-
Notifications
You must be signed in to change notification settings - Fork 337
/
Copy pathswiftnet.py
152 lines (120 loc) · 4.17 KB
/
swiftnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import sys
import time
import ailia
import cv2
import numpy as np
from PIL import Image as pimg
from swiftnet_utils.color_lables import ColorizeLabels
from swiftnet_utils.labels import labels
# import original modules
sys.path.append('../../util')
# logger
from logging import getLogger # noqa: E402
import webcamera_utils # noqa: E402 noqa: E402
from image_utils import imread # noqa: E402
from model_utils import check_and_download_models # noqa: E402
from arg_utils import get_base_parser, get_savepath, update_parser # noqa: E402
logger = getLogger(__name__)
# ======================
# Parameters
# ======================
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/swiftnet/'
WEIGHT_PATH = "swiftnet.opt.onnx"
MODEL_PATH = "swiftnet.opt.onnx.prototxt"
IMAGE_PATH = 'input.png'
SAVE_IMAGE_PATH = 'output.png'
HEIGHT = 1024
WIDTH = 2048
color_info = [label.color for label in labels if label.ignoreInEval is False]
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser('swiftnet model', IMAGE_PATH, SAVE_IMAGE_PATH)
args = update_parser(parser)
# ======================
# Main functions
# ======================
def recognize_from_image():
# net initialize
env_id = args.env_id
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=env_id)
# input image loop
for image_path in args.input:
# prepare input data
logger.debug(f'input image: {image_path}')
img = imread(image_path)
logger.debug(f'input image shape: {img.shape}')
img = cv2.resize(img, (WIDTH, HEIGHT))
img = img.transpose(2, 0, 1)
img = np.expand_dims(img, 0)
# inference
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
for i in range(5):
start = int(round(time.time() * 1000))
pred = net.predict(img)
end = int(round(time.time() * 1000))
logger.info(f'\tailia processing time {end - start} ms')
else:
pred = net.predict(img)
# postprocessing
to_color = ColorizeLabels(color_info)
pred = np.argmax(pred, axis=1)
pred = to_color(pred).astype(np.uint8)
pred = pimg.fromarray(pred[0])
# save
savepath = get_savepath(args.savepath, image_path)
logger.info(f'saved at : {savepath}')
pred.save(savepath)
def recognize_from_video():
# net initialize
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id)
capture = webcamera_utils.get_capture(args.video)
# create video writer if savepath is specified as video format
f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
if args.savepath != SAVE_IMAGE_PATH:
logger.warning(
'currently, video results cannot be output correctly...'
)
writer = webcamera_utils.get_writer(args.savepath, f_h, f_w, rgb=False)
else:
writer = None
frame_shown = False
while (True):
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
if frame_shown and cv2.getWindowProperty('frame', cv2.WND_PROP_VISIBLE) == 0:
break
input = cv2.resize(frame, (WIDTH, HEIGHT))
input = input.transpose(2, 0, 1)
input = np.expand_dims(input, 0)
# inference
pred = net.predict(input)
# postprocessing
to_color = ColorizeLabels(color_info)
pred = np.argmax(pred, axis=1)[0]
pred = to_color(pred).astype(np.uint8)
cv2.imshow('frame', pred)
frame_shown = True
# save results
if writer is not None:
writer.write(pred)
capture.release()
cv2.destroyAllWindows()
if writer is not None:
writer.release()
logger.info('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
if args.video is not None:
# video mode
recognize_from_video()
else:
# image mode
recognize_from_image()
if __name__ == '__main__':
main()