Skip to content

Latest commit

 

History

History
31 lines (23 loc) · 1.35 KB

README.md

File metadata and controls

31 lines (23 loc) · 1.35 KB

How to reproduce results

  1. CUDA_LAUNCH_BLOCKING=0 python3 gpu_rewt_ss_generic.py /tmp l1 0 l3 l4 0 l6 qg 5 <dataset_path> <num_class> nn 0 <batch_size> <lr_learning_rate> <gm_learning_rate> normal f1
  • <dataset_path> is the path to the directory of the stored LFs
  • <num_class> is number of classes in the dataset (for eg, TREC has 6 classes and SMS has 2 classes)
  • <batch_size> is kept sa 32 in all our experiments
  • <lr_learning_rate> is set as 0.0003
  • <gm_learning_rate> is set as 0.01
  • last argument can be either f1 or accuracy where f1 refers to macro-F1.

How to automatically generate LFs

  1. cd reef/
  2. python generate_human_lfs.py dataset(imdb/trec/sms/youtube) count/lemma savetype(dict/lemma)
  • 1st argument is dataset name (i.e imdb/trec/sms/youtube/sst5/twitter)
  • 2nd argument generation of raw (count) or lemmatized feature (lemma)
  • 3rd argument is path of the directory to save the generated LFs

Generate LFs from snuba

  1. cd reef/
  2. python generic_generate_labels.py youtube normal dt 1 26 yt_val2.5_sup5_dt1 count
  • 1st argument is dataset name (i.e imdb/trec/sms/youtube/sst5/twitter)
  • 2nd argument is prefix of generated pkl files
  • 3rd argument is number of LFs per step
  • 4th argument is number of epochs
  • 5th argument is storage path (LFs/data/youtube/<storage_path>) where pkl files will be stored
  • 6th argument is type of features