-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
executable file
·173 lines (130 loc) · 4.51 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#!/usr/bin/env python
#-- Ayan Chakrabarti <ayanc@ttic.edu>
import sys
import os
import time
import tensorflow as tf
import numpy as np
if len(sys.argv) < 2:
sys.exit("USAGE: train.py exp")
from importlib import import_module
p = import_module("exp." + sys.argv[1])
from rpglib import utils as ut
from rpglib import real
from rpglib import gen
from rpglib import disc
def mprint(s):
sys.stdout.write(time.strftime("%Y-%m-%d %H:%M:%S ") + s + "\n")
sys.stdout.flush()
#########################################################################
# Check for saved weights & find iter
dsave = ut.ckpter(p.wts_dir + '/iter_*.dmodel.npz')
gsave = ut.ckpter(p.wts_dir + '/iter_*.gmodel.npz')
niter = gsave.iter
#########################################################################
# Initialize loader, generator, discriminator
# Real
imgs = real.Real(p.lfile,p.bsz,p.imsz,niter,p.crop)
# Noise
Z = tf.Variable(tf.random_uniform([p.bsz,1,1,p.zlen],-1.0,1.0))
G = gen.Gnet(p,Z)
Gz = tf.Variable(tf.zeros([p.bsz,p.imsz,p.imsz,3],dtype=tf.float32))
gfwd = Gz.assign(G.out)
# Discriminator
D = disc.Dnet(p)
or2r,_ = D.dloss(imgs.batch,False)
of2r,of2f = D.dloss(Gz,True)
dloss = (or2r+of2f) / 2.0
gloss = of2r / float(D.numd)
#########################################################################
# Set up optimizer steps
# For D
opt0 = tf.train.GradientDescentOptimizer(1.0)
gv = opt0.compute_gradients(dloss,D.v0)
dsteps = []
for i in range(D.numd):
opt = tf.train.AdamOptimizer(2e-4,0.5)
gvi = [(gv[j][0],D.vk[i][j]) for j in range(len(gv))]
dsteps.append(opt.apply_gradients(gvi))
# For G
GzGrad = tf.Variable(tf.zeros([p.bsz,p.imsz,p.imsz,3],dtype=tf.float32))
gstep0 = GzGrad.initializer
opt0 = tf.train.GradientDescentOptimizer(1.0)
gv = opt0.compute_gradients(gloss,[Gz])
gstepi = GzGrad.assign_add(gv[0][0])
opt = tf.train.AdamOptimizer(2e-4,0.5)
gstepF = opt.minimize(tf.reduce_sum(GzGrad*G.out),\
var_list=[G.weights[k] for k in G.weights.keys()])
#########################################################################
# Start TF session (respecting OMP_NUM_THREADS)
nthr = os.getenv('OMP_NUM_THREADS')
if nthr is None:
sess = tf.Session()
else:
sess = tf.Session(config=tf.ConfigProto(
intra_op_parallelism_threads=int(nthr)))
sess.run(tf.initialize_all_variables())
#########################################################################
# Load saved weights if any
if dsave.latest is not None:
mprint("Restoring D from " + dsave.latest )
ut.netload(D,dsave.latest,sess)
mprint("Done!")
if gsave.latest is not None:
mprint("Restoring G from " + gsave.latest )
ut.netload(G,gsave.latest,sess)
mprint("Done!")
#########################################################################
# Main Training loop
stop=False
mprint("Starting from Iteration %d" % niter)
try:
while niter < p.MAXITER and not stop:
# Run GStep
sess.run(Z.initializer)
sess.run([gfwd,gstep0])
gl = 0.
gli = []
for i in range(D.numd):
sess.run(D.sOps[i])
glv,_ = sess.run([gloss,gstepi])
gl = gl + glv
gli.append(glv*float(D.numd))
sess.run(gstepF)
# Run DStep
sess.run(Z.initializer)
sess.run([gfwd,imgs.fetchOp],feed_dict=imgs.fdict())
dl = 0.
for i in range(D.numd):
sess.run(D.sOps[i])
dlv,_ = sess.run([dloss,dsteps[i]])
dl = dl+dlv
dl = dl/float(D.numd)
mprint("[%09d] Adam Loss: G=%.6f,D=%.6f"
% (niter,gl,dl))
# Display all outputs
ostr = '[%09d]* ' % niter
for j in range(D.numd):
ostr = ostr + ("L%02d=%.3f," % (j,gli[j]))
mprint(ostr[:-1])
niter=niter+1
## Save model weights if needed
if p.SAVEFREQ > 0 and niter % p.SAVEFREQ == 0:
gname = p.wts_dir + "/iter_%d.gmodel.npz" % niter
ut.netsave(G,gname,sess)
gsave.clean(every=p.SAVEFREQ,last=1)
mprint("Saved G weights to " + gname )
except KeyboardInterrupt: # Catch ctrl+c/SIGINT
mprint("Stopped!")
stop = True
pass
# Save last
dname = p.wts_dir + "/iter_%d.dmodel.npz" % niter
gname = p.wts_dir + "/iter_%d.gmodel.npz" % niter
if gsave.iter < niter:
ut.netsave(G,gname,sess)
gsave.clean(every=p.SAVEFREQ,last=1)
mprint("Saved G weights to " + gname )
ut.netsave(D,dname,sess)
dsave.clean(every=p.SAVEFREQ,last=1)
mprint("Saved D weights to " + dname )