump is always large enough to meet the highest heating or cooling demand of the building
building.dhw_heating_device.nominal_power = np.array(
building.sim_results['dhw_demand'] / building.dhw_heating_device.cop_heating).max()
# If the device is an electric heater
elif isinstance(building.dhw_heating_device, ElectricHeater):
building.dhw_heating_device.nominal_power = (
np.array(building.sim_results['dhw_demand']) / building.dhw_heating_device.efficiency).max()
# Autosize guarantees that the cooling device device is large enough to always satisfy the maximum DHW demand
if building.cooling_device.nominal_power == 'autosize':
building.cooling_device.nominal_power = safety_factor *(np.array(building.sim_results['q_cooling'])).max()
# Defining the capacity of the storage devices as a number of times the maximum demand
building.dhw_storage.capacity = max(building.sim_results['dhw_demand']) * building.dhw_storage.capacity
building.cooling_storage.capacity = max(
building.sim_results['cooling_demand']) * building.cooling_storage.capacity
# Done in order to avoid dividing by 0 if the capacity is 0
if building.dhw_storage.capacity <= 0.00001:
building.dhw_storage.capacity = 0.00001
if building.cooling_storage.capacity <= 0.00001:
building.cooling_storage.capacity = 0.00001
def building_loader(data_path, building_attributes, weather_file, solar_profile, el_data, building_ids,
buildings_states_actions, simulation_period=(0, 8759)):
with open(building_attributes) as json_file:
data = json.load(json_file)
buildings, observation_spaces, action_spaces = {}, [], []
s_low_central_agent, s_high_central_agent, appended_states = [], [], []
a_low_central_agent, a_high_central_agent, appended_actions = [], [], []
for uid, attributes in zip(data, data.values()):
index = int(uid.split("_")[-1]) #Building_n --> extract n and convert it into an int --> this allows to pick always the correct row in min and max dataframe, independently on the number of buildings considered
if uid in building_ids:
heat_pump = HeatPump(nominal_power=attributes['Heat_Pump']['nominal_power'],
eta_tech=attributes['Heat_Pump']['technical_efficiency'],
t_target_heating=attributes['Heat_Pump']['t_target_heating'],
t_target_cooling=attributes['Heat_Pump']['t_target_cooling'])
electric_heater = ElectricHeater(nominal_power=attributes['Electric_Water_Heater']['nominal_power'],
efficiency=attributes['Electric_Water_Heater']['efficiency'])
chilled_water_tank = EnergyStorage(capacity=attributes['Chilled_Water_Tank']['capacity'],
loss_coeff=attributes['Chilled_Water_Tank']['loss_coefficient'])
dhw_tank = EnergyStorage(capacity=attributes['DHW_Tank']['capacity'],
loss_coeff=attributes['DHW_Tank']['loss_coefficient'])
model_building = BuildingDynamics(n_features=attributes["Model_dynamics"]["n_features"],
lookback=attributes["Model_dynamics"]["lookback"],
n_hidden=attributes["Model_dynamics"]["n_hidden"],
n_layers=attributes["Model_dynamics"]["n_layers"])
building = Building(buildingId=uid, dhw_storage=dhw_tank, cooling_storage=chilled_water_tank,
dhw_heating_device=electric_heater, cooling_device=heat_pump, model_dynamics=model_building)
lookback = attributes["Model_dynamics"]["lookback"]
data_file = str(uid) + '.csv'
simulation_data = data_path / data_file
with open(simulation_data) as csv_file:
data = pd.read_csv(csv_file)
building.sim_results['cooling_demand'] = list(
data['Cooling Load [kWh]'][simulation_period[0]:simulation_period[1] + 1])
building.sim_results['dhw_demand'] = list(
data['DHW Heating [kWh]'][simulation_period[0]:simulation_period[1] + 1])
building.sim_results['non_shiftable_load'] = list(
data['Equipment Electric Power [kWh]'][simulation_period[0]:simulation_period[1] + 1])
building.sim_results['month'] = list(data['Month'][simulation_period[0]:simulation_period[1] + 1])
building.sim_results['day'] = list(data['Day Type'][simulation_period[0]:simulation_period[1] + 1])
building.sim_results['hour'] = list(data['Hour'][simulation_period[0]:simulation_period[1] + 1])
building.sim_results['daylight_savings_status'] = list(
data['Daylight Savings Status'][simulation_period[0]:simulation_period[1] + 1])
building.sim_results['t_in'] = list(
data['Indoor Temperature [C]'][simulation_period[0]:simulation_period[1] + 1])
building.sim_results['avg_unmet_setpoint'] = list(
data['Average Unmet Cooling Setpoint Difference [C]'][simulation_period[0]:simulation_period[1] + 1])
building.sim_results['rh_in'] = list(
data['Indoor Relative Humidity [%]'][simulation_period[0]:simulation_period[1] + 1])
building.sim_results['occupancy'] = list(
data['Occupancy'][simulation_period[0]:simulation_period[1] + 1])
building.sim_results['q_cooling'] = list(
data['Cooling Load [kWh]'][simulation_period[0]:simulation_period[1] + 1])
building.sim_results['set_point'] = list(
data['Set Point'][simulation_period[0]:simulation_period[1] + 1])
building.sim_results['Time_high_price'] = list(
data['time_high'][simulation_period[0]:simulation_period[1] + 1])
building.sim_results['Time_low_price'] = list(
data['time_low'][simulation_period[0]:simulation_period[1] + 1])
#=======================================================================================================#
#Set building.lstm_results['T_lstm'] as a list of a generic parameter of data and then overwrite time step by time step
building.lstm_results['T_lstm'] = list(
data['Cooling Load [kWh]'][simulation_period[0]:simulation_period[1] + 1])
building.sim_results['Q_action'] = np.zeros([simulation_period[1]+1-simulation_period[0],1]).tolist()
with open(weather_file) as csv_file:
weather_data = pd.read_csv(csv_file)
building.sim_results['t_out'] = list(
weather_data['Outdoor Drybulb Temperature [C]'][simulation_period[0]:simulation_period[1] + 1])
building.sim_results['rh_out'] = list(
weather_data['Outdoor Relative Humidity [%]'][simulation_period[0]:simulation_period[1] + 1])
building.sim_results['diffuse_solar_rad'] = list(
weather_data['Diffuse Solar Radiation [W/m2]'][simulation_period[0]:simulation_period[1] + 1])
building.sim_results['direct_solar_rad'] = list(
weather_data['Direct Solar Radiation [W/m2]'][simulation_period[0]:simulation_period[1] + 1])
# Reading weather forecasts
building.sim_results['t_out_pred_6h'] = list(weather_data['6h Prediction Outdoor Drybulb Temperature [C]'][
simulation_period[0]:simulation_period[1] + 1])
building.sim_results['t_out_pred_12h'] = list(
weather_data['12h Prediction Outdoor Drybulb Temperature [C]'][
simulation_period[0]:simulation_period[1] + 1])
building.sim_results['t_out_pred_24h'] = list(
weather_data['24h Prediction Outdoor Drybulb Temperature [C]'][
simulation_period[0]:simulation_period[1] + 1])
building.sim_results['rh_out_pred_6h'] = list(weather_data['6h Prediction Outdoor Relative Humidity [%]'][
simulation_period[0]:simulation_period[1] + 1])
building.sim_results['rh_out_pred_12h'] = list(weather_data['12h Prediction Outdoor Relative Humidity [%]'][
simulation_period[0]:simulation_period[1] + 1])
building.sim_results['rh_out_pred_24h'] = list(weather_data['24h Prediction Outdoor Relative Humidity [%]'][
simulation_period[0]:simulation_period[1] + 1])
building.sim_results['diffuse_solar_rad_pred_6h'] = list(
weather_data['6h Prediction Diffuse Solar Radiation [W/m2]'][
simulation_period[0]:simulation_period[1] + 1])
building.sim_results['diffuse_solar_rad_pred_12h'] = list(
weather_data['12h Prediction Diffuse Solar Radiation [W/m2]'][
simulation_period[0]:simulation_period[1] + 1])
building.sim_results['diffuse_solar_rad_pred_24h'] = list(
weather_data['24h Prediction Diffuse Solar Radiation [W/m2]'][
simulation_period[0]:simulation_period[1] + 1])
building.sim_results['direct_solar_rad_pred_6h'] = list(
weather_data['6h Prediction Direct Solar Radiation [W/m2]'][
simulation_period[0]:simulation_period[1] + 1])
building.sim_results['direct_solar_rad_pred_12h'] = list(
weather_data['12h Prediction Direct Solar Radiation [W/m2]'][
simulation_period[0]:simulation_period[1] + 1])
building.sim_results['direct_solar_rad_pred_24h'] = list(
weather_data['24h Prediction Direct Solar Radiation [W/m2]'][
simulation_period[0]:simulation_period[1] + 1])
# ===================================================================================================
# Extract lagged variables in order to feed the LSTM models
building.sim_results_lagged['occupancy'] = list(
data['Occupancy'][simulation_period[0] - lookback + 1: simulation_period[1] + 1])
building.sim_results_lagged['q_cooling'] = list(
data['Cooling Load [kWh]'][simulation_period[0] - lookback + 1: simulation_period[1] + 1])
building.sim_results_lagged['month'] = list(
data['Month'][simulation_period[0] - lookback + 1:simulation_period[1] + 1])
building.sim_results_lagged['day'] = list(
data['Day Type'][simulation_period[0] - lookback + 1:simulation_period[1] + 1])
building.sim_results_lagged['hour'] = list(
data['Hour'][simulation_period[0] - lookback + 1:simulation_period[1] + 1])
building.sim_results_lagged['t_in'] = list(
data['Indoor Temperature [C]'][
simulation_period[0] - lookback:simulation_period[1]]) # i can control T at timestep t+1
building.sim_results_lagged['direct_solar_rad'] = list(
weather_data['Direct Solar Radiation [W/m2]'][simulation_period[0]-lookback+1:simulation_period[1] +1])
building.sim_results_lagged['t_out'] = list(
weather_data['Outdoor Drybulb Temperature [C]'][simulation_period[0]-lookback+1:simulation_period[1] +1])
# Reading the building attributes
building.building_type = attributes['Building_Type']
building.climate_zone = attributes['Climate_Zone']
building.solar_power_capacity = attributes['Solar_Power_Installed(kW)']
with open(solar_profile) as csv_file:
solar_data = pd.read_csv(csv_file)
building.sim_results['solar_gen'] = list(
attributes['Solar_Power_Installed(kW)'] * solar_data['Hourly Data: AC inverter power (W)'][simulation_period[0]:simulation_period[1] + 1] / 1000)
#Load electricity price
with open(el_data) as csv_file:
electricity_price = pd.read_csv(csv_file)
building.sim_results['el_price'] = list(
electricity_price['Price'][simulation_period[0]:simulation_period[1] + 1])
building.sim_results['el_price_pred_1h'] = list(np.roll(
electricity_price['Price'][simulation_period[0]:simulation_period[1] + 1], -1))
building.sim_results['el_price_pred_2h'] = list(np.roll(
electricity_price['Price'][simulation_period[0]:simulation_period[1] + 1], -2))
building.sim_results['el_price_pred_3h'] = list(np.roll(
electricity_price['Price'][simulation_period[0]:simulation_period[1] + 1], -3))
building.sim_results['cop_T'] = []
for i in range(simulation_period[1]+1-simulation_period[0]):
cop_t = cop_T(building.sim_results['t_out'][i], heat_pump.nominal_COP)
building.sim_results['cop_T'].append(cop_t)
# Finding the max and min possible values of all the states, which can then be used by the RL agent to scale the states and train any function approximators more effectively
s_low, s_high = [], []
action_dependent_states = ['cooling_storage_soc','dhw_storage_soc','cop','district_power','T_lstm','deltaT','q_cooling']
for state_name, value in zip(buildings_states_actions[uid]['states'],
buildings_states_actions[uid]['states'].values()):
if value == True:
if state_name not in action_dependent_states:
s_low.append(min(building.sim_results[state_name]))
s_high.append(max(building.sim_results[state_name]))
# Create boundaries of the observation space of a centralized agent (if a central agent is being used instead of decentralized ones). We include all the weather variables used as states, and use the list appended_states to make sure we don't include any repeated states (i.e. weather variables measured by different buildings)
if state_name in ['t_in', 'avg_unmet_setpoint', 'rh_in', 'non_shiftable_load', 'solar_gen']:
s_low_central_agent.append(min(building.sim_results[state_name]))
s_high_central_agent.append(max(building.sim_results[state_name]))
elif state_name not in appended_states:
s_low_central_agent.append(min(building.sim_results[state_name]))
s_high_central_agent.append(max(building.sim_results[state_name]))
appended_states.append(state_name)
elif state_name == 'cop':
s_low.append(0.0)
s_high.append(max(building.sim_results['cop_T']))
s_low_central_agent.append(0.0)
s_high_central_agent.append(max(building.sim_results['cop_T']))
elif state_name == 'district_power':
s_low.append(0.0)
s_high.append(300) #maximum district consumption
s_low_central_agent.append(0.0)
s_high_central_agent.append(300)
elif state_name == 'T_lstm':
minT = 20 #min_value.iloc[index-1,-1]
maxT = 32 #max_value.iloc[index-1,-1]
s_low.append(minT)
s_high.append(maxT)
s_low_central_agent.append(minT)
s_high_central_agent.append(maxT)
elif state_name == 'deltaT':
s_low.append(0)
s_high.append(3)
s_low_central_agent.append(0)
s_high_central_agent.append(3)
elif state_name == 'q_cooling':
s_low.append(0)
s_high.append(safety_factor*(np.array(building.sim_results['q_cooling'])).max())
s_low_central_agent.append(0)
s_high_central_agent.append(safety_factor*(np.array(building.sim_results['q_cooling'])).max())
else:
s_low.append(0.0)
s_high.append(1.0)
s_low_central_agent.append(0.0)
s_high_central_agent.append(1.0)
'''The energy storage (tank) capacity indicates how many times bigger the tank is compared to the maximum hourly energy demand of the building (cooling or DHW respectively), which sets a lower bound for the action of 1/tank_capacity, as the energy storage device can't provide the building with more energy than it will ever need for a given hour. The heat pump is sized using approximately the maximum hourly energy demand of the building (after accounting for the COP, see function autosize). Therefore, we make the fair assumption that the action also has an upper bound equal to 1/tank_capacity. This boundaries should speed up the learning process of the agents and make them more stable rather than if we just set them to -1 and 1. I.e. if Chilled_Water_Tank.Capacity is 3 (3 times the max. hourly demand of the building in the entire year), its actions will be bounded between -1/3 and 1/3'''
a_low, a_high = [], []
for action_name, value in zip(buildings_states_actions[uid]['actions'],
buildings_states_actions[uid]['actions'].values()):
if value == True:
if action_name == 'heat_pump_to_buildng':
a_low.append(0)
a_high.append(1)
a_low_central_agent.append(0)
a_high_central_agent.append(1)
elif action_name == 'cooling_storage':
# Avoid division by 0
if attributes['Chilled_Water_Tank']['capacity'] > 0.000000001:
a_low.append(max(-1.0 / attributes['Chilled_Water_Tank']['capacity'], -1.0))
a_high.append(min(1.0 / attributes['Chilled_Water_Tank']['capacity'], 1.0))
a_low_central_agent.append(max(-1.0 / attributes['Chilled_Water_Tank']['capacity'], -1.0))
a_high_central_agent.append(min(1.0 / attributes['Chilled_Water_Tank']['capacity'], 1.0))
else:
a_low.append(-1.0)
a_high.append(1.0)
a_low_central_agent.append(-1.0)
a_high_central_agent.append(1.0)
else:
if attributes['DHW_Tank']['capacity'] > 0.000000001:
a_low.append(max(-1.0 / attributes['DHW_Tank']['capacity'], -1.0))
a_high.append(min(1.0 / attributes['DHW_Tank']['capacity'], 1.0))
a_low_central_agent.append(max(-1.0 / attributes['DHW_Tank']['capacity'], -1.0))
a_high_central_agent.append(min(1.0 / attributes['DHW_Tank']['capacity'], 1.0))
else:
a_low.append(-1.0)
a_high.append(1.0)
a_low_central_agent.append(-1.0)
a_high_central_agent.append(1.0)
building.set_state_space(np.array(s_high), np.array(s_low))
building.set_action_space(np.array(a_high), np.array(a_low))
observation_spaces.append(building.observation_space)
action_spaces.append(building.action_space)
buildings[uid] = building
observation_space_central_agent = spaces.Box(low=np.array(s_low_central_agent), high=np.array(s_high_central_agent),
dtype=np.float32)
action_space_central_agent = spaces.Box(low=np.array(a_low_central_agent), high=np.array(a_high_central_agent),
dtype=np.float32)
for building in buildings.values():
# If the DHW device is a HeatPump
if isinstance(building.dhw_heating_device, HeatPump):
# Calculating COPs of the heat pumps for every hour
building.dhw_heating_device.cop_heating = building.dhw_heating_device.eta_tech * (
building.dhw_heating_device.t_target_heating + 273.15) / (
building.dhw_heating_device.t_target_heating -
weather_data['Outdoor Drybulb Temperature [C]'])
building.dhw_heating_device.cop_heating[building.dhw_heating_device.cop_heating < 0] = 20.0
building.dhw_heating_device.cop_heating[building.dhw_heating_device.cop_heating > 20] = 20.0
building.dhw_heating_device.cop_heating = building.dhw_heating_device.cop_heating.to_numpy()
auto_size(buildings)
return buildings, observation_spaces, action_spaces, observation_space_central_agent, action_space_central_agent
class CityLearn_3dem(gym.Env):
def __init__(self, data_path, building_attributes, weather_file, solar_profile, el_data, building_ids,
buildings_states_actions=None, building_dynamics_state=None, simulation_period=(0, 8759),
cost_function=['ramping', '1-load_factor', 'average_daily_peak', 'peak_demand',
'net_electricity_consumption'], central_agent=True, verbose=0):
with open(buildings_states_actions) as json_file:
self.buildings_states_actions = json.load(json_file)
with open(building_dynamics_state) as json_file:
self.building_dynamics_state = json.load(json_file)
hidden = []
self.hidden_list = hidden
self.buildings_states_actions_filename = buildings_states_actions
self.building_dynamics_state_filename = building_dynamics_state
self.building_attributes = building_attributes
self.solar_profile = solar_profile
self.el_data = el_data
self.building_ids = building_ids
self.cost_function = cost_function
self.cost_rbc = None
self.data_path = data_path
self.weather_file = weather_file
self.central_agent = central_agent
self.loss = []
self.verbose = verbose
self.simulation_period = simulation_period
self.buildings, self.observation_spaces, self.action_spaces, self.observation_space, self.action_space = building_loader(
data_path, building_attributes, weather_file, solar_profile, el_data, building_ids,
self.buildings_states_actions, simulation_period=self.simulation_period)
self.uid = None
self.n_buildings = len([i for i in self.buildings])
self.reset()
for uid, building in self.buildings.items():
models = building.model_dynamics
models.load_state_dict(torch.load('Building_models/'+ uid + str('.pth')))
hi = models.init_hidden(1)
hidden.append(hi)
def get_state_action_spaces(self):
return self.observation_spaces, self.action_spaces
def next_hour(self):
self.time_step = next(self.hour)
for building in self.buildings.values():
building.time_step = self.time_step
def get_building_information(self):
np.seterr(divide='ignore', invalid='ignore')
# Annual DHW demand, Annual Cooling Demand, Annual Electricity Demand
building_info = {}
for uid, building in self.buildings.items():
building_info[uid] = {}
building_info[uid]['building_type'] = building.building_type
building_info[uid]['climate_zone'] = building.climate_zone
building_info[uid]['solar_power_capacity (kW)'] = round(building.solar_power_capacity, 3)
building_info[uid]['Annual_DHW_demand (kWh)'] = round(sum(building.sim_results['dhw_demand']), 3)
building_info[uid]['Annual_cooling_demand (kWh)'] = round(sum(building.sim_results['cooling_demand']), 3)
building_info[uid]['Annual_nonshiftable_electrical_demand (kWh)'] = round(
sum(building.sim_results['non_shiftable_load']), 3)
building_info[uid]['Correlations_DHW'] = {}
building_info[uid]['Correlations_cooling_demand'] = {}
building_info[uid]['Correlations_non_shiftable_load'] = {}
for uid_corr, building_corr in self.buildings.items():
if uid_corr != uid:
building_info[uid]['Correlations_DHW'][uid_corr] = round((np.corrcoef(
np.array(building.sim_results['dhw_demand']),
np.array(building_corr.sim_results['dhw_demand'])))[0][1], 3)
building_info[uid]['Correlations_cooling_demand'][uid_corr] = round((np.corrcoef(
np.array(building.sim_results['cooling_demand']),
np.array(building_corr.sim_results['cooling_demand'])))[0][1], 3)
building_info[uid]['Correlations_non_shiftable_load'][uid_corr] = round((np.corrcoef(
np.array(building.sim_results['non_shiftable_load']),
np.array(building_corr.sim_results['non_shiftable_load'])))[0][1], 3)
return building_info
def step(self, actions):
district_consumption = []
electric_demand = 0
elec_consumption_dhw_storage = 0
elec_consumption_cooling_storage = 0
elec_consumption_dhw_total = 0
elec_consumption_cooling_total = 0
elec_consumption_appliances = 0
elec_generation = 0
temperature = []
Q_cool = []
if self.central_agent:
# If the agent is centralized, all the actions for all the buildings are provided as an ordered list of numbers. The order corresponds to the order of the buildings as they appear on the file building_attributes.json, and only considering the buildings selected for the simulation by the user (building_ids).
count = 0
for uid, building in self.buildings.items():
#load dynamic models
models = building.model_dynamics
models.load_state_dict(torch.load('Building_models/' + uid + str('.pth')))
lookback = building.model_dynamics.lookback
n_features = building.model_dynamics.n_features
nn_dynamics = pd.DataFrame(np.zeros((lookback, n_features)))
index = int(uid.split("_")[-1]) #buildings should be runned in ascending order
building_electric_demand = 0
if self.buildings_states_actions[uid]['actions']['heat_pump_to_buildng']:
#setback when non-occupied
if round(building.sim_results['set_point'][self.time_step]) == 30:
actions[0]=0
building.sim_results['cooling_demand'][self.time_step]= actions[0]
else:
building.sim_results['cooling_demand'][self.time_step] = min(actions[0] * building.cooling_device.nominal_power,
cop_curve_cooling(actions[0] * building.cooling_device.nominal_power,
building.sim_results['t_out'][self.time_step],
building.cooling_device.nominal_power, building.cooling_device.nominal_COP)[1])
actions = actions[1:]
#-----------------------nn_dynamics starting point
building.sim_results['Q_action'][self.time_step] = building.sim_results['cooling_demand'][self.time_step]
T_in = building.sim_results_lagged["t_in"][self.time_step:self.time_step + lookback]
Q_cooling = building.sim_results_lagged["q_cooling"][self.time_step:self.time_step + lookback]
if self.time_step < lookback:
Q_input = np.concatenate(
[Q_cooling[0:lookback-1 - self.time_step], building.sim_results['Q_action'][0:self.time_step + 1]])
if self.time_step == 0:
T_lag = T_in
else:
T_lag = np.concatenate([T_in[0: lookback - self.time_step],
building.lstm_results['T_lstm'][0:self.time_step]])
else:
Q_input = building.sim_results['Q_action'][(self.time_step - lookback+1):self.time_step+1]
T_lag = np.array(building.lstm_results['T_lstm'][self.time_step - lookback:self.time_step])
column = ['Direct_Solar_Rad', 'T_ext', 'Occupants', 'Q_cooling', 'sinhour', 'coshour', 'sinday',
'cosday', 'sinmonth', 'cosmonth', 'T_int']
nn_dynamics.columns = column
timestamp_modifier = ['hour','day','month']
artificial_data = ['t_in','q_cooling']
modified_state = timestamp_modifier + artificial_data
dynamics_to_data = {'occupancy': 'Occupants', 'direct_solar_rad': 'Direct_Solar_Rad',
't_out': 'T_ext'}
for dynamic_state_name, value in zip(self.building_dynamics_state[uid],self.building_dynamics_state[uid].values()):
if value == True:
if dynamic_state_name not in modified_state:
nn_dynamics[dynamics_to_data[dynamic_state_name]] = building.sim_results_lagged[dynamic_state_name][
self.time_step:self.time_step + lookback]
elif dynamic_state_name in timestamp_modifier:
nn_dynamics['sinhour'] = np.sin(2 * np.pi * np.array(building.sim_results_lagged["hour"][self.time_step:self.time_step + lookback]) / 24)
nn_dynamics['coshour'] = np.cos(2 * np.pi * np.array(building.sim_results_lagged["hour"][self.time_step:self.time_step + lookback]) / 24)
nn_dynamics['sinday'] = np.sin(2 * np.pi * np.array(building.sim_results_lagged["day"][self.time_step:self.time_step + lookback]) / 7)
nn_dynamics['cosday'] = np.cos(2 * np.pi * np.array(building.sim_results_lagged["day"][self.time_step:self.time_step + lookback]) / 7)
nn_dynamics['sinmonth'] = np.sin(2 * np.pi * np.array(building.sim_results_lagged["month"][self.time_step:self.time_step + lookback]) / 12)
nn_dynamics['cosmonth'] = np.cos(2 * np.pi * np.array(building.sim_results_lagged["month"][self.time_step:self.time_step + lookback]) / 12)
elif dynamic_state_name in artificial_data:
nn_dynamics['Q_cooling'] = Q_input
nn_dynamics['T_int'] = T_lag
nn_dynamics = np.array(nn_dynamics)
nn_scaled = np.zeros((len(nn_dynamics), len(nn_dynamics[:][0])))
h = self.hidden_list[self.building_ids.index('Building_'+str(index))]
# using the two csv normalize the input of the nn (only works with consecutive building indexes)
max_norm = np.array(max_value.iloc[index - 1, :])
min_norm = np.array(min_value.iloc[index - 1, :])
for z in range(0, len(nn_dynamics)):
num = np.subtract(nn_dynamics[z, :], min_norm)
denom = np.subtract(max_norm, min_norm)
nn_scaled[z, :] = np.divide(num, denom)
inputs = torch.tensor(nn_scaled, dtype=torch.float32)
inputs = inputs[np.newaxis, :, :]
h = tuple([each.data for each in h])
test_output, h = models(inputs.float(),h)
T_in_lstm = test_output * (max_norm[-1] - min_norm[-1]) + min_norm[-1]
building.lstm_results['T_lstm'][self.time_step] = T_in_lstm.item()
self.hidden_list[self.building_ids.index('Building_'+str(index))] = h
count = count + 1
# -----------------------nn_dynamics ending point
# -----------------------focus on storage actions
if self.buildings_states_actions[uid]['actions']['cooling_storage']:
# Cooling
_electric_demand_cooling = building.set_storage_cooling(actions[0])
self.cooling_stor_actions = actions[0]
actions = actions[1:]
elec_consumption_cooling_storage += building._electric_consumption_cooling_storage
else:
_electric_demand_cooling = 0
if self.buildings_states_actions[uid]['actions']['dhw_storage']:
# DHW
_electric_demand_dhw = building.set_storage_heating(actions[0])
self.dhw_stor_actions = actions[0]
actions = actions[1:]
elec_consumption_dhw_storage += building._electric_consumption_dhw_storage
else:
_electric_demand_dhw = 0
# Total heating and cooling electrical loads
elec_consumption_cooling_total += _electric_demand_cooling
elec_consumption_dhw_total += _electric_demand_dhw
# Electrical appliances
_non_shiftable_load = building.get_non_shiftable_load()
elec_consumption_appliances += _non_shiftable_load
# Solar generation
_solar_generation = building.get_solar_power()
elec_generation += _solar_generation
# Adding loads from appliances and subtracting solar generation to the net electrical load of each building
building_electric_demand += _electric_demand_cooling + _electric_demand_dhw + _non_shiftable_load - _solar_generation
# Electricity consumed by buildings
district_consumption.append(-building_electric_demand)
# Total electricity consumption
electric_demand += building_electric_demand
temperature.append(building.lstm_results['T_lstm'][self.time_step])
Q_cool.append(building.sim_results['cooling_demand'][self.time_step])
assert len(actions) == 0, 'Some of the actions provided were not used'
else: #DECENTRALIZED CONFIGURATION
assert len(
actions) == self.n_buildings, "The length of the list of actions should match the length of the list of buildings."
count = 0
for a, (uid, building) in zip(actions, self.buildings.items()):
models = building.model_dynamics
models.load_state_dict(torch.load('Building_models/'+ uid + str('.pth')))
index = int(uid.split("_")[-1])
lookback = building.model_dynamics.lookback
n_features = building.model_dynamics.n_features
nn_dynamics = pd.DataFrame(np.zeros((lookback, n_features)))
assert sum(self.buildings_states_actions[uid]['actions'].values()) == len(
a), "The number of input actions for building " + str(
uid) + " must match the number of actions defined in the list of building attributes."
building_electric_demand = 0
if self.buildings_states_actions[uid]['actions']['heat_pump_to_buildng']:
Q_cooling = building.sim_results_lagged["q_cooling"][self.time_step:self.time_step + lookback]
T_in = building.sim_results_lagged["t_in"][self.time_step:self.time_step + lookback]
building.sim_results['Q_action'][self.time_step] = building.sim_results['cooling_demand'][
self.time_step]
#-----------------------nn_dynamics starting point
if self.time_step < lookback:
Q_input = np.concatenate(
[Q_cooling[0:lookback-1 - self.time_step], building.sim_results['Q_action'][0:self.time_step + 1]])
if self.time_step == 0:
T_lag = T_in
else:
T_lag = np.concatenate([T_in[0: lookback - self.time_step ],
building.lstm_results['T_lstm'][0:self.time_step ]])
else:
Q_input = building.sim_results['Q_action'][(self.time_step - lookback+1):self.time_step+1]
T_lag = np.array(building.lstm_results['T_lstm'][self.time_step - lookback :self.time_step])
column = ['Direct_Solar_Rad', 'T_ext', 'Occupants', 'Q_cooling', 'sinhour', 'coshour', 'sinday',
'cosday', 'sinmonth', 'cosmonth', 'T_int']
nn_dynamics.columns = column
timestamp_modifier = ['hour', 'day', 'month']
artificial_data = ['t_in', 'Q_cooling']
modified_state = timestamp_modifier + artificial_data
dynamics_to_data = {'occupancy': 'Occupants', 'direct_solar_rad': 'Direct_Solar_Rad', 'q_cooling':'Q_cooling',
't_out': 'T_ext'}
for dynamic_state_name, value in zip(self.building_dynamics_state[uid],
self.building_dynamics_state[uid].values()):
if value == True:
if dynamic_state_name not in modified_state:
nn_dynamics[dynamics_to_data[dynamic_state_name]] = building.sim_results_lagged[dynamic_state_name][
self.time_step:self.time_step + lookback]
elif dynamic_state_name in timestamp_modifier:
nn_dynamics['sinhour'] = np.sin(2 * np.pi * np.array(
building.sim_results_lagged["hour"][self.time_step:self.time_step + lookback]) / 24)
nn_dynamics['coshour'] = np.cos(2 * np.pi * np.array(
building.sim_results_lagged["hour"][self.time_step:self.time_step + lookback]) / 24)
nn_dynamics['sinday'] = np.sin(2 * np.pi * np.array(
building.sim_results_lagged["day"][self.time_step:self.time_step + lookback]) / 7)
nn_dynamics['cosday'] = np.cos(2 * np.pi * np.array(
building.sim_results_lagged["day"][self.time_step:self.time_step + lookback]) / 7)
nn_dynamics['sinmonth'] = np.sin(2 * np.pi * np.array(building.sim_results_lagged["month"][
self.time_step:self.time_step + lookback]) / 12)
nn_dynamics['cosmonth'] = np.cos(2 * np.pi * np.array(building.sim_results_lagged["month"][
self.time_step:self.time_step + lookback]) / 12)
elif dynamic_state_name in artificial_data:
nn_dynamics['Q_cooling'] = Q_input
nn_dynamics['T_int'] = T_lag
nn_dynamics = np.array(nn_dynamics)
nn_scaled = np.zeros((len(nn_dynamics), len(nn_dynamics[:][0])))
h = self.hidden_list[self.building_ids.index('Building_'+str(index))]
# using the two csv normalize the input of the nn (only works with consecutive building indexes)
max_norm = np.array(max_value.iloc[index - 1, :])
min_norm = np.array(min_value.iloc[index - 1, :])
for z in range(0, len(nn_dynamics)):
num = np.subtract(nn_dynamics[z, :], min_norm)
denom = np.subtract(max_norm, min_norm)
nn_scaled[z, :] = np.divide(num, denom)
inputs = torch.tensor(nn_scaled, dtype=torch.float32)
inputs = inputs[np.newaxis, :, :]
h = tuple([each.data for each in h])
test_output, h = models(inputs.float(),h)
T_in_lstm = test_output * (max_norm[-1] - min_norm[-1]) + min_norm[-1]
building.lstm_results['T_lstm'][self.time_step] = T_in_lstm.item()
self.hidden_list[self.building_ids.index('Building_'+str(index))] = h
count = count + 1
# -----------------------nn_dynamics ending point
# -----------------------focus on storage actions
if self.buildings_states_actions[uid]['actions']['cooling_storage']:
# Cooling
_electric_demand_cooling = building.set_storage_cooling(a[1])
elec_consumption_cooling_storage += building._electric_consumption_cooling_storage
if self.buildings_states_actions[uid]['actions']['dhw_storage']:
# DHW
_electric_demand_dhw = building.set_storage_heating(a[2])
elec_consumption_dhw_storage += building._electric_consumption_dhw_storage
else:
_electric_demand_dhw = 0
else:
_electric_demand_cooling = 0
# check if there is a DHW storage
if self.buildings_states_actions[uid]['actions']['dhw_storage']:
# DHW
_electric_demand_dhw = building.set_storage_heating(a[1])
elec_consumption_dhw_storage += building._electric_consumption_dhw_storage
else:
_electric_demand_dhw = 0
else:
if self.buildings_states_actions[uid]['actions']['cooling_storage']:
# Cooling
_electric_demand_cooling = building.set_storage_cooling(a[0])
elec_consumption_cooling_storage += building._electric_consumption_cooling_storage
if self.buildings_states_actions[uid]['actions']['dhw_storage']:
# DHW
_electric_demand_dhw = building.set_storage_heating(a[1])
elec_consumption_dhw_storage += building._electric_consumption_dhw_storage
else:
_electric_demand_dhw = 0
else:
_electric_demand_cooling = 0
_electric_demand_dhw = building.set_storage_heating(a[0])
elec_consumption_dhw_storage += building._electric_consumption_dhw_storage
# Total heating and cooling electrical loads
elec_consumption_cooling_total += _electric_demand_cooling
elec_consumption_dhw_total += _electric_demand_dhw
# Electrical appliances
_non_shiftable_load = building.get_non_shiftable_load()
elec_consumption_appliances += _non_shiftable_load
# Solar generation
_solar_generation = building.get_solar_power()
elec_generation += _solar_generation
# Adding loads from appliances and subtracting solar generation to the net electrical load of each building
building_electric_demand += _electric_demand_cooling + _electric_demand_dhw + _non_shiftable_load - _solar_generation
district_consumption.append(-building_electric_demand)
# Total electricity consumption
electric_demand += building_electric_demand
self.next_hour()
if self.central_agent:
s, s_appended = [], []
for uid, building in self.buildings.items():
# If the agent is centralized, we append the states avoiding repetition. I.e. if multiple buildings share the outdoor temperature as a state, we only append it once to the states of the central agent. The variable s_appended is used for this purpose.
for state_name, value in self.buildings_states_actions[uid]['states'].items():
if value == True:
if state_name not in s_appended:
if state_name in ['t_in', 'avg_unmet_setpoint', 'rh_in', 'non_shiftable_load', 'solar_gen']:
s.append(building.sim_results[state_name][self.time_step])
# -----------------------action dependent states are assigned
elif state_name != 'cooling_storage_soc' and state_name != 'dhw_storage_soc' and state_name != 'cop' and state_name != 'district_power' and state_name != 'T_lstm' and state_name != 'deltaT' and state_name!= 'q_cooling':
s.append(building.sim_results[state_name][self.time_step])
s_appended.append(state_name)
elif state_name == 'cooling_storage_soc':
s.append(building.cooling_storage._soc / building.cooling_storage.capacity)
elif state_name == 'dhw_storage_soc':
s.append(building.dhw_storage._soc / building.dhw_storage.capacity)
elif state_name == 'cop':
s.append(building.cooling_device._cop_cooling)
elif state_name == 'district_power':
s.append(electric_demand)
elif state_name == 'T_lstm':
s.append(building.lstm_results['T_lstm'][self.time_step-1])
elif state_name == 'deltaT':
if round(building.sim_results['set_point'][self.time_step-1])==26:
Tdiff = abs(building.sim_results['set_point'][self.time_step-1]-building.lstm_results['T_lstm'][self.time_step-1])
else:
Tdiff=0
s.append(Tdiff)
elif state_name == 'q_cooling':
s.append(building.sim_results['cooling_demand'][self.time_step-1])
self.state = np.array(s)
rewards = reward_function_sa(district_consumption) #temperature can be added as well as cooling power to tune the reward function
self.cumulated_reward_episode += rewards
else:
# If the controllers are decentralized, we append all the states to each associated agent's list of states.
self.state = []
for a, (uid, building) in zip(actions, self.buildings.items()):
s = []
for state_name, value in self.buildings_states_actions[uid]['states'].items():
if value == True:
if state_name != 'cooling_storage_soc' and state_name != 'dhw_storage_soc' and state_name != 'cop' and state_name != 'district_power' and state_name != 'T_lstm' and state_name != 'deltaT'and state_name != 'q_cooling':
s.append(building.sim_results[state_name][self.time_step])
#-----------------------action dependent states are assigned
elif state_name == 'cooling_storage_soc':
s.append(building.cooling_storage._soc / building.cooling_storage.capacity)
elif state_name == 'dhw_storage_soc':
s.append(building.dhw_storage._soc / building.dhw_storage.capacity)
elif state_name == 'cop':
s.append(building.cooling_device._cop_cooling)
elif state_name == 'district_power':
s.append(electric_demand)
elif state_name == 'T_lstm':
s.append(building.lstm_results['T_lstm'][self.time_step - 1])
elif state_name == 'deltaT':
if round(building.sim_results['set_point'][self.time_step - 1]) == 26:
Tdiff = abs(building.sim_results['set_point'][self.time_step - 1] -
building.lstm_results['T_lstm'][self.time_step - 1])
else:
Tdiff = 0
s.append(Tdiff)
elif state_name == 'q_cooling':
s.append(building.sim_results['cooling_demand'][self.time_step - 1])
self.state.append(np.array(s))
self.state = np.array(self.state)
rewards = reward_function_ma(district_consumption)
self.cumulated_reward_episode += sum(rewards)
# Control variables which are used to display the results and the behavior of the buildings at the district level.
self.net_electric_consumption.append(electric_demand)
self.electric_consumption_dhw_storage.append(elec_consumption_dhw_storage)
self.electric_consumption_cooling_storage.append(elec_consumption_cooling_storage)
self.electric_consumption_dhw.append(elec_consumption_dhw_total)
self.electric_consumption_cooling.append(elec_consumption_cooling_total)
self.electric_consumption_appliances.append(elec_consumption_appliances)
self.electric_generation.append(elec_generation)
self.net_electric_consumption_no_storage.append(
electric_demand - elec_consumption_cooling_storage - elec_consumption_dhw_storage)
self.net_electric_consumption_no_pv_no_storage.append(
electric_demand + elec_generation - elec_consumption_cooling_storage - elec_consumption_dhw_storage)
self.district_power.append(district_consumption)
terminal = self._terminal()
return (self._get_ob(), rewards, terminal, {})
def reset_baseline_cost(self):
self.cost_rbc = None
def reset(self):
# Initialization of variables
self.hour = iter(np.array(range(0, self.simulation_period[1] + 1 - self.simulation_period[0])))
self.next_hour()
self.net_electric_consumption = []
self.net_electric_consumption_no_storage = []
self.net_electric_consumption_no_pv_no_storage = []
self.electric_consumption_dhw_storage = []
self.electric_consumption_cooling_storage = []
self.electric_consumption_dhw = []
self.electric_consumption_cooling = []
self.electric_consumption_appliances = []
self.electric_generation = []
self.district_power = []
self.cumulated_reward_episode = 0
action_dependent_state = ['cooling_storage_soc', 'dhw_storage_soc', 'cop', 'district_power', 'T_lstm', 'deltaT', 'q_cooling']
if self.central_agent:
s, s_appended = [], []
for uid, building in self.buildings.items():
for state_name, value in self.buildings_states_actions[uid]['states'].items():
if state_name not in s_appended:
if value == True:
if state_name in ['t_in', 'avg_unmet_setpoint', 'rh_in', 'non_shiftable_load', 'solar_gen']:
s.append(building.sim_results[state_name][self.time_step])
elif state_name not in action_dependent_state:
s.append(building.sim_results[state_name][self.time_step])
s_appended.append(state_name)
elif state_name in action_dependent_state:
s.append(0.0)
building.reset()
self.state = np.array(s)
else:
self.state = []
for uid, building in self.buildings.items():
s = []
for state_name, value in zip(self.buildings_states_actions[uid]['states'],
self.buildings_states_actions[uid]['states'].values()):
if value == True:
if state_name not in action_dependent_state:
s.append(building.sim_results[state_name][self.time_step])
elif state_name in action_dependent_state:
s.append(0.0)
self.state.append(np.array(s, dtype=np.float32))
building.reset()
self.state = np.array(self.state)
return self._get_ob()
def _get_ob(self):
return self.state
def _terminal(self):
is_terminal = bool(self.time_step >= self.simulation_period[1] - self.simulation_period[0])
if is_terminal:
for building in self.buildings.values():
building.terminate()
# When the simulation is over, convert all the control variables to numpy arrays so they are easier to plot.
self.net_electric_consumption = np.array(self.net_electric_consumption)
self.net_electric_consumption_no_storage = np.array(self.net_electric_consumption_no_storage)
self.net_electric_consumption_no_pv_no_storage = np.array(self.net_electric_consumption_no_pv_no_storage)
self.electric_consumption_dhw_storage = np.array(self.electric_consumption_dhw_storage)
self.electric_consumption_cooling_storage = np.array(self.electric_consumption_cooling_storage)
self.electric_consumption_dhw = np.array(self.electric_consumption_dhw)
self.electric_consumption_cooling = np.array(self.electric_consumption_cooling)
self.electric_consumption_appliances = np.array(self.electric_consumption_appliances)
self.electric_generation = np.array(self.electric_generation)
self.district_power = np.array(self.district_power)
self.loss.append([i for i in self.get_baseline_cost().values()])
if self.verbose == 1:
print('Cumulated reward: ' + str(self.cumulated_reward_episode))
return is_terminal
def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def cost(self):
# Running the reference rule-based controller to find the baseline cost
if self.cost_rbc is None:
env_rbc = CityLearn_3dem(self.data_path, self.building_attributes, self.weather_file, self.solar_profile,
self.el_data, self.building_ids,
buildings_states_actions=self.buildings_states_actions_filename,
building_dynamics_state=self.building_dynamics_state_filename,
simulation_period=self.simulation_period, cost_function=self.cost_function,
central_agent=False)
_, actions_spaces = env_rbc.get_state_action_spaces()
# Instantiatiing the control agent(s)
agent_rbc = RBC_Agent(actions_spaces)
state = env_rbc.reset()
done = False
while not done:
action = agent_rbc.select_action(state)
next_state, rewards, done, _= env_rbc.step(action)
state = next_state
self.cost_rbc = env_rbc.get_baseline_cost()
# Compute the costs normalized by the baseline costs
cost = {}
if 'ramping' in self.cost_function:
cost['ramping'] = np.abs(
(self.net_electric_consumption - np.roll(self.net_electric_consumption, 1))[1:]).sum() / self.cost_rbc[
'ramping']
# Finds the load factor for every month (average monthly demand divided by its maximum peak), and averages all the load factors across the 12 months. The metric is one minus the load factor.
if '1-load_factor' in self.cost_function:
cost['1-load_factor'] = np.mean([1 - np.mean(self.net_electric_consumption[i:i + int(8760 / 12)]) / np.max(
self.net_electric_consumption[i:i + int(8760 / 12)]) for i in
range(0, len(self.net_electric_consumption), int(8760 / 12))]) / \
self.cost_rbc['1-load_factor']
# Average of all the daily peaks of the 365 day of the year. The peaks are calculated using the net energy demand of the whole district of buildings.
if 'average_daily_peak' in self.cost_function:
cost['average_daily_peak'] = np.mean([self.net_electric_consumption[i:i + 24].max() for i in
range(0, len(self.net_electric_consumption), 24)]) / self.cost_rbc[
'average_daily_peak']