-
Notifications
You must be signed in to change notification settings - Fork 4
/
DLTcameraPosition.py
139 lines (108 loc) · 5.15 KB
/
DLTcameraPosition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
"""
Converts 3D calibration and instrinsic camera information from DLT (easywand or Argus) to opencv (Deeplabcut, anipose, etc).
Inputs:
coefs - the DLT coefficients file containing 11 DLT coefficietns per camera
prof - the camera profile containing camera intrinsic information (e.g. as created by Argus.caliibrate)
containing variables:
xyz - the camera position in calibration frame xyz space
T - the 4x4 trasnformation matrix for camera position and orientation
ypr - Yaw,Pitch,Roll angles in degrees (Maya compatible)
Uo - perceived image center along the camera width axis
Vo - perceived image center along the camera height axis
Z - distance from camera to image plane
Outputs:
Will save an anipose-style calibration.toml to the same directory as the dlt coefficients file
Example call:
python DLTcameraPosition.py -dlt /full/path/to/dlt-coefficients.csv -prof /full/path/to/camera-profile.txt
Based on code from Ty Hedrick, Ph.D., The University of North Carolina
Author: Brandon E. Jackson, Ph.D.
email: jacksonbe3@longwood.edu
Last edited: 2021-08-23
NOT COMPLETE OR TESTED
"""
import argparse
import pandas as pd
import numpy as np
import cv2
from pathlib import Path
import toml
def DLTcameraPosition(coefs):
m1 = np.matrix([[coefs[0], coefs[1], coefs[2]],
[coefs[4], coefs[5], coefs[6]],
[coefs[8], coefs[9], coefs[10]]])
m2 = np.matrix([-coefs[3], -coefs[7], -1]).T
xyz = np.linalg.inv(m1)*m2
D = (1/(coefs[8]**2 + coefs[9]**2 + coefs[10]**2))**0.5
Uo = (D**2) * (coefs[0] * coefs[8] + coefs[1] * coefs[9] + coefs[2] * coefs[10])
Vo = (D**2) * (coefs[4] * coefs[8] + coefs[5] * coefs[9] + coefs[6] * coefs[10])
du = (((Uo * coefs[8] - coefs[0])**2 + (Uo * coefs[9] - coefs[1])**2 + (Uo * coefs[10] - coefs[2])**2) * D**2)
dv = (((Vo * coefs[8] - coefs[4])**2 + (Uo * coefs[9] - coefs[5])**2 + (Uo * coefs[10] - coefs[6])**2) * D**2)
Z = -1 * np.mean([du, dv])
T3 = D * np.matrix([
[(Uo*coefs[8]-coefs[0])/du ,(Uo*coefs[9]-coefs[1])/du ,(Uo*coefs[10]-coefs[2])/du],
[(Vo*coefs[8]-coefs[4])/dv ,(Vo*coefs[9]-coefs[5])/dv ,(Vo*coefs[10]-coefs[6])/dv],
[coefs[8] , coefs[9], coefs[10]]
])
rvecs = cv2.Rodrigues(T3)[0]
dT3 = np.linalg.det(T3)
if dT3 < 0:
T3 = -1 * T3
T = np.linalg.inv(T3)
T = np.hstack([T, [[0], [0], [0]]])
T = np.vstack([T, [xyz.item(0), xyz.item(1), xyz.item(2), 1]])
# compute YPR from T3
# Note that the axes of the DLT based transformation matrix are
# rarely orthogonal, so these angles are only an approximation of the correct
# transformation matrix
alpha = np.arctan2(T.item((1,0)), T.item((0,0))) #yaw
beta = np.arctan2(-T.item((2,0)), (T.item((2,1))**2 + T.item((2,2))**2)**0.5) #pitch
gamma = np.arctan2(T.item((2,1)), T.item((2,2))) #roll
# Check for orthongonal transforms by back-calculating one of the matrix elements
if abs(np.cos(alpha) * np.cos(beta) - T.item((0,0))) > 1e-8:
print('Warning - the transformation matrix represents transformation about')
print('non-orthgonal axes and connot be represented as a roll, pitch, and yaw')
print('series with 100% accuracy.')
ypr=np.rad2deg(np.array([gamma,beta,alpha]))
return xyz, T, ypr, Uo, Vo, Z, rvecs
def dlt2dlcCoefs(dltp, profp):
#make paths into Paths
dltp = Path(dltp)
profp = Path(profp)
dlt = pd.read_csv(dltp, header=None)
prof = pd.read_csv(profp, header=None, delimiter=' ', index_col=0)
numcams = len(prof)
# in dltcoefs, treat columns as camera "names", not python indexing
dlt.columns = list(range(1,numcams+1))
# start building the calibration.toml
cal = {}
for cam in prof.index:
xyz, T, ypr, Uo, Vo, Z, rvec = DLTcameraPosition(dlt[cam])
camdict = {
"name": str(cam),
"size": [float(prof.loc[cam, 2]), float(prof.loc[cam,3])],
"matrix": [[float(prof.loc[cam, 1]), 0.0, float(prof.loc[cam, 4])],
[0.0, float(prof.loc[cam,1]), float(prof.loc[cam,5])],
[0.0, 0.0, 1.0]],
"distortions" : prof.loc[cam, [7, 8, 9, 10, 11]],
"rotation": rvec.T.tolist()[0],
"translation" : xyz.T.tolist()[0]
}
cal['cam_{}'.format(cam-1)]=camdict
# not clear if metadata is important, and can't calculate "error" without original checkerboard pattern, so making somehting up for now
# might be able to grab the reconstruction error from the wand calibration output
cal["metadata"]= {"adjusted": False, "error": 0.1}
# write toml
ofile = dltp.parent / 'calibration.toml'
print(cal)
with open(str(ofile), "w") as f:
toml.dump(cal, f)
print("data written to ", ofile)
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='convert 3d calibration from DLT to opencv, or back')
parser.add_argument('-dlt', help='path to dlt coefficients file')
parser.add_argument('-prof', help='path to camera profile')
parser.add_argument('-dlt2dlc', default=True, help='direction of conversion')
args = parser.parse_args()
if args.dlt2dlc == True:
dlt2dlcCoefs(args.dlt, args.prof)