TIERNDevelopment about2023 / 07 / 12Occupancy Grid Map Fusion

CONTENTS

01 / Problem Statement

02 / Method

03 / Conclusion

Related Links

PRs(~2023/April)

- Solution A: move scan origin
 - <u>PR#2939</u> : enable to select gridmap origin frame
 - <u>PR#3032</u> : add scan frame option and fix scan
- Solution B: create ogm in each sensor
 - <u>PR#3032</u> : Separate scan_frame and gridmap_origin
 - <u>PR#3054</u> : Filter obstacle pointcloud by raw pointcloud
 - <u>PR#3312</u> : Publish time synced raw pointcloud from sensing component (WIP)
- Solution B: OGM Fusion Node
 - <u>PR#3058</u> : Refactor OGM launcher
 - <u>PR#3340</u> : Bug fix
 - <u>PR#3107</u> : Add grid map fusion node (WIP)

Links

• <u>lssue #2906</u>

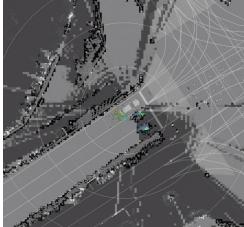
Problem Statement

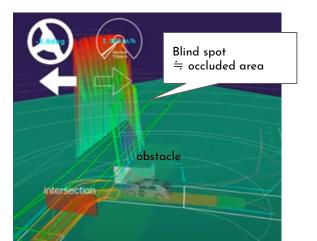
intersection

obstacle

TIER IV

About OGM (Occupancy Grid Map) OGM example in sample

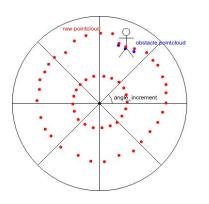

OGM is used to represent the presence of an obstacle in environment.


It is used in:

- Perception
 - object filtering
- Planning
 - intersection module
 - blind spot estimation...etc

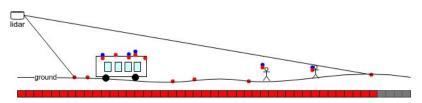
OGM is created with

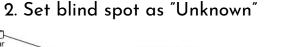
- raw lidar pointcloud
- obstacle lidar pointcloud



(Appendix) OGM generation

Currently we only support two lidar based methods:


- laserscan based method
 - only need obstacle pointcloud
 - short range visibility (obstacle)
- <u>Pointcloud based method</u>
 - o 🛛 🙆 more detailed
 - need raw and obstacle pointcloud


We recommend latter in many cases.

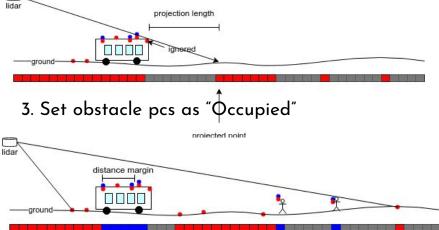


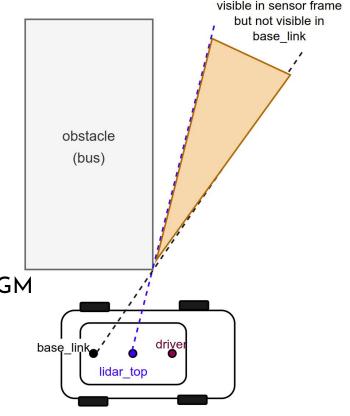
Fig. Pointcloud based OGM creation

1. Fill visible range with "Free"

TIER IV

Problem statement

OGM is often scanned on base_link (rear side).


This sometimes result in **shorter range visibility in intersection**

It do not reflect true FOV of the each sensors because scanning origin is not on sensor

Goals:

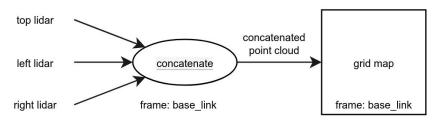
• Provide method to reflect true sensor FOV to OGM

For details, please see <u>Issue</u>

(Appendix): Problem statement in Video

TIER IV

Blind spot in intersection is displayed as area surrounded by walls.


Planning module tries to expose the vehicle head to see this blind spot.

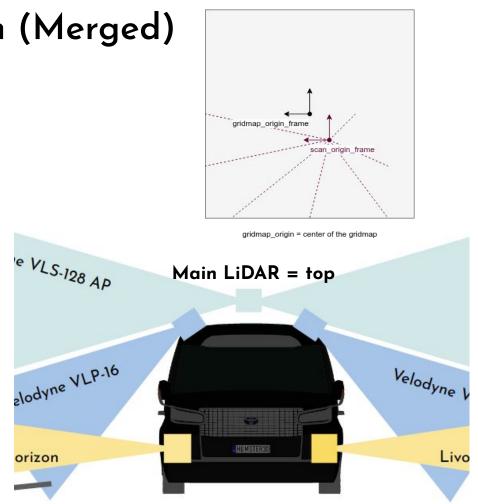
Basic Idea and Solutions

Basic Idea: The scan origin in OGM creation should be the same with the sensor origin.

- Solution A
 - Move scan origin
- Solution B
 - Create OGM in each sensor frame
 - Fuse multiple OGM output

Current OGM creation process

TIER IV

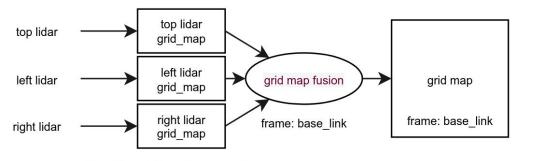

Solution A: Move scan origin (Merged)

In the config/*.yaml file you can set origin separately

- gridmap_origin_frame
 geometrical center of OGM
- scan_origin_frame
 - origin of virtual scan

See <u>README.md</u> for details.

This works well in small vehicle with one main-lidar and some sub-lidar builds.



Solution B: Create OGM in each sensor frame

In the larger vehicle, we can not choose appropriate origin.

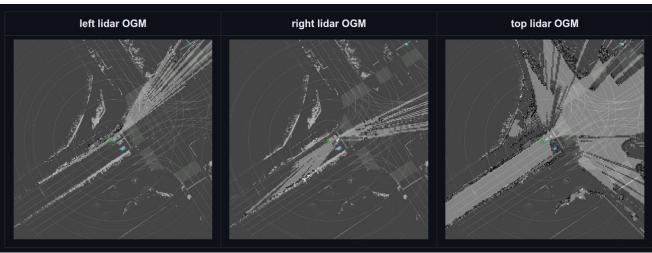
We need to

- Create OGM in each sensor frame
- Fuse OGM

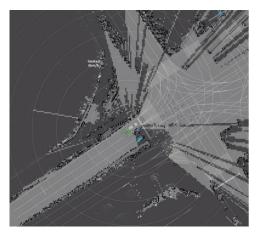
generate grid map in each sensor frame

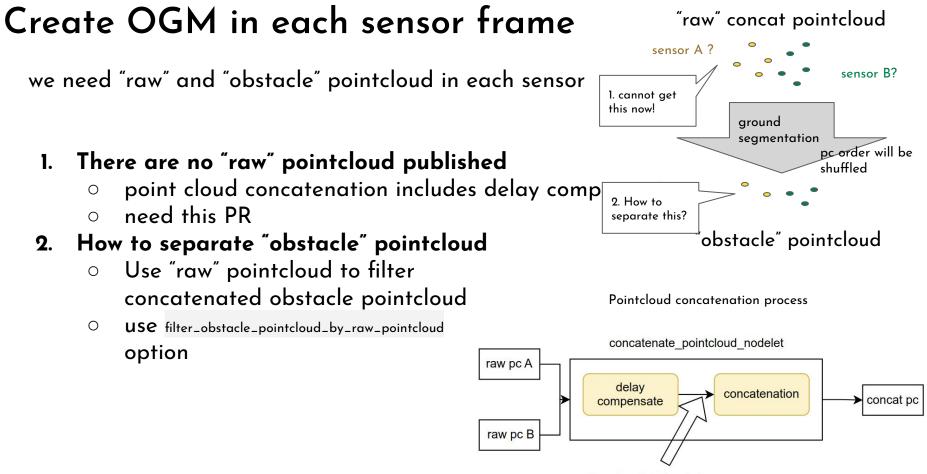
TIER IV

Detailed OGM Fusion Flow


02

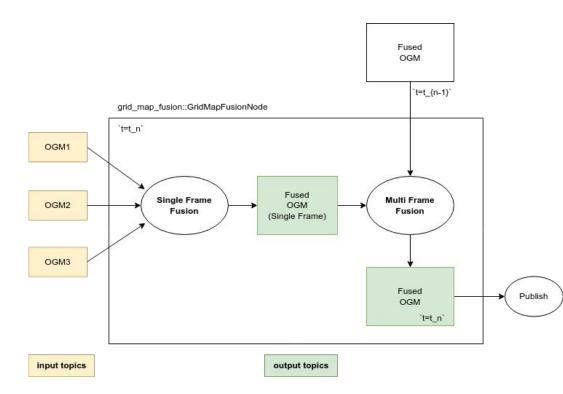
Solution B: Create OGM in each sensor frame


OGM in each sensor is created on same map_origin and then fused.


See <u>document</u>(in PR). reference -> [<u>CARLOS GÁLVEZ 2015</u>]

Example in sample-rosbag in documentation

Fused OGM


TIFR IV

"raw" point clouds!

OGM fusion flow

We have two choices:

- 1. synchronized fusion
 - fuse in the certain frame
 - o o easier to debug
 - sensor output should synchronized (for LiDAR)
- 2. async fusion
 - Update fused OGM when message comes
 - o o sync process
 - better in multi modal
 OGM fusion
 - \circ not implemented yet... 🙇

OGM fusion method [CARLOS GÁLVEZ 2015]

OGM fusion method requires:

- "Unknown" observations should not affect to Fusion.
- Able to handle each sensor weight
- Able to manage conflict
- Independent to input order

policy	description	
overwrite	more critical state is overwritten: occupied -> free -> unknown	
log-odds	most simple bayes rule	
dempster-shafer	able to handle unknown information directly	

TIER IV

(Appendix) Log-Odds fusion

Log-Odds based method is one of the bayesian filter implementation

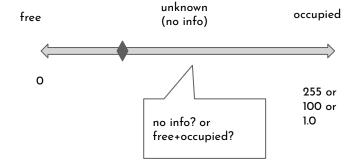
Basic equation is like:

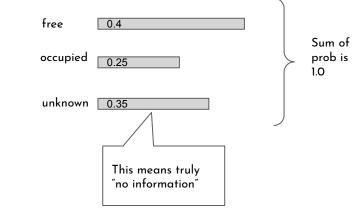
$$l_t(m_{ij}) = \log \frac{p(m_{ij} | \mathbf{z}_{1:t}, \mathbf{x}_{1:t})}{1 - p(m_{ij} | \mathbf{z}_{1:t}, \mathbf{x}_{1:t})} = \log \frac{p(m_{ij} | \mathbf{z}_t, \mathbf{x}_t)}{1 - p(m_{ij} | \mathbf{z}_t, \mathbf{x}_t)} + l_{t-1}(m_{ij}) - \log \frac{p(m_{ij})}{1 - p(m_{ij})}$$

$$l(\mathbf{m}) = \log \frac{p(\mathbf{m})}{1 - p(\mathbf{m})} \quad ; \quad l_k(\mathbf{m}) = \log \frac{p_k(\mathbf{m})}{1 - p_k(\mathbf{m})}$$

The fused log-likelihood then simply becomes:

$$l(\mathbf{m}) = \sum_k l_k(\mathbf{m})$$

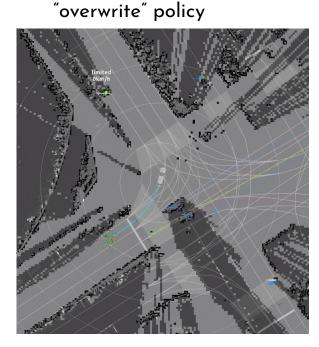

Actually, we use "weighted" log-odds


TIER IV

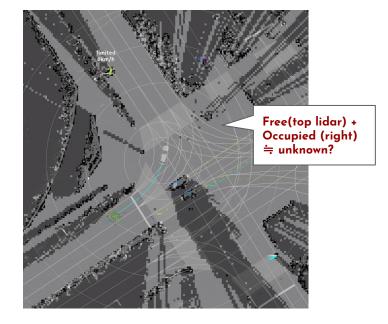
(Appendix) Dempster Shafer Theory [TIER IV internal link]

TIER IV

🙆 able to handle each state occupancy probability separately probability \rightarrow aware of difference in "no info" and "conflicted" 🙆 can suppress unknown • probability after fusion 🙅 conflict sometimes lead to unintended result • ros message limitation output will be occupancy dempster Ο shafer probability...


Comparison: Single Frame Fusion

Each method does not differ so much. Because:


• input ogm is binary-like: free(0) or occupied(255)

TIER IV

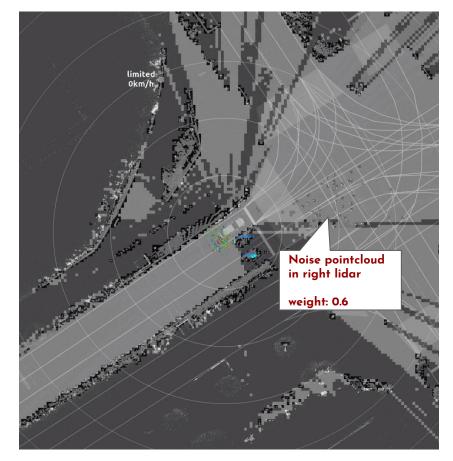
overwrapped region is not large enough

"dempster-shafer" policy

TIER IV

(Appendix) use weights to suppress noise

Each sensor weight is another important parameter


We can suppress noise from less trustable sensor

each_ogm_output_topics:

- "/perception/occupancy_grid_map/top_lidar/map"
- "/perception/occupancy_grid_map/left_lidar/map"
- "/perception/occupancy_grid_map/right_lidar/map"
 each_ogm_sensor_frames:
 - "velodyne_top"
 - "velodyne_left"
 - "velodyne_right"

reliability of each sensor (0.0 ~ 1.0) only work with "log each_ogm_reliabilities:

- 1.0
- 0.6
- 0.6

Comparison: Processing time

Dracassing time.		
Processing time:	Method	processing time [ms]
overwrite >> dempster-shafer ≒ log-odds	overwrite	mean: 4.162326
		min: 3.000000
		max: 7.546000
Want faster processing		
\rightarrow overwrite	log-odds	mean: 8.159959
		min: 5.859000
Need sensor weighting → log-odds, dempster-shafer		max: 13.731000
	Dempster-shafer	mean: 7.489534
		min: 5.049000
		max: 16.239000

Conclusion

Conclusion

• OGM virtual scan should be done in (main) sensor frame

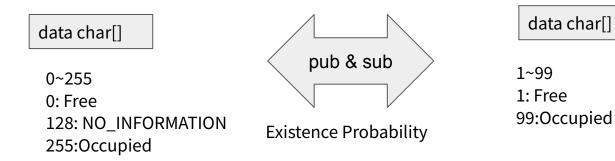
- solution A
 - Move virtual scan origin (merged)
- solution B
 - publish raw pointcloud (<u>waiting for merge</u>)
 - OGM fusion (<u>under construction</u>)
 - move to new package -> ogm_fusion or something?
 - fix conflicts with newer changes
 - (add asynchronous fusion node) (Evaluate in planning)
 - concerns:
 - increasing traffic, computational resources...

(component container sometimes stops...)

Appendix: Other TODO

Current costmap value settings

original settings in nav_msgs/OccupancyGridMap messages:


data int8[]

TIER IV

-127~128

messages in autoware

costmap in autoware S/P nodes:

🙅 Hard

Hard to explain sensor FOV by this existence probability

Change costmap value settings

original settings in nav_msgs/OccupancyGridMap messages:

data int8[]

-127~128

costmap in autoware S/P nodes:

data char[]pub & sub0~255pub & sub0: Free-1254: Occupied0:255: NO_INFORMATIONExistence Probability

messages in autoware

data char[]

-1, 0~100 -1: NO INFO 0: Free 100:Occupied

Add FOV information. cf. <u>navigation2</u>