-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathutils.py
427 lines (356 loc) · 14.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
"""Helper functions for workshop
"""
import pandas as pd
from sagemaker.feature_store.feature_group import FeatureGroup
import time
import boto3
import sagemaker
from sagemaker.serializers import JSONSerializer
import os
import json
from sagemaker.feature_store.feature_definition import (
FeatureDefinition,
FeatureTypeEnum,
)
from sagemaker.session import Session
# Session variables
boto_session = boto3.Session()
region = boto_session.region_name
sagemaker_client = boto_session.client(service_name="sagemaker", region_name=region)
featurestore_runtime = boto_session.client(
service_name="sagemaker-featurestore-runtime", region_name=region
)
account_id = boto3.client("sts").get_caller_identity()["Account"]
feature_store_session = Session(
boto_session=boto_session,
sagemaker_client=sagemaker_client,
sagemaker_featurestore_runtime_client=featurestore_runtime,
)
class FMSerializer(JSONSerializer):
def serialize(self, data):
js = {"instances": []}
for row in data:
js["instances"].append({"features": row.tolist()})
return json.dumps(js)
def query_offline_store(
feature_group_name, query, sagemaker_session, query_output_s3_uri=None, wait=True
):
"""Query an offline store
Args:
feature_group_name (str): Name of the feature group
query (str): SQL query
sagemaker_session (sagemaker.Session()): SageMaker session
query_output_s3_uri (str, optional): S3 uri to store output of query. Defaults to None.
wait (bool, optional): Wait for the query to finish running. Defaults to True.
Returns:
pandas.DataFrame: Query results as dataframe
"""
feature_group = FeatureGroup(
name=feature_group_name, sagemaker_session=sagemaker_session
)
feature_group_athena_query = feature_group.athena_query()
if not query_output_s3_uri:
query_output_s3_uri = f"s3://{sagemaker_session.default_bucket()}/query_results"
try:
feature_group_athena_query.run(
query_string=query, output_location=query_output_s3_uri
)
if wait:
feature_group_athena_query.wait()
return feature_group_athena_query.as_dataframe(), feature_group_athena_query
else:
return None, None
except Exception as e:
print(e)
print(
f'\nNote that the "{feature_group.name}" Feature Group is a table called "{feature_group_athena_query.table_name}" in Athena.'
)
def wait_for_feature_group_creation_complete(feature_group):
"""Wait for a FeatureGroup to finish creating
Args:
feature_group (FeatureGroup): Feature group
"""
status = feature_group.describe().get("FeatureGroupStatus")
print(f"Initial status: {status}")
while status == "Creating":
print(f"Waiting for feature group: {feature_group.name} to be created ...")
time.sleep(5)
status = feature_group.describe().get("FeatureGroupStatus")
if status != "Created":
raise SystemExit(
f"Failed to create feature group {feature_group.name}: {status}"
)
print(f"FeatureGroup {feature_group.name} was successfully created.")
def get_feature_definitions(df, feature_group):
"""Get compatible feature definitions from a dataframe
Args:
df (pandas.DataFrame): Dataframe
feature_group (FeatureGroup): Feature group
Returns:
list: List of feature definitions
"""
# Dtype int_, int8, int16, int32, int64, uint8, uint16, uint32
# and uint64 are mapped to Integral feature type.
# Dtype float_, float16, float32 and float64
# are mapped to Fractional feature type.
# string dtype is mapped to String feature type.
# Our schema of our data that we expect
# _after_ SageMaker Processing
feature_definitions = []
for column in df.columns:
feature_type = feature_group._DTYPE_TO_FEATURE_DEFINITION_CLS_MAP.get(
str(df[column].dtype), None
)
if not feature_type:
feature_type = FeatureTypeEnum.STRING
feature_definitions.append(
FeatureDefinition(column, feature_type)
) # You can alternatively define your own schema
return feature_definitions
def create_feature_group(
df, feature_group_name, record_id, s3_prefix, sagemaker_session
):
"""Create a new feature group
Args:
df (pandas.DataFrame): Dataframe
feature_group_name (str): Feature group name
record_id (str): Name of the column in your dataframe that represents a unique id
s3_prefix (str): Prefix to store offline feature group data
sagemaker_session (sagemaker.Session()): SageMaker session
Returns:
FeatureGroup: Feature group
"""
# Add event time to df
event_time_name = "event_time"
current_time_sec = int(round(time.time()))
df["event_time"] = pd.Series([current_time_sec] * len(df), dtype="float64")
# If the df doesn't have an id column, add it
if record_id not in df.columns:
df[record_id] = df.index
feature_group = FeatureGroup(
name=feature_group_name, sagemaker_session=sagemaker_session
)
feature_definitions = get_feature_definitions(df, feature_group)
feature_group.feature_definitions = feature_definitions
try:
feature_group.create(
s3_uri=f"s3://{sagemaker_session.default_bucket()}/{s3_prefix}",
record_identifier_name=record_id,
event_time_feature_name="event_time",
role_arn=sagemaker.get_execution_role(),
enable_online_store=True,
)
wait_for_feature_group_creation_complete(feature_group)
except Exception as e:
code = e.response["Error"]["Code"]
if code == "ResourceInUse":
print(f"Using existing feature group: {feature_group.name}")
else:
raise (e)
return feature_group
def get_feature_group_table_name(feature_group):
"""Get the table name associated with a feature group
Args:
feature_group (FeatureGroup): Feature group
Returns:
str: The feature group's table name
"""
return feature_group.athena_query().table_name
def ingest_data_into_feature_group(df, feature_group):
"""Ingest data into a feature goup
Args:
df (pandas.DataFrame): Dataframe
feature_group (FeatureGroup): Feature group
"""
print(f"Ingesting data into feature group: {feature_group.name}...")
try:
ingestion_manager = feature_group.ingest(
data_frame=df, max_workers=16, max_processes=16, wait=True
)
except Exception as e:
print(e)
failed_rows = ingestion_manager.failed_rows()
num_failed_rows = len(failed_rows)
print(f"Num failed rows: {num_failed_rows}")
print(f"Failed rows: {failed_rows}")
print(f"{len(df)} records ingested into feature group: {feature_group.name}")
def _get_offline_details(fg_name, sagemaker_session, s3_uri=None):
"""Get offline feature group details
Args:
fg_name (str): Feature group name
sagemaker_session (sagemaker.Session()): SageMaker session
s3_uri (str, optional): Where to store offline query results. Defaults to None.
Returns:
tuple: Offline feature group table, database, and temporary uri for query results
"""
_data_catalog_config = sagemaker_session.sagemaker_client.describe_feature_group(
FeatureGroupName=fg_name
)["OfflineStoreConfig"]["DataCatalogConfig"]
_table = _data_catalog_config["TableName"]
_database = _data_catalog_config["Database"]
if s3_uri is None:
s3_uri = f"s3://{sagemaker_session.default_bucket()}/offline-store"
_tmp_uri = f"{s3_uri}/query_results/"
return _table, _database, _tmp_uri
def _run_query(query_string, tmp_uri, database, region, verbose=True):
"""Run athena query (used to get a feature group count)
Args:
query_string (str): Query string
tmp_uri (str): Uri for query results
database (str): Database name
region (str): Region name
verbose (bool, optional): Verbose output. Defaults to True.
Returns:
pandas.DataFrame: Dataframe
"""
athena = boto3.client("athena")
s3_client = boto3.client("s3", region_name=region)
# Submit the Athena query
if verbose:
print("Running query :\n " + query_string + "\nOn database: " + database)
query_execution = athena.start_query_execution(
QueryString=query_string,
QueryExecutionContext={"Database": database},
ResultConfiguration={"OutputLocation": tmp_uri},
)
# Wait for the Athena query to complete
query_execution_id = query_execution["QueryExecutionId"]
query_state = athena.get_query_execution(QueryExecutionId=query_execution_id)[
"QueryExecution"
]["Status"]["State"]
while query_state != "SUCCEEDED" and query_state != "FAILED":
time.sleep(2)
query_state = athena.get_query_execution(QueryExecutionId=query_execution_id)[
"QueryExecution"
]["Status"]["State"]
if query_state == "FAILED":
print(athena.get_query_execution(QueryExecutionId=query_execution_id))
failure_reason = athena.get_query_execution(
QueryExecutionId=query_execution_id
)["QueryExecution"]["Status"]["StateChangeReason"]
print(failure_reason)
df = pd.DataFrame()
return df
else:
results_file_prefix = f"offline-store/query_results/{query_execution_id}.csv"
# Prepare query results for training.
filename = "query_results.csv"
results_bucket = (tmp_uri.split("//")[1]).split("/")[0]
s3_client.download_file(results_bucket, results_file_prefix, filename)
df = pd.read_csv("query_results.csv")
os.remove("query_results.csv")
s3_client.delete_object(Bucket=results_bucket, Key=results_file_prefix)
s3_client.delete_object(
Bucket=results_bucket, Key=results_file_prefix + ".metadata"
)
return df
def get_historical_record_count(fg_name, sagemaker_session, s3_uri=None):
"""Get a record count from a given feature group
Args:
fg_name (str): Feature group name
sagemaker_session (sagemaker.Session()): SageMaker session
s3_uri (str, optional): Offline query result location. Defaults to None.
Returns:
int: Record count of the feature group
"""
_table, _database, _tmp_uri = _get_offline_details(
fg_name, sagemaker_session, s3_uri
)
_query_string = f'SELECT COUNT(*) FROM "' + _table + f'"'
_tmp_df = _run_query(
_query_string,
_tmp_uri,
_database,
sagemaker_session.boto_region_name,
verbose=False,
)
return _tmp_df.iat[0, 0]
def wait_for_offline_data(feature_group_name, df, sagemaker_session):
"""Wait for online data to be synced to the offline feature group
Args:
feature_group_name (str): The name of the Feature Group
df (pandas.DataFrame): A Pandas dataframe of data to ingest into the Feature Group
Returns: None
"""
df_count = df.shape[0]
# Before extracting the data we need to check if the offline feature store was populated
offline_store_contents = None
while offline_store_contents is None:
fg_record_count = get_historical_record_count(
feature_group_name, sagemaker_session
)
if fg_record_count >= df_count:
print(
f"Features are available in the offline store for {feature_group_name}!"
)
offline_store_contents = fg_record_count
else:
print("Waiting for data in offline store...")
time.sleep(60)
def _wait_for_feature_group_deletion_complete(feature_group_name):
"""Wait for a feature group to delete
Args:
feature_group_name (str): Feature group name
"""
region = boto3.Session().region_name
boto_session = boto3.Session(region_name=region)
sagemaker_client = boto_session.client(service_name="sagemaker", region_name=region)
feature_group = FeatureGroup(
name=feature_group_name, sagemaker_session=feature_store_session
)
while True:
try:
status = feature_group.describe().get("FeatureGroupStatus")
print("Waiting for Feature Group Deletion")
time.sleep(5)
except:
break
return
def describe_feature_group(fg_name):
"""Get feature group metadata
Args:
fg_name (str): Feature group name
Returns:
dict: Feature group metadata
"""
return sagemaker_client.describe_feature_group(FeatureGroupName=fg_name)
def delete_feature_group(fg_name, delete_s3=True):
"""Delete a feature group
Args:
fg_name (str): Feature group name
delete_s3 (bool, optional): Delete the offline feature group data. Defaults to True.
"""
has_offline_store = True
try:
describe_feature_group(fg_name)["OfflineStoreConfig"]
except:
has_offline_store = False
pass
if has_offline_store:
offline_store_config = describe_feature_group(fg_name)["OfflineStoreConfig"]
if not offline_store_config["DisableGlueTableCreation"]:
table_name = offline_store_config["DataCatalogConfig"]["TableName"]
catalog_id = offline_store_config["DataCatalogConfig"]["Catalog"]
database_name = offline_store_config["DataCatalogConfig"]["Database"]
# Delete s3 objects from offline store for this FG
if delete_s3 and has_offline_store:
s3_uri = describe_feature_group(fg_name)["OfflineStoreConfig"][
"S3StorageConfig"
]["S3Uri"]
base_offline_prefix = "/".join(s3_uri.split("/")[3:])
offline_prefix = f"{base_offline_prefix}/{account_id}/sagemaker/{region}/offline-store/{fg_name}"
s3_bucket_name = s3_uri.split("/")[2]
s3 = boto3.resource("s3")
bucket = s3.Bucket(s3_bucket_name)
coll = bucket.objects.filter(Prefix=offline_prefix)
print(
f"Deleting all s3 objects in prefix: {offline_prefix} in bucket {s3_bucket_name}"
)
resp = coll.delete()
resp = None
try:
resp = sagemaker_client.delete_feature_group(FeatureGroupName=fg_name)
except:
pass
_wait_for_feature_group_deletion_complete(fg_name)
return