-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathts.d
1084 lines (910 loc) · 25.8 KB
/
ts.d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Warning: This is still experimental. There may be large breaking
* changes. */
module betterr.ts;
import betterr.rdata;
import betterr.r, betterr.list;
import betterr.matrix, betterr.vector;
import std.conv, std.exception, std.math, std.range, std.stdio, std.sumtype;
import std.algorithm.comparison: max, min;
import std.algorithm.searching;
import std.array: join;
import std.variant;
struct TS(int freq) {
RData data;
double * ptr;
int frequency = freq;
alias data this;
static if(freq == 1) {
private long _start;
private long _end;
long start() {
return _start;
}
long end() {
return _end;
}
void start(long s) {
_start = s;
}
void end(long e) {
_end = e;
}
long longStart() {
return _start;
}
long longEnd() {
return _end;
}
} else {
private TimePeriod _start;
private TimePeriod _end;
long[] start() {
return _start.array;
}
long[] end() {
return _end.array;
}
void start(long[] s) {
_start.year = s[0];
_start.minor = s[1];
}
void end(long[] e) {
_end.year = e[0];
_end.minor = e[1];
}
// Shouldn't normally use these, but they're here if you want them
long longStart() {
return _start.to!long;
}
long longEnd() {
return _end.to!long;
}
}
/* To access an existing ts object that's already inside R */
this(string code) {
data = RData(code);
ptr = REAL(data.x);
_start = TimePeriod(freq);
_end = TimePeriod(freq);
auto tmpStart = IntVector("as.integer(start(" ~ data.name ~ "))");
auto tmpEnd = IntVector("as.integer(end(" ~ data.name ~ "))");
static if(freq == 1) {
_start = tmpStart[0];
_end = tmpEnd[0];
} else {
_start = [tmpStart[0], tmpStart[1]];
_end = [tmpEnd[0], tmpEnd[1]];
}
}
static if(freq == 1) {
this(string code, long s) {
data = RData("ts(" ~ code ~ ", start=" ~ _start.to!string ~ ")");
ptr = REAL(data.x);
_start = s;
_end = s + data.x.length-1;
}
this(T)(T v, long s)
if (__traits(hasMember, v, "data") &&
(is(typeof(__traits(getMember, v, "data")) == RData))) {
this(v.name, s);
}
} else {
this(string code, long[] s) {
data = RData("ts(" ~ code ~ ", start=c(" ~ s[0].to!string ~ ", "
~ s[1].to!string ~ "), frequency=" ~ frequency.to!string ~ ")");
ptr = REAL(data.x);
_start = TimePeriod(freq);
_end = TimePeriod(freq);
_start = s;
_end = _start + (data.x.length-1);
}
/* Anything with an RData member named data */
this(T)(T v, long[] s)
if (__traits(hasMember, v, "data") &&
(is(typeof(__traits(getMember, v, "data")) == RData))) {
this(v.name, s);
}
}
bool notBefore(long[] x, long[] y) {
if (x[0] > y[0]) {
return true;
} else if ((x[0] == y[0]) && (x[1] >= y[1])) {
return true;
} else {
return false;
}
}
bool notBefore(long[] x, TimePeriod y) {
return notBefore(x, y.array);
}
bool notBefore(TimePeriod x, long[] y) {
return notBefore(x.array, y);
}
bool notBefore(TimePeriod x, TimePeriod y) {
return notBefore(x.array, y.array);
}
bool notAfter(long[] x, long[] y) {
if (x[0] < y[0]) {
return true;
} else if ((x[0] == y[0]) && (x[1] <= y[1])) {
return true;
} else {
return false;
}
}
bool notAfter(long[] x, TimePeriod y) {
return notAfter(x, y.array);
}
bool notAfter(TimePeriod x, long[] y) {
return notAfter(x.array, y);
}
bool notAfter(TimePeriod x, TimePeriod y) {
return notAfter(x.array, y.array);
}
static if(freq == 1) {
double opIndex(long d) {
return ptr[d - this._start];
}
/* Since it's a date, the end point is included */
TS opSlice(long s, long e) {
return TS("window(" ~ this.name ~ ", start=" ~ s.to!string ~ ", end=" ~ e.to!string ~ ")");
}
TS until(long e) {
return TS("window(" ~ this.name ~ ", end=" ~ e.to!string ~ ")");
}
TS starting(long s) {
return TS("window(" ~ this.name ~ ", start=" ~ s.to!string ~ ")");
}
} else {
/* If you want a single date returned as a TS, use the slice operator
* with the same value for start and end. */
double opIndex(long y, long m) {
enforce(notBefore([y, m], this.start), "Index precedes the start of the TS");
enforce(notAfter([y, m], this.end), "Index is after the end of the TS");
return ptr[ [y, m] - this._start ];
}
/* Since it's a date, the end point is included */
TS!freq opSlice(long[] s, long[] e) {
enforce(notAfter(s, e), "Start date cannot be after the end date");
enforce(notBefore(s, this.start), "Start date prior to start of series");
enforce(notAfter(e, this.end), "End date after start of series");
return TS!freq("window(" ~ this.name ~ ", start=c(" ~ s[0].to!string ~ ", "
~ s[1].to!string ~ "), end=c(" ~ e[0].to!string ~ ", "
~ e[1].to!string ~ "))");
}
TS until(long[] e) {
return opSlice(this.start, e);
//~ return TS("window(" ~ this.name ~ ", end=c(" ~ e[0].to!string ~ ", "
//~ ~ e[1].to!string ~ "))");
}
TS starting(long[] s) {
return opSlice(s, this.end);
//~ return TS("window(" ~ this.name ~ ", start=c(" ~ s[0].to!string ~ ", "
//~ ~ s[1].to!string ~ "))");
}
}
TS lag(long k) {
return TS!freq("lag(" ~ this.name ~ ", " ~ to!string(-k) ~ ")");
}
TS lead(long k) {
return lag(-k);
}
TS diff(long k) {
return TS("diff(" ~ this.name ~ ", " ~ k.to!string ~ ")");
}
TS pctChange(long k) {
return TS("(diff(" ~ this.name ~ ", " ~ k.to!string ~ ")/lag(" ~ this.name ~ ", " ~ to!string(-k) ~ "))");
}
double[] array() {
return ptr[0..(_end-_start+1)];
}
void print(string msg="") {
if (msg.length > 0) {
writeln("--------\n", msg, "\n--------");
}
static if(freq == 1) {
writeln("\nStart: ", start);
writeln("End: ", end);
} else {
writeln("\nStart: ", _start);
writeln("End: ", _end);
}
writeln("Frequency: ", frequency);
writeln();
printR(data.x);
}
}
struct TimePeriod {
long year;
long minor;
long frequency;
this(long f) {
frequency = f;
}
this(long y, long m, long f) {
year = y;
minor = m;
frequency = f;
}
TimePeriod opBinary(string op: "+")(long k) {
enforce(k >= 0, "Can only add a positive number to a TimePeriod");
TimePeriod result;
long tmp = (minor-1) + k;
result.year = this.year + (tmp / frequency);
result.minor = (tmp % frequency) + 1;
result.frequency = frequency;
return result;
}
TimePeriod opBinary(string op: "-")(long k) {
enforce(k >= 0, "Can only subtract a positive number from a TimePeriod");
TimePeriod result;
result.year = this.year - k/frequency;
result.minor = this.minor - k % frequency;
if (result.minor < 1) {
result.minor += frequency;
result.year -= 1;
}
result.frequency = this.frequency;
return result;
}
long opBinary(string op: "-")(TimePeriod j) {
return this.to!long - j.to!long;
}
long asLong(long[] d) {
return frequency*(d[0]-1900) + (d[1]-1);
}
long opBinaryRight(string op: "-")(long[] d) {
return asLong(d) - asLong([year, minor]);
}
long[] array() {
return [year, minor];
}
long opCast(T: long)() {
return frequency*(year - 1900) + (minor-1);
}
void opAssign(long[] d) {
year = d[0];
minor = d[1];
}
void opAssign(int[] d) {
year = d[0];
minor = d[1];
}
void opAssign(long d) {
year = (d/frequency) + 1900;
minor = (d%frequency) + 1;
}
}
/* Convenient way to collect multiple time series, pass them around, and
* print them out. */
struct MultipleTS(long freq) {
TS!freq[string] series;
alias series this;
this(long f)(TS!f[string] values) {
series = values;
}
MTS!f opIndex(long f=freq)(string[] varnames) {
string[] rnames;
foreach(varname; varnames) {
rnames ~= series[varname].data.name;
}
auto result = MTS!freq(`na.omit(cbind(` ~ rnames.join(",") ~ `))`);
result.colnames = varnames;
return result;
}
MTS!f opIndex(long f=freq)(string[] varnames...) {
if (varnames.length == 0) {
return opIndex(series.keys);
} else {
return opIndex(varnames);
}
}
void opIndexAssign(TS!freq value, string name) {
series[name] = value;
}
MTS!freq opCast(T: MTS!freq)() const {
return opIndex(series.keys);
}
void print(string msg="") {
opIndex!freq(series.keys).print(msg);
}
}
struct MTS(long freq) {
RData data;
static if (freq == 1) {
long start;
long end;
} else {
long[] start;
long[] end;
}
long frequency = freq;
double * ptr;
string[] names;
alias data this;
this(string code) {
data = RData(code);
ptr = REAL(data.x);
frequency = INTEGER(evalR("as.integer(frequency(" ~ data.name ~ "))"))[0];
auto s = IntVector("as.integer(start(" ~ data.name ~ "))");
auto e = IntVector("as.integer(end(" ~ data.name ~ "))");
static if (freq == 1) {
start = s[0];
end = e[0];
} else {
start = [s[0], s[1]];
end = [e[0], e[1]];
}
}
static if (freq == 1) {
this(long ncol, long s, long e) {
string code = "ts(matrix(0.0, nrow=" ~ to!string(e-s+1) ~ ", ncol=" ~ to!string(ncol) ~ "), start=" ~ to!string(s) ~ ")";
data = RData(code);
ptr = REAL(data.x);
start = s;
end = s;
}
}
this(long f)(TS!f[string] values) {
auto tmp = MultipleTS!f(values);
string[] varnames = values.keys;
string[] rnames;
foreach(varname; varnames) {
rnames ~= values[varname].data.name;
}
this(`na.omit(cbind(` ~ rnames.join(",") ~ `))`);
this.colnames(varnames);
}
/* Sometimes you don't care about the names. For instance when doing a
* regression with control variables. */
this(long f)(TS!f[] values) {
string[] varnames;
string[] rnames;
foreach(ii, value; values) {
rnames ~= value.data.name;
varnames ~= "V" ~ to!string(ii+1);
}
this(`na.omit(cbind(` ~ rnames.join(",") ~ `))`);
this.colnames(varnames);
}
this(long f)(TS!f[] values...) {
this(values);
}
long asLong(long[2] d) {
if (frequency != 1) {
return (d[0]-1900)*frequency+(d[1]-1);
} else {
return d[0];
}
}
long[2] fromLong(long d) {
return [(d/frequency)+1900, d%frequency+1];
}
long asLong(long[] d, long f) {
if (f != 1) {
return (d[0]-1900)*f+(d[1]-1);
} else {
return d[0];
}
}
long[2] fromLong(long d, long f) {
return [(d/f)+1900, d%f+1];
}
TS!f opIndex(long f=freq)(string varname) {
return TS!freq(data.name ~ `[,"` ~ varname ~ `"]`);
}
auto opIndex(long ind) {
return TS!freq(data.name ~ `[,` ~ to!string(ind+1) ~ `]`);
}
// opIndex(string[] varnames)
// opIndex(string[] varnames...)
// Return a reference to that TS's data
double[] array(string name) {
auto index = countUntil!"a == b"(names, name);
enforce(index >= 0, "Variable name not found");
static if (freq == 1) {
long length = end-start+1;
} else {
long length = asLong(end, freq) - asLong(start, freq) + 1;
}
return ptr[index*length..index*(length+1)];
}
Matrix mat() {
return Matrix("as.matrix(" ~ data.name ~ ")");
}
void colnames(string[] newnames) {
string[] quotedNames;
foreach(n; newnames) {
names ~= n;
quotedNames ~= `"` ~ n ~ `"`;
}
evalR(`colnames(` ~ data.name ~ `) <- c(` ~ quotedNames.join(", ") ~ `)`);
// Changing the names can change the pointer
data.update();
}
int rows() {
return to!int(asLong(end, freq) - asLong(start, freq) + 1);
}
int cols() {
return to!int(names.length);
}
void print(string msg="") {
if (msg.length > 0) {
writeln("--------\n", msg, "\n--------");
}
writeln("Frequency: ", frequency);
writeln("\nStart: ", start);
writeln("End: ", end);
writeln();
printR(data.x);
}
}
//~ MTS!f combine(long f)(TS!f[] series) {
//~ enforce(series.length > 1, "tsCombine requires multiple time series");
//~ MTS!f result;
//~ evalRQ(`..tmp <- ` ~ series[0].data.name);
//~ foreach(var; series[1..$]) {
//~ evalRQ(`..tmp <- cbind(..tmp, ` ~ var.data.name ~ `)`);
//~ }
//~ evalRQ(`..tmp <- na.omit(..tmp)`);
//~ evalRQ(`colnames(..tmp) <- paste0("V", 1:ncol(..tmp))`);
//~ return MTS!f(`..tmp`);
//~ }
//~ struct MTSTransform {
//~ /* This struct will be used to hold info on transformations to make
//~ * to the elements of a MTS struct. The purpose is mainly efficiency,
//~ * because you need only to specify the dataset, and then one matrix
//~ * is allocated, and it's filled one time, using the information about
//~ * the transformation. */
//~ TSTransform[] data;
//~ long start;
//~ long end;
//~ long nrow;
//~ /* You need to set this if you specified a name for the variable
//~ * rather than a TS. */
//~ MTS sourceData;
//~ MTS create() {
//~ start = long.min;
//~ end = long.max;
//~ foreach(var; data) {
//~ var.modStart.match!(
//~ (long delegate(MTS) s) => start = max(start, s(sourceData)),
//~ (long s) => start = max(start, s));
//~ var.modEnd.match!(
//~ (long delegate(MTS) e) => end = min(end, e(sourceData)),
//~ (long e) => end = min(end, e));
//~ }
//~ auto result = MTS(data.length, start, end);
//~ nrow = end - start + 1;
//~ foreach(ii, var; data) {
//~ auto tmp = result.ptr[ii*nrow..(ii+1)*nrow];
//~ var.compute.match!(
//~ (DelayedTSTransform f) => f(sourceData, tmp, start, end),
//~ (ImmediateTSTransform g) => g(tmp, start, end));
//~ }
//~ return result;
//~ }
//~ }
//~ // This verbose stuff is not something the user should ever need to write out
//~ alias DelayedTSTransform = void delegate(MTS, ref double[], long, long);
//~ alias ImmediateTSTransform = void delegate(ref double[], long, long);
//~ alias TSTransformFunction = SumType!(DelayedTSTransform, ImmediateTSTransform);
//~ alias TSTransformDate = SumType!(long delegate(MTS), long);
//~ struct TSTransform {
//~ TSTransformFunction compute;
//~ /* First non-missing observation available for the transformed series */
//~ TSTransformDate modStart;
//~ /* Last non-missing observation available for the transformed series */
//~ TSTransformDate modEnd;
//~ this(T1, T2)(T1 fn, T2 s, T2 e) {
//~ compute = fn;
//~ modStart = s;
//~ modEnd = e;
//~ }
//~ }
//~ TSTransform Lag(long f)(TS!f var, long k=1) {
//~ double[] source = var.array;
//~ long arrayStart = var.longStart;
//~ long arrayEnd = var.longEnd;
//~ /* Guaranteed all elements from s to e can be computed */
//~ void compute(ref double[] target, long s, long e) {
//~ /* s-k is the date of the lag of the first observation after
//~ * transformation.
//~ * Then we subtract arrayStart to get the index inside source.
//~ * Do the same through e+1 (since e+1 is not included). */
//~ target[0..$] = source[(s-k-arrayStart)..(e+1-k-arrayStart)];
//~ }
//~ return TSTransform(&compute, arrayStart+k, arrayEnd+k);
//~ }
//~ TSTransform Lag(string varname, long k=1) {
//~ double[] source;
//~ long arrayStart;
//~ long arrayEnd;
//~ /* Guaranteed all elements from s to e can be computed */
//~ void compute(MTS x, ref double[] target, long s, long e) {
//~ arrayStart = x.start;
//~ arrayEnd = x.end;
//~ source = x.array(varname);
//~ /* s-k is the date of the lag of the first observation after
//~ * transformation.
//~ * Then we subtract arrayStart to get the index inside source.
//~ * Do the same through e+1 (since e+1 is not included). */
//~ target[0..$] = source[(s-k-arrayStart)..(e+1-k-arrayStart)];
//~ }
//~ long modStart(MTS x) {
//~ return x.start+k;
//~ }
//~ long modEnd(MTS x) {
//~ return x.end+k;
//~ }
//~ return TSTransform(&compute, &modStart, &modEnd);
//~ }
//~ // Last is included
//~ TSTransform[] Lags(long f)(TS!f var, long from, long to) {
//~ TSTransform[] result;
//~ foreach(k; from..(to+1)) {
//~ result ~= Lag(var, k);
//~ }
//~ return result;
//~ }
//~ TSTransform[] Lags(long f)(TS!f var, long[] lags) {
//~ TSTransform[] result;
//~ foreach(k; lags) {
//~ result ~= Lag(var, k);
//~ }
//~ return result;
//~ }
//~ TSTransform Lead(long f)(TS!f var, long k=1) {
//~ return Lag(var, -k);
//~ }
//~ TSTransform Lead(string varname, long k=1) {
//~ return Lag(varname, -k);
//~ }
//~ TSTransform Diff(long f)(TS!f var, long k=1) {
//~ double[] source = var.array;
//~ long arrayStart = var.longStart;
//~ long arrayEnd = var.longEnd;
//~ /* Guaranteed all elements from s to e can be computed */
//~ void compute(ref double[] target, long s, long e) {
//~ foreach(d; s..(e+1)) {
//~ target[d-s] = source[d-arrayStart] - source[d-arrayStart-k];
//~ }
//~ }
//~ return TSTransform(&compute, arrayStart+k, arrayEnd);
//~ }
//~ TSTransform Diff(string varname, long k=1) {
//~ double[] source;
//~ long arrayStart;
//~ long arrayEnd;
//~ /* Guaranteed all elements from s to e can be computed */
//~ void compute(MTS x, ref double[] target, long s, long e) {
//~ arrayStart = x.start;
//~ arrayEnd = x.end;
//~ source = x.array(varname);
//~ foreach(d; s..(e+1)) {
//~ target[d-s] = source[d-arrayStart] - source[d-arrayStart-k];
//~ }
//~ }
//~ long modStart(MTS x) {
//~ return x.start+k;
//~ }
//~ long modEnd(MTS x) {
//~ return x.end+k;
//~ }
//~ return TSTransform(&compute, &modStart, &modEnd);
//~ }
//~ TSTransform PctChange(long f)(TS!f var, long k=1) {
//~ double[] source = var.array;
//~ long arrayStart = var.longStart;
//~ long arrayEnd = var.longEnd;
//~ /* Guaranteed all elements from s to e can be computed */
//~ void compute(ref double[] target, long s, long e) {
//~ foreach(d; s..(e+1)) {
//~ target[d-s] = (source[d-arrayStart] - source[d-arrayStart-k])/source[d-arrayStart-k];
//~ }
//~ }
//~ return TSTransform(&compute, arrayStart+k, arrayEnd);
//~ }
//~ TSTransform PctChange(string varname, long k=1) {
//~ double[] source;
//~ long arrayStart;
//~ long arrayEnd;
//~ /* Guaranteed all elements from s to e can be computed */
//~ void compute(MTS x, ref double[] target, long s, long e) {
//~ arrayStart = x.start;
//~ arrayEnd = x.end;
//~ source = x.array(varname);
//~ foreach(d; s..(e+1)) {
//~ target[d-s] = (source[d-arrayStart] - source[d-arrayStart-k])/source[d-arrayStart-k];
//~ }
//~ }
//~ long modStart(MTS x) {
//~ return x.start+k;
//~ }
//~ long modEnd(MTS x) {
//~ return x.end+k;
//~ }
//~ return TSTransform(&compute, &modStart, &modEnd);
//~ }
//~ TSTransform LogDiff(long f)(TS!f var, long k=1) {
//~ double[] source = var.array;
//~ long arrayStart = var.longStart;
//~ long arrayEnd = var.longEnd;
//~ /* Guaranteed all elements from s to e can be computed */
//~ void compute(ref double[] target, long s, long e) {
//~ foreach(d; s..(e+1)) {
//~ target[d-s] = log(source[d-arrayStart]) - log(source[d-arrayStart-k]);
//~ }
//~ }
//~ return TSTransform(&compute, arrayStart+k, arrayEnd);
//~ }
//~ TSTransform LogDiff(string varname, long k=1) {
//~ double[] source;
//~ long arrayStart;
//~ long arrayEnd;
//~ /* Guaranteed all elements from s to e can be computed */
//~ void compute(MTS x, ref double[] target, long s, long e) {
//~ arrayStart = x.start;
//~ arrayEnd = x.end;
//~ source = x.array(varname);
//~ foreach(d; s..(e+1)) {
//~ target[d-s] = log(source[d-arrayStart]) - log(source[d-arrayStart-k]);
//~ }
//~ }
//~ long modStart(MTS x) {
//~ return x.start+k;
//~ }
//~ long modEnd(MTS x) {
//~ return x.end+k;
//~ }
//~ return TSTransform(&compute, &modStart, &modEnd);
//~ }
//~ TSTransform vectorFunction(alias fn, long f)(TS!f var) {
//~ double[] source = var.array;
//~ /* Guaranteed all elements from s to e can be computed */
//~ void compute(ref double[] target, long s, long e) {
//~ foreach(d; s..(e+1)) {
//~ target[d-s] = fn(source[d-var.longStart]);
//~ }
//~ }
//~ return TSTransform(&compute, var.longStart, var.longEnd);
//~ }
//~ TSTransform vectorFunction(alias fn)(string varname) {
//~ double[] source;
//~ long arrayStart;
//~ /* Guaranteed all elements from s to e can be computed */
//~ void compute(MTS x, ref double[] target, long s, long e) {
//~ source = x.array(varname);
//~ arrayStart = x.start;
//~ foreach(d; s..(e+1)) {
//~ target[d-s] = fn(source[d-arrayStart]);
//~ }
//~ }
//~ long modStart(MTS x) {
//~ return x.start;
//~ }
//~ long modEnd(MTS x) {
//~ return x.end;
//~ }
//~ return TSTransform(&compute, &modStart, &modEnd);
//~ }
//~ TSTransform Log(long f)(TS!f var) {
//~ return vectorFunction!std.math.log(var);
//~ }
//~ TSTransform Log(string varname) {
//~ return vectorFunction!(std.math.log)(varname);
//~ }
//~ TSTransform Trend(long k=1) {
//~ void compute(ref double[] target, long s, long e) {
//~ foreach(ii; 1..(target.length+1)) {
//~ target[ii] = ii^^k;
//~ }
//~ }
//~ return TSTransform(&compute, long.min, long.max);
//~ }
//~ TSTransform[] PolyTrend(long k=1) {
//~ TSTransform[] result;
//~ foreach(ii; 1..(k+1)) {
//~ result ~= Trend(ii);
//~ }
//~ return result;
//~ }
/* This stuff will be moved to its own module sometime, but not today. */
struct TSFit(long freq) {
List fit;
List summary;
static if (freq == 1) {
long start;
long end;
} else {
long[] start;
long[] end;
}
void print(string msg="") {
if (msg.length > 0) {
writeln(msg ~ ":");
}
printR(fit.x);
}
Vector coef() {
printR(evalR(fit.name ~ "[['coefficients']]"));
return Vector(fit.name ~ "[['coefficients']]");
}
Matrix coefTable() {
return Matrix(summary.name ~ "[['coefficients']]");
}
TS!freq residuals() {
return TS!freq("residuals(" ~ fit.name ~ ")", start);
}
TS!freq fittedValues() {
return TS!freq("fitted(" ~ fit.name ~ ")", start);
}
int dfResidual() {
return fit["df.residual"].as!int;
}
List model() {
return List(fit.name ~ "['model']");
}
double sigma() {
return summary["sigma"].as!double;
}
double rsq() {
return summary["r.squared"].as!double;
}
double adjrsq() {
return summary["adj.r.squared"].as!double;
}
double fstat() {
return summary["fstatistic"].as!double;
}
List unscaledCov() {
return List(summary.name ~ "['cov.unscaled']");
}
Matrix nwCov() {
return Matrix("sandwich::NeweyWest(" ~ fit.name ~ ")");
}
Vector nwStdErrors() {
return Vector("sqrt(diag(sandwich::NeweyWest(" ~ fit.name ~ ")))");
}
Matrix nwCoefficients() {
evalRQ([
`tmp <- ` ~ summary.name ~ `[["coefficients"]]`,
`tmp[,2] <- sqrt(diag(sandwich::NeweyWest(` ~ fit.name ~ `)))`,
`tmp[,3] <- tmp[,1]/tmp[,2]`,
`tmp2 <- tmp[,-4]`]);
return Matrix("tmp2");
}
Matrix whiteCov() {
return Matrix("sandwich::vcovHC(" ~ fit.name ~ ")");
}
Matrix whiteCoefficients() {
evalRQ([
`tmp <- ` ~ summary.name ~ `[["coefficients"]]`,
`tmp[,2] <- sqrt(diag(sandwich::vcovHC(` ~ fit.name ~ `)))`,
`tmp[,3] <- tmp[,1]/tmp[,2]`,
`tmp2 <- tmp[,-4]`]);
return Matrix("tmp2");
}
}
TSFit!f lm(long f)(MTS!f regdata) {
TSFit!f result;
evalRQ("lhs <- " ~ regdata.name ~ "[,1];rhs <- " ~ regdata.name ~ "[,-1];");
string cmd = "lm(lhs~rhs)";
result.fit = List(cmd);
result.summary = List(`summary(` ~ result.fit.name ~ `)`);
result.start = regdata.start;
result.end = regdata.end;
return result;
}
TSFit!f lm(long f)(TS!f y, TS!f x) {
return lm(MTS!f(y, x));
}
// lhs variable goes first
TSFit!f lm(long f)(TS!f variables...) {
return lm(MTS!f(variables));
}
struct TSFitOptions {
bool intercept = true;
long start1;
long end1;
long[] startOther;
long[] endOther;
Vector * _weights;
void start(long x) {
start1 = x;
}
void end(long x) {
end1 = x;
}
void start(long[] x) {
startOther = x;
}
void end(long[] x) {
endOther = x;
}
void weights(Vector w) {
assert(w !is null, "Cannot pass null Vector to TSFitOptions");
assert(w.length > 0, "Cannot pass zero-length Vector to TSFitOptions");
_weights = &w;
}
Vector weights() {
return *_weights;
}
}
alias Opt = TSFitOptions;
TSFit!f lm(long f)(MTS!f regdata, TSFitOptions options) {
import std.algorithm.comparison: min, max;
string formula;
if (options.intercept) {
formula = "lhs ~ rhs";