-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataframes.py
203 lines (185 loc) · 9.6 KB
/
dataframes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
from pyopenms import *
import pandas as pd
import os
from pathlib import Path
from .helpers import Helper
import pyteomics
from pyteomics import mztab, mgf
import streamlit as st
class DataFrames:
def create_consensus_table(self, consensusXML_file, table_file, sirius_ms_dir=""):
consensus_map = ConsensusMap()
ConsensusXMLFile().load(consensusXML_file, consensus_map)
df = consensus_map.get_df().drop(["sequence"], axis=1)
for cf in consensus_map:
if cf.metaValueExists("best ion"):
df.insert(4, "adduct", [cf.getMetaValue("best ion") for cf in consensus_map])
break
for cf in consensus_map:
if cf.metaValueExists("label"):
df["name"] = [cf.getMetaValue("label") for cf in consensus_map]
break
if "adduct" in df.columns:
df.insert(0, "metabolite", [f"{round(mz, 4)}@{round(rt, 2)}@{adduct}" for mz, rt, adduct in zip(df["mz"].tolist(), df["RT"].tolist(), df["adduct"].tolist())])
else:
df.insert(0, "metabolite", [f"{round(mz, 4)}@{round(rt, 2)}" for mz, rt in zip(df["mz"].tolist(), df["RT"].tolist())])
not_sample = [c for c in df.columns if c not in ["mz", "RT", "charge", "adduct", "name", "quality"]]
df[not_sample] = df[not_sample].applymap(lambda x: int(round(x, 0)) if isinstance(x, (int, float)) else x)
# annotate original feature Ids which are in the Sirius .ms files
if sirius_ms_dir:
ms_files = [Path(sirius_ms_dir, file) for file in os.listdir(sirius_ms_dir)]
map = {Path(value.filename).stem: key for key, value in consensus_map.getColumnHeaders().items()}
for file in ms_files:
if file.exists():
key = map[file.stem]
id_list = []
content = file.read_text()
for cf in consensus_map:
# get a map with map index and feature id for each consensus feature -> get the feature id key exists
f_map = {fh.getMapIndex(): fh.getUniqueId() for fh in cf.getFeatureList()}
if key in f_map.keys():
f_id = str(f_map[key])
else:
f_id = ""
if f_id and f_id in content:
id_list.append(f_id)
else:
id_list.append("")
df[file.stem+"_SiriusID"] = id_list
if table_file.endswith("tsv"):
df.to_csv(table_file, sep="\t")
elif table_file.endswith("ftr"):
df.reset_index().to_feather(table_file)
print(df.columns)
return df
def FFMID_chroms_to_df(self, featureXML_file, table_file, time_unit = "seconds"):
time_factor = 1
if time_unit == "minutes":
time_factor = 60
fm = FeatureMap()
FeatureXMLFile().load(featureXML_file, fm)
chroms = {}
for f in fm:
for i, sub in enumerate(f.getSubordinates()):
name = f.getMetaValue('label') + "_" + str(i+1)
chroms[name + "_int"] = [int(y[1]) for y in sub.getConvexHulls()[0].getHullPoints()]
chroms[name + "_RT"] = [x[0]/time_factor for x in sub.getConvexHulls()[0].getHullPoints()]
df = pd.DataFrame({ key:pd.Series(value) for key, value in chroms.items() })
if table_file.endswith("tsv"):
df.reset_index().to_csv(table_file, sep="\t")
elif table_file.endswith("ftr"):
df.reset_index().to_feather(table_file)
def FFMID_auc_to_df(self, featureXML_file, table_file):
fm = FeatureMap()
FeatureXMLFile().load(featureXML_file, fm)
aucs = {}
for f in fm:
aucs[f.getMetaValue('label')] = [int(f.getIntensity())]
df = pd.DataFrame({ key:pd.Series(value) for key, value in aucs.items() })
if table_file.endswith("tsv"):
df.reset_index().to_csv(table_file, sep="\t")
elif table_file.endswith("ftr"):
df.reset_index().to_feather(table_file)
def FFMID_auc_combined_to_df(self, df_auc_file, table_file):
if df_auc_file.endswith("tsv"):
df = pd.read_csv(df_auc_file, sep="\t")
elif df_auc_file.endswith("ftr"):
df = pd.read_feather(df_auc_file).drop(columns=["index"])
aucs_condensed = {}
for a in set([c.split("#")[0] for c in df.columns]):
aucs_condensed[a] = 0
for b in [b for b in df.columns if ((a+"#" in b and b.startswith(a)) or a == b)]:
aucs_condensed[a] += df[b][0]
df_combined = pd.DataFrame({ key:pd.Series(value) for key, value in aucs_condensed.items() })
if table_file.endswith("tsv"):
df_combined.reset_index().to_csv(table_file, sep="\t")
elif table_file.endswith("ftr"):
df_combined.reset_index().to_feather(table_file)
def get_auc_summary(self, df_files, table_file):
# get a list of auc dataframe file paths (df_files), combine them into a summary (consensus) df
dfs = []
indeces = []
empty = []
for file in df_files:
if file.endswith("tsv"):
df = pd.read_csv(file, sep="\t")
elif file.endswith("ftr"):
df = pd.read_feather(file)
if "index" in df.columns:
df.index = df["index"]
df = df.drop(columns=["index"])
sample_name = os.path.basename(file)[:-4].split("AUC")[0]
if df.empty:
empty.append(sample_name)
else:
dfs.append(df)
indeces.append(sample_name)
df = pd.concat(dfs)
df = df.set_index(pd.Series(indeces))
df = df.transpose()
df = df.fillna(0)
for sample in empty:
df[sample] = 0
df = df.applymap(lambda x: int(round(x, 0)) if isinstance(x, (int, float)) else x)
df.sort_index(axis=1, inplace=True)
df.insert(0, "metabolite", df.index)
df = df.set_index(pd.Series(range(1, len(df)+1)))
if table_file.endswith("tsv"):
df.to_csv(table_file, sep="\t")
elif table_file.endswith("ftr"):
df.reset_index().to_feather(table_file)
def annotate_ms1(self, df_file, library_file, mz_window, rt_window):
df = pd.read_csv(df_file, sep="\t")
library = pd.read_csv(library_file, sep="\t")
df.insert(2, "MS1 annotation", "")
df["mz"] = df["mz"].astype(float)
for _, std in library.iterrows():
delta_Da = abs(mz_window*std["mz"] / 1000000)
mz_lower = std["mz"] - delta_Da
mz_upper = std["mz"] + delta_Da
rt_lower = std["RT"] - rt_window/2
rt_upper = std["RT"] + rt_window/2
match = df.query("mz > @mz_lower and mz < @mz_upper and RT > @rt_lower and RT < @rt_upper")
if not match.empty:
for _, row in match.iterrows():
if len(df.loc[df["id"] == row["id"], "MS1 annotation"]) > 1:
df.loc[df["id"] == row["id"], "MS1 annotation"] += ";"+std["name"]
else:
df.loc[df["id"] == row["id"], "MS1 annotation"] += std["name"]
# replace generic metabolite name with actual MS1 annotation
df["metabolite"] = [y if y else x for x, y in zip(df["metabolite"], df["MS1 annotation"])]
df.to_csv(df_file, sep="\t", index=False)
def save_MS_ids(self, df_file, ms_dir, column_name):
Helper().reset_directory(ms_dir)
df = pd.read_csv(df_file, sep="\t")
df = df[df[column_name].notna()]
filename = column_name.replace(" ", "-") + ".tsv"
df.to_csv(os.path.join(ms_dir, filename), sep="\t", index=False)
def annotate_ms2(self, mgf_file, output_mztab, feature_matrix_df_file, match_column_name, overwrite_name=False):
# clean up the mzTab to a dataframe:
matches = pyteomics.mztab.MzTab(output_mztab, encoding="UTF8", table_format="df").small_molecule_table
matches = matches.query("opt_ppm_error <= 10 and opt_ppm_error >= -10 and opt_match_score >= 60")
matches["opt_spec_native_id"] = matches["opt_spec_native_id"].str.replace(r"index=", "")
# load spectra parameters from mgf_file
exp = mgf.MGF(source=mgf_file, use_header=True, convert_arrays=2, read_charges=True, read_ions=False, dtype=None, encoding=None)
parameters=[]
for spec in exp:
parameters.append(spec['params'])
spectra = pd.DataFrame(parameters)
spectra["feature_id"] = spectra["feature_id"].str.replace(r"e_", "")
# annotate matches with feature id, based on scan number
matches.insert(0, "feature_id", [spectra[spectra["scans"].astype(int) == int(scan)+1]["feature_id"].tolist()[0] for scan in matches["opt_spec_native_id"]])
# annotate features with hits based on feature id
features = pd.read_csv(feature_matrix_df_file, sep="\t")
ms2_ids = []
for f_id in features.id:
hit = matches[matches["feature_id"] == str(f_id)]
if hit.shape[0] > 0:
ms2_ids.append(";".join(hit["description"]))
else:
ms2_ids.append("")
features.insert(2, match_column_name, ms2_ids)
if overwrite_name:
# replace generic or MS1 annotated metabolite name with actual MS2 annotation
features["metabolite"] = [y if y else x for x, y in zip(features["metabolite"], features[match_column_name])]
features.to_csv(feature_matrix_df_file, sep="\t", index=False)