Skip to content

Latest commit

 

History

History
151 lines (106 loc) · 7.67 KB

README.md

File metadata and controls

151 lines (106 loc) · 7.67 KB

PyPI PyPI - Downloads PyPI - Python Version GitHub Actions status Coverage Status

Types - Mypy Ruff Code Style - Black

Custom component for Haystack (2.x) for creating embeddings using the VoyageAI Embedding Models.

Voyage’s embedding models, voyage-2 and voyage-2-code, are state-of-the-art in retrieval accuracy. These models outperform top performing embedding models like intfloat/e5-mistral-7b-instruct and OpenAI/text-embedding-3-large on the MTEB Benchmark. voyage-2 is current ranked second on the MTEB Leaderboard.

What's New

  • [v1.4.0 - 24/07/24]:

    • The maximum timeout and number of retries made by the Client can now be set for the embedders using the timeout and max_retries parameters.
  • [v1.3.0 - 18/03/24]:

    • Breaking Change: The import path for the embedders has been changed to haystack_integrations.components.embedders.voyage_embedders. Please replace all instances of from voyage_embedders.voyage_document_embedder import VoyageDocumentEmbedder and from voyage_embedders.voyage_text_embedder import VoyageTextEmbedder with
      from haystack_integrations.components.embedders.voyage_embedders import VoyageDocumentEmbedder, VoyageTextEmbedder.
    • The embedders now use the Haystack Secret API for authentication. For more information please see the Secret Management Documentation.
  • [v1.2.0 - 02/02/24]:

    • Breaking Change: VoyageDocumentEmbedder and VoyageTextEmbedder now accept the model parameter instead of model_name.
    • The embedders have been use the new voyageai.Client.embed() method instead of the deprecated get_embedding and get_embeddings methods of the global namespace.
    • Support for the new truncate parameter has been added.
    • Default embedding model has been changed to "voyage-2" from the deprecated "voyage-01".
    • The embedders now return the total number of tokens used as part of the "total_tokens" in the metadata.
  • [v1.1.0 - 13/12/23]: Added support for input_type parameter in VoyageTextEmbedder and VoyageDocument Embedder.

  • [v1.0.0 - 21/11/23]: Added VoyageTextEmbedder and VoyageDocument Embedder to embed strings and documents.

Installation

pip install voyage-embedders-haystack

Usage

You can use Voyage Embedding models with two components: VoyageTextEmbedder and VoyageDocumentEmbedder.

To create semantic embeddings for documents, use VoyageDocumentEmbedder in your indexing pipeline. For generating embeddings for queries, use VoyageTextEmbedder.

Once you've selected the suitable component for your specific use case, initialize the component with the model name and VoyageAI API key. You can also set the environment variable VOYAGE_API_KEY instead of passing the API key as an argument.

Information about the supported models, can be found on the Embeddings Documentation.

To get an API key, please see the Voyage AI website.

Example

Below is the example Semantic Search pipeline that uses the Simple Wikipedia Dataset from HuggingFace. You can find more examples in the examples folder.

Load the dataset:

# Install HuggingFace Datasets using "pip install datasets"
from datasets import load_dataset
from haystack import Pipeline
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
from haystack.components.writers import DocumentWriter
from haystack.dataclasses import Document
from haystack.document_stores.in_memory import InMemoryDocumentStore

# Import Voyage Embedders
from haystack_integrations.components.embedders.voyage_embedders import VoyageDocumentEmbedder, VoyageTextEmbedder

# Load first 100 rows of the Simple Wikipedia Dataset from HuggingFace
dataset = load_dataset("pszemraj/simple_wikipedia", split="validation[:100]")

docs = [
    Document(
        content=doc["text"],
        meta={
            "title": doc["title"],
            "url": doc["url"],
        },
    )
    for doc in dataset
]

Index the documents to the InMemoryDocumentStore using the VoyageDocumentEmbedder and DocumentWriter:

doc_store = InMemoryDocumentStore(embedding_similarity_function="cosine")
retriever = InMemoryEmbeddingRetriever(document_store=doc_store)
doc_writer = DocumentWriter(document_store=doc_store)

doc_embedder = VoyageDocumentEmbedder(
    model="voyage-2",
    input_type="document",
)
text_embedder = VoyageTextEmbedder(model="voyage-2", input_type="query")

# Indexing Pipeline
indexing_pipeline = Pipeline()
indexing_pipeline.add_component(instance=doc_embedder, name="DocEmbedder")
indexing_pipeline.add_component(instance=doc_writer, name="DocWriter")
indexing_pipeline.connect("DocEmbedder", "DocWriter")

indexing_pipeline.run({"DocEmbedder": {"documents": docs}})

print(f"Number of documents in Document Store: {len(doc_store.filter_documents())}")
print(f"First Document: {doc_store.filter_documents()[0]}")
print(f"Embedding of first Document: {doc_store.filter_documents()[0].embedding}")

Query the Semantic Search Pipeline using the InMemoryEmbeddingRetriever and VoyageTextEmbedder:

text_embedder = VoyageTextEmbedder(model="voyage-2", input_type="query")

# Query Pipeline
query_pipeline = Pipeline()
query_pipeline.add_component(instance=text_embedder, name="TextEmbedder")
query_pipeline.add_component(instance=retriever, name="Retriever")
query_pipeline.connect("TextEmbedder.embedding", "Retriever.query_embedding")

# Search
results = query_pipeline.run({"TextEmbedder": {"text": "Which year did the Joker movie release?"}})

# Print text from top result
top_result = results["Retriever"]["documents"][0].content
print("The top search result is:")
print(top_result)

Contributing

Pull requests are welcome. For major changes, please open an issue first.

Author

Ashwin Mathur

License

voyage-embedders-haystack is distributed under the terms of the Apache-2.0 license.