-
Notifications
You must be signed in to change notification settings - Fork 10
/
preprocess.py
55 lines (45 loc) · 2 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# coding: utf-8
import argparse
import os
from multiprocessing import cpu_count
from tqdm import tqdm
import importlib
from hparams import hparams
def preprocess(mod, hp, in_dir, out_root, num_workers):
os.makedirs(out_dir, exist_ok=True)
metadata = mod.build_from_path(hp, in_dir, out_dir, num_workers, tqdm=tqdm)
write_metadata(metadata, out_dir)
def write_metadata(metadata, out_dir):
with open(os.path.join(out_dir, 'train.txt'), 'w', encoding='utf-8') as f:
for m in metadata:
f.write('|'.join([str(x) for x in m]) + '\n')
frames = sum([m[2] for m in metadata])
sr = hparams.sample_rate
hours = frames / sr / 3600
print('Wrote %d utterances, %d time steps (%.2f hours)' % (len(metadata), frames, hours))
print('Max input length: %d' % max(len(m[3]) for m in metadata))
print('Max output length: %d' % max(m[2] for m in metadata))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--name', default="", help='dataset name', required=True)
parser.add_argument('--in_dir', default="", help='input dir', required=True)
parser.add_argument('--out_dir', default="", help='output dir', required=True)
parser.add_argument('--num_workers', default=cpu_count(), help='num workers')
parser.add_argument('--preset', default=None, help='preset json')
parser.add_argument('--hparams', default='', help='extra hparams, pair as key=value')
args = parser.parse_args()
name = args.name
in_dir = args.in_dir
out_dir = args.out_dir
num_workers = args.num_workers
preset = args.preset
# Load preset if specified
if preset is not None:
with open(preset) as f:
hparams.parse_json(f.read())
# Override hyper parameters
hparams.parse(args.hparams)
print("Sampling frequency: {}".format(hparams.sample_rate))
assert name in ["cmu_arctic", "ljspeech"]
mod = importlib.import_module("datasets.{}".format(name))
preprocess(mod, hparams, in_dir, out_dir, num_workers)