-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathauxiliary_functions.py
388 lines (295 loc) · 11.6 KB
/
auxiliary_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
# -*- coding: utf-8 -*-
"""
Created on Fri Sep 1 18:13:14 2023
@author: brech
"""
# %% Initialization
# Required libraries
import ee
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import matplotlib.ticker as tkr
import seaborn as sns
# GEE initialization
ee.Initialize()
# %% Cloud Mask
def cloud_mask(image):
'''
Select Bit 6 (clouds and dilated clouds) from QA_PIXEL band and remove
cloudy pixels from the image.
'''
# Bit 6: 1 to clear sky and 0 to cloud or dilated cloud
clear = image.select('QA_PIXEL').bitwiseAnd(1 << 6)
return image.updateMask(clear)
# %% Brightness temperature to radiance
def brightness_to_rad(image):
'''
This function takes B10 from USGS Landsat 8 Collection 2 Tier 1
TOA Reflectance (brightness temperature) and converts to radiance.
'''
k1 = image.getNumber('K1_CONSTANT_BAND_10')
k2 = image.getNumber('K2_CONSTANT_BAND_10')
image = image.addBands(
image.expression(expression='k1 / (exp(k2 / B10) - 1)',
opt_map={'k1': k1, 'k2': k2,
'B10': image.select('B10')}).rename('B10R')
)
return image
# %% Vector to ee.FeatureCollection
def vect_to_fc(vector):
'''
Transforms a multipolygon vector (geopandas Dataframe) into
an ee.FeatureCollection.
The vector must have a field called "surface".
'''
# Empty list to save the polygons
polygons = ee.List([])
# Iterate over each polygon
for pol in range(0, len(vector)):
# Select the feature of interest
polygon = (
np.dstack(vector.geometry[pol].exterior.coords.xy).tolist()
)
# Create a ee.Feature with the external coordinates
geometry = ee.Feature(ee.Geometry.Polygon(polygon))
# Set an attribute from the vector to the geometry
geometry = geometry.set({'surface': vector.surface[pol]})
# Append the geometry to the list
polygons = polygons.add(geometry)
return ee.FeatureCollection(polygons)
# %% Land Surface Emissivity
def lse(image):
'''
This function retrieves Land Surface Emissivity from Landsat 8 TOA bands
using the formulation from Li and Jiang (2018).
'''
# Calculate Normalized Difference Vegetation Index (NDVI)
image = image.addBands(
image.normalizedDifference(['B5', 'B4'])
.rename('NDVI')
)
# Constants adopted
NDVIs = 0.2 # Soil NDVI
NDVIv = 0.5 # Vegetation NDVI
lses = 0.971 # Soil NDVI
lsev = 0.982 # Vegetation NDVI
gf = 0.55 # Geometrical Factor
# Fractional Vegetation Cover (FVC)
fvc_expression = '''
(NDVI <= 0.2) ? 0 :
(NDVI > 0.2 && NDVI < 0.5) ? ((NDVI - NDVIs) / (NDVIv - NDVIs))**2 :
1
'''
image = image.addBands(
image.expression(expression=fvc_expression,
opt_map={'NDVI': image.select('NDVI'),
'NDVIs': NDVIs, 'NDVIv': NDVIv})
.rename('FVC')
)
# Cavity Effect (CE)
ce_expression = '''
(NDVI < 0.5) ? ((1 - lses) * lsev * gf * (1 - FVC)) : 0.005
'''
image = image.addBands(
image.expression(expression=ce_expression,
opt_map={'FVC': image.select('FVC'),
'NDVI': image.select('NDVI'),
'lses': lses, 'lsev': lsev, 'gf': gf}
).rename('CE')
)
# Land Surface Emissivity (LSE)
lse_expression = '''
(NDVI < 0.2) ? (0.98 - 0.14 * B2 + 0.17 * B3 - 0.036 * B4
- 0.083 * B5 + 0.158 * B6 - 0.149 * B7) :
(NDVI >= 0.2 && NDVI <= 0.5) ? (lsev * FVC + lses *
(1 - FVC) + CE) :
(lsev + CE)
'''
image = image.addBands(
image.expression(
expression=lse_expression,
opt_map={'NDVI': image.select('NDVI'),
'FVC': image.select('FVC'),
'CE': image.select('CE'),
'B2': image.select('B2'),
'B3': image.select('B3'),
'B4': image.select('B4'),
'B5': image.select('B5'),
'B6': image.select('B6'),
'B7': image.select('B7'),
'lses': lses, 'lsev': lsev}
).rename('LSE')
)
return image
# %% Land Surface Temperature
def lst(image):
'''
This function retrieves Land Surface Temperature from Landsat 8 TOA bands
using the formulation from Wang et al. (2019).
'''
# Coefficients for B(T) model
# # AWV in [0, 2]
# a = [-0.28009, 1.257429, 0.275109, -1.32876,
# -0.1696, 0.999069, 0.033453, 0.015232]
# # AWV in [2, 4]
# b = [-0.60336, 1.613485, -4.98989, 2.772703,
# -1.04271, 1.739598, -0.54978, 0.129006]
# # AWV in [4, 7]
# c = [2.280539, 0.918191, -38.3363, 13.82581,
# -1.75455, 5.003919, -1.62832, 0.196687]
# # Full range
# d = [-0.4107, 1.493577, 0.278271, -1.22502,
# -0.31067, 1.022016, -0.01969, 0.036001]
# Calculate blackbody radiance
bbr_expression = '''
(AWV <= 2) ?
(- 0.28009 + 1.257429 * AWV
+ (0.275109 - 1.32876 * AWV - 0.1696 * (AWV**2)) / LSE
+ (0.999069 + 0.033453 * AWV + 0.015232 * (AWV**2)) * B10/LSE) :
(AWV > 2 && AWV <= 4) ?
(- 0.60336 + 1.613485 * AWV
+ (- 4.98989 + 2.772703 * AWV - 1.04271 * (AWV**2)) / LSE
+ (1.739598 - 0.54978 * AWV + 0.129006 * (AWV**2)) * B10/LSE) :
(AWV > 4 && AWV <= 7) ?
(2.280539 + 0.918191 * AWV
+ (- 38.3363 + 13.82581 * AWV - 1.75455 * (AWV**2)) / LSE
+ (5.003919 - 1.62832 * AWV + 0.196687 * (AWV**2)) * B10/LSE) :
(- 0.4107 + 1.493577 * AWV
+ (0.278271 - 1.22502 * AWV - 0.31067 * (AWV**2)) / LSE
+ (1.022016 - 0.01969 * AWV + 0.036001 * (AWV**2)) * B10/LSE)
'''
image = image.addBands(
image.expression(
expression=bbr_expression,
opt_map={'AWV': image.getNumber('AWV'),
'LSE': image.select('LSE'),
'B10': image.select('B10R')}
).rename('BBR')
)
# Retrieve LST
lst_expression = '(c2 / lambda) / (log(c1 / (lambda**5 * BBR) + 1))'
image = image.addBands(
image.expression(
expression=lst_expression,
opt_map={'c1': 1.19104E+08,
'c2': 1.43877E+04,
'lambda': 10.904,
'BBR': image.select('BBR')}
).rename('LST')
)
return image
# %% Land Surface Temperature with mean LSE
def lst_mean_lse(image):
'''
This function retrieves Land Surface Temperature from Landsat 8 TOA bands
using the formulation from Wang et al. (2019) and mean LSE.
'''
# Coefficients for B(T) model
# # AWV in [0, 2]
# a = [-0.28009, 1.257429, 0.275109, -1.32876,
# -0.1696, 0.999069, 0.033453, 0.015232]
# # AWV in [2, 4]
# b = [-0.60336, 1.613485, -4.98989, 2.772703,
# -1.04271, 1.739598, -0.54978, 0.129006]
# # AWV in [4, 7]
# c = [2.280539, 0.918191, -38.3363, 13.82581,
# -1.75455, 5.003919, -1.62832, 0.196687]
# # Full range
# d = [-0.4107, 1.493577, 0.278271, -1.22502,
# -0.31067, 1.022016, -0.01969, 0.036001]
# Calculate blackbody radiance
bbr_expression = '''
(AWV <= 2) ?
(- 0.28009 + 1.257429 * AWV
+ (0.275109 - 1.32876 * AWV - 0.1696 * (AWV**2)) / LSE
+ (0.999069 + 0.033453 * AWV + 0.015232 * (AWV**2)) * B10/LSE) :
(AWV > 2 && AWV <= 4) ?
(- 0.60336 + 1.613485 * AWV
+ (- 4.98989 + 2.772703 * AWV - 1.04271 * (AWV**2)) / LSE
+ (1.739598 - 0.54978 * AWV + 0.129006 * (AWV**2)) * B10/LSE) :
(AWV > 4 && AWV <= 7) ?
(2.280539 + 0.918191 * AWV
+ (- 38.3363 + 13.82581 * AWV - 1.75455 * (AWV**2)) / LSE
+ (5.003919 - 1.62832 * AWV + 0.196687 * (AWV**2)) * B10/LSE) :
(- 0.4107 + 1.493577 * AWV
+ (0.278271 - 1.22502 * AWV - 0.31067 * (AWV**2)) / LSE
+ (1.022016 - 0.01969 * AWV + 0.036001 * (AWV**2)) * B10/LSE)
'''
image = image.addBands(
image.expression(
expression=bbr_expression,
opt_map={'AWV': image.getNumber('AWV'),
'LSE': image.select('LSE_mean'),
'B10': image.select('B10R')}
).rename('BBR_mean')
)
# Retrieve LST
lst_expression = '(c2 / lambda) / (log(c1 / (lambda**5 * BBR) + 1))'
image = image.addBands(
image.expression(
expression=lst_expression,
opt_map={'c1': 1.19104E+08,
'c2': 1.43877E+04,
'lambda': 10.904,
'BBR': image.select('BBR_mean')}
).rename('LST_mean')
)
return image
# %% Land Surface Temperature with median LSE
def lst_median_lse(image):
'''
This function retrieves Land Surface Temperature from Landsat 8 TOA bands
using the formulation from Wang et al. (2019) and median LSE.
'''
# Coefficients for B(T) model
# # AWV in [0, 2]
# a = [-0.28009, 1.257429, 0.275109, -1.32876,
# -0.1696, 0.999069, 0.033453, 0.015232]
# # AWV in [2, 4]
# b = [-0.60336, 1.613485, -4.98989, 2.772703,
# -1.04271, 1.739598, -0.54978, 0.129006]
# # AWV in [4, 7]
# c = [2.280539, 0.918191, -38.3363, 13.82581,
# -1.75455, 5.003919, -1.62832, 0.196687]
# # Full range
# d = [-0.4107, 1.493577, 0.278271, -1.22502,
# -0.31067, 1.022016, -0.01969, 0.036001]
# Calculate blackbody radiance
bbr_expression = '''
(AWV <= 2) ?
(- 0.28009 + 1.257429 * AWV
+ (0.275109 - 1.32876 * AWV - 0.1696 * (AWV**2)) / LSE
+ (0.999069 + 0.033453 * AWV + 0.015232 * (AWV**2)) * B10/LSE) :
(AWV > 2 && AWV <= 4) ?
(- 0.60336 + 1.613485 * AWV
+ (- 4.98989 + 2.772703 * AWV - 1.04271 * (AWV**2)) / LSE
+ (1.739598 - 0.54978 * AWV + 0.129006 * (AWV**2)) * B10/LSE) :
(AWV > 4 && AWV <= 7) ?
(2.280539 + 0.918191 * AWV
+ (- 38.3363 + 13.82581 * AWV - 1.75455 * (AWV**2)) / LSE
+ (5.003919 - 1.62832 * AWV + 0.196687 * (AWV**2)) * B10/LSE) :
(- 0.4107 + 1.493577 * AWV
+ (0.278271 - 1.22502 * AWV - 0.31067 * (AWV**2)) / LSE
+ (1.022016 - 0.01969 * AWV + 0.036001 * (AWV**2)) * B10/LSE)
'''
image = image.addBands(
image.expression(
expression=bbr_expression,
opt_map={'AWV': image.getNumber('AWV'),
'LSE': image.select('LSE_median'),
'B10': image.select('B10R')}
).rename('BBR_median')
)
# Retrieve LST
lst_expression = '(c2 / lambda) / (log(c1 / (lambda**5 * BBR) + 1))'
image = image.addBands(
image.expression(
expression=lst_expression,
opt_map={'c1': 1.19104E+08,
'c2': 1.43877E+04,
'lambda': 10.904,
'BBR': image.select('BBR_median')}
).rename('LST_median')
)
return image